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Abstract In this paper, we develop an approach to optimally allocate a limited nonrenewable resource
among the activities of a project, represented by a PERT-Type Network (PTN). The project needs to
be completed within some specified due date. The objective is to maximize the probability of project
completion on time. The duration of each activity is an arbitrary discrete randomvariable and also depends
on the amount of consumable resource allocated to it. On the basis of the structure of networks, they
are categorized as either reducible or irreducible. For each network structure, an analytical algorithm is
presented. Through some examples, the algorithms are illustrated.
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1. Introduction

In many real world projects, the duration of activities is
stochastic. This is why these projects are formulated as a PERT-
Type Network (PTN). On the other hand, completion of a project
on time has a significant effect on its cost, revenue and use-
fulness. Therefore, the main objective of project managers is to
avoid any delay. To achieve this goal, consuming extra resources
can shorten the duration of each individual activity. However,
due to limitations, optimal allocation of resources among activ-
ities is vital.

There are many studies in literature regarding resource al-
location, in general. The estimation of completion time in PTN
is closely related to the constrained resource allocation prob-
lem. This subject is surveyed in [1–7]. To see the classification of
models and methods in resource-constrained project schedul-
ing, one may refer to [8]. Furthermore, Herroelen et al. [9] pre-
sented a new classification, compatible to machine scheduling,
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and [10] also surveyed the recent developments in resource-
constrained project scheduling. Herroelen and Leus [11] dis-
cussed the scheduling problem under uncertainty, as well as
some research potentials.

Igelmund and Radermacher [12,13] and Mohring et al.
[14,15] studied a stochastic, resource constrained, project
scheduling problem. They assumed that the durations of project
activities, equivalent to operations in job shop scheduling,
were ransom. They also assumed that joint distribution of
the duration of activities was known. They considered simple
resource solutions, as well as schedules, created from a combi-
nation of several simple resource solutions. The authors proved
various analytical properties for these classes of schedule.
Golenko-Ginzburg [16] developed a two-level decision mak-
ing model for controlling stochastic projects and also intro-
duced some heuristic procedures to solve them. Martel and
Ouellet [17] examined the problem of allocating a particular
resource among partially interchangeable activities by formu-
lating it as a stochastic program and then reducing it to a
deterministic convex allocation problem through parametric
programming. In Ref. [18], minimization is usually carried
out by the steepest descent gradient search with simulation.
Derivatives, with respect to parameters of an allocation, are es-
timated by simulating at different values of parameter. This ar-
ticle gives sufficient conditions, under which, derivatives of a
class of these allocation problems can be estimated efficiently
through simulating at one value of the parameters. Fernan-
dez et al. [19] considered nonanticipativity constraints, pro-
vided potentially unattainable solutions and also developed
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commercial software for stochastic project scheduling.
Golenko-Ginzburg et al. [20] developed a hierarchical three-
level decision making model, upper level (company level),
medium level (project level) and subnetwork level. The main
goal is to develop a unified three-level decision making model,
and to indicate planning and control action and optimiza-
tion problems for all levels. Bowers [21] showed that in a
project dominated by technological dependencies rather than
resource constraints, the sources of risk can be identified by
examining the probabilities of each activity lying on a criti-
cal path. Similar criticality probabilities can also be derived for
resource constrained stochastic networks, if the definition of
the critical path is revised. Golenko-Ginzburg and Gonik [22]
maximized the total contribution of accepted activities to the
expected project duration by applying zero–one integer pro-
gramming. The contribution of each activity is the product
of the average duration of the activity and its probability of
being on the critical path. Golenko-Ginzburg and Gonik [23]
presented a new heuristic control algorithm for stochastic net-
work projects, and [24] developed a lookover heuristic al-
gorithm for resource-constrained in PTN. Each activity is of
random duration, depending on the resource amounts assigned
to that activity. The aim is tominimize the expected project du-
ration. Tsai and Gemmill [25] proposed a tabu search technique
to solve stochastic resource-constrained projects. Mohring and
Stork [26] introduced some linear pre-selective policies by
combining the benefits of pre-selective and priority policies,
and derived some efficient algorithms. Gokbayrak and Cassan-
dras [27] transformed the stochastic discrete resource alloca-
tion problem into an on-line surrogate continuous optimization
problem and proceeded to solve the latter using stan-
dard gradient-based approaches. Then, this surrogate prob-
lem methodology was generalized [28]. Golenko-Ginzburg
et al. [29] developed an optimization procedure to maximize
the probability confidence for project due-dates under bud-
get constraints, or to minimize the project budget under due-
date chance constraints. A chance-constrained programming
model was reviewed from the point of view of accuracy and
validity in [30], and they obtained a lower bound for the cu-
mulative distribution function of project completion time. El-
maghraby [31] proposed a dynamic programming approach for
a problemwith n jobs, processed by single andmultiple proces-
sors, which has some similarities with the constrained resource
allocation problem. Choi et al. [32] developed a new approach
to combine heuristic solutions through dynamic programming
in the state space generated by heuristics. Azaron and Memari-
ani [33] developed a bicriteriamodel for the resource allocation
problem in PTN in which the total direct costs of the project, as
well as the project completion mean time, are the objectives
to minimize. Azaron and Tavakkoli-Moghaddam [34] devel-
oped a multi-objective model for the resource allocation prob-
lem in a dynamic PERT network, where the activity durations
are exponentially distributed random variables and the new
projects are generated according to a Poisson process. Azaron
et al. [35] developed a multi-objective model for resource al-
location problems in PERT networks, with exponentially or Er-
lang distributed activity durations, where the mean duration of
each activity is a non-increasing function and the direct cost
of each activity is a non-decreasing function of the number of
resources allocated to it. The objective functions are the total
direct costs of the project (to be minimized), the mean of the
project completion time (min), the variance of project com-
pletion time (min), and the probability that the project com-
pletion time does not exceed a certain threshold (max). The
surrogate worth trade-off method is used to solve a discrete-
time approximation of the original problem. The resource al-
location problem, under stochastic conditions, for multimodal
activity networks, was presented in [36]. This problem is solved
by dynamic programming, and an approximation scheme was
suggested. Elmaghraby [37] showed gross errors can be com-
mitted in cost estimates if random variables are replaced by
their averages. A metaheuristic algorithm for a resource con-
strained project scheduling problem in PERT networks, using a
hybrid scatter search approach, is developed in [38].

Some researchers considered the problem from other points
of view. Haga and O’ keefe [39] used a crashing strategy to min-
imize the value of total cost in PTN. Vanhoucke et al. [40] and
Yang et al. [41] paid attention to maximizing the project net
present value. Laslo [42] and Vanhoucke et al. [43] considered
time-cost trade-offs, under constraints, in the project schedul-
ing problem. Tavares [44] suggested a stochastic model for
controlling project duration and expenditure, and deduced to
assess the financial risk of a project. Shipley et al. [45] proposed
fuzzy probability instead of Beta distribution in PTN and esti-
mated fuzzy expected completion time. Pugh [46] compared
fuzzy allocation with a random, largest queue, using a discrete
event simulation model.

Elmaghraby [47] minimized the project completion time by
using dynamic programming for a network with deterministic
activities. To the best of our knowledge, [48] is the only paper
in the literature to address the issue of optimal allocation of
constrained consumable resources, among the activities of a
PERT-type network (PTN), if the objective is to maximize the
probability of project completion within some specified period
of time (due date). Modarres et al. [48] allocated a limited
resource among the activities of a PTN, where the durations
of activities are a continuous random variable. Due to the
complexity of computations, they applied a hybrid algorithm to
obtain a Cumulative Distribution Function (CDF) of completion
time, approximately. Bein et al. [49] determined the minimum
number of activities to condition upon. This method is efficient
when the random variables of activity times are common, and
their convolutions, or a maximum of them, are known, for
instance, exponential distributions, otherwise their proposed
algorithmmay bemore complex. Tereso et al. [50] shall assume
that the activity work content follows exponential distribution.
Also, they optimized an economic objective in the face of
uncertainty.

However, in this paper, by assuming that the activity
durations are discrete random variables, and also, by applying
dynamic programming, the exact maximum value of the CDF
of the network completion time is obtained for different types
of network. Consequently, the constrained resource can be
allocated optimally among the activities.

This paper has developed an analytical method for optimal
resource allocation in small projects.We believe that this is very
valuable, becausemany researchers believe that it is impossible
or very difficult to do. For example,Wan [18] says: ‘‘Tominimize
the expected length of a stochastic CPM-type network by
allocating resources optimally is analytically insolvable and
numerically impractical’’. So, our proposed method may be
impractical for large scale problems, but can be a suitable tool
for the evaluation of heuristic methods thatmay be proposed in
the future.

The paper has the following structure. First, the problem is
described. Then, we develop an analytical approach to solve
the problem in series and parallel configurations. Also, we
categorize the networks as irreducible and reducible structures.
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Figure 1: Activities in series.

The optimal constrained resource allocation for irreducible
and reducible network structures is described in two distinct
sections. The last section is devoted to conclusions and
recommendations for future studies.

2. Description of the problem

Consider a project formulated as a PERT-Type Network
(PTN). The duration time of each activity is an arbitrary inde-
pendent discrete randomvariablewith a givenprobability func-
tion. However, this probability function depends on the amount
of resources allocated to it. Clearly, the amount of resources al-
located to each activity is limited to some specific levels. The
objective is to allocate the total constrained resources among
the activities, such that the probability of the project being com-
pleted before a desired due date is maximized.

We use the following notations.

t: Desired network completion time (due date);
T : Completion time of the network (which is clearly a

random variable);
Rs: Total constrained resource, which can be allocated;
P: Set of paths of the network;
A: Set of activities of the network where |A| = n;

A(N): Set of activities of a subnetwork, say N , (N can be the
network itself);

Let Pj(sj, tj) and Fj(sj, tj) represent the probability and the
cumulative distribution function of the duration time of activity
j, respectively, provided the resource allocated to this activity
is sj.

The problem is to maximize P(T ≤ t | RS), or in fact, to
maximize the probability of completion within the desired
time, if the total allocated resource is RS.

To allocate the constrained resource among the activities
optimally, we develop an analytical approach. In this approach,
some algorithms are proposed, depending on the structure of
the network.

3. Analytical approach

In this section, we present an analytical approach for the
optimization of constrained resource allocation in a project
characterized by (a) activities in series, and (b) activities in
parallel. The approach in each case is illustrated by an example.

3.1. Projects with activities in series

Suppose that a project comprises n activities in series, as in
Figure 1, called activity 1, 2, . . . , n.

By applying Dynamic Programming (DP), we can allocate the
constrained resource among the series of activities, optimally.
At each stage of DP, the resource, which is allocated to one
activity, is determined. Therefore, our DP has n stages. At each
stage, the state of DP represents the amount of unused resource
that can be allocated to the remaining activities.

Let Wj(τ , R′) denote the maximal cumulative probability of
realization of project completion target time t (the completion
of activity n), at time τ , with R′ units of the resource available.
Figure 2: Activities in series of Example 1.

Table 1: Probability function of activities in Example 1.

Pj(sj, tj)
Activity 1 Activity 2

t1 1 2 3 t2 2 3 4

s1 = 3 1
3

1
3

1
3 s2 = 2 1

3
1
3

1
3

s1 = 4 1
2

1
4

1
4 s2 = 3 3

4
1
8

1
8

s1 = 5 3
4

1
8

1
8 s2 = 4 4

5
1
10

1
10

Table 2: Values of W2(τ , R′).

τ R′

2 3 4 s∗l2
1 1 1 1 2
2 1 1 1 2
3 2

3 0.875 0.9 4

Starting at stage j, (which means that activities j, j + 1, . . . , n
are still to be accomplished), then:

Wj(τ , R′) = max
sj


tj

Pj(sj, tj) ·Wj+1(τ + tj, R′ − sj)


(1)

τ ∈ Ωτ , R′ ∈ Ωj, j = n, n− 1, . . . , 1
where Pj(sj, tj) is the probability of duration of activity j, if the
resource allocated to it is sj.

Initially it is started at Wn+1(τ , R′) = 1,∀τ , R′, and it is
terminated when W1(0, RS) is determined, if RS is the total
available resource. The feasible space of time Ωτ and feasible
space of resource Ωj are evaluated from the minimum
and maximum of possible allocations to the preceding and
succeeding activities.

Example 1. Suppose that a project comprises two activities in
series, as in Figure 2, with RS = 7 and T = 6. The probability
function of activities depends on the resource allocated to them
and presented in Table 1.

The objective is to maximize the P(T ≤ 6 | RS = 7).
Decision variables are s1 and s2. It is obvious that W3(τ , R′)
= 1,∀τ , R′. Also, Ω2 = {2, 3, 4} and Ωτ = {1, 2, 3}. Then:
W2(τ , R′) = maxs2


t2
P2(s2, t2)W3(τ + t2, R′ − s2). Then, the

value ofW2(τ , R′) is computed and presented in Table 2.
W1(0, 7) can be computed as follows:

W1(0, 7) = max
s1


t1

P1(s1, t1) ·W2(0+ t1, 7− s1)


= max{s1 = 3: 0.967, s1 = 4 : 0.96875,

s1 = 5 : 0.9583} = 0.96875.
The final stage is shown in Table 3.

Therefore, the optimal constrained resource allocation is
s∗1 = 4, s∗2 = 3 and MaxP(T ≤ 6 | RS = 7) = .96875.

3.2. Projects with activities in parallel

Suppose a project comprises n activities in parallel, as in
Figure 3.
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Table 3: Value of W1(0, 7).

τ R′

7 s∗l1
0 0.96875 4

Figure 3: Activities in parallel.

The problem ofmaximizing P(T ≤ t | RS) can be formulated
as dynamic programming. tj is the random variable of the
completion time of activity j, and Fj(sj, tj) is the cumulative
probability function of activity jwhen the resource allocated to
it is sj.

The problem may be formally stated as follows:

MaximizeW =
n

j=1

Fj(sj, t)

Subject to:
n

j=1

sj ≤ RS, sj ≥ 0,∀j.

This is the well-known knapsack model, except that its
objective function is nonlinear. Its solution is achieved via DP.
LetWj(R′) be themaximal value of

n
h=j Fh(sh, t)when the total

available resource is R′.
Wj(R′) = max(

n
h=j Fh(sh, t)); ∀R

′
≤ RS. Then, the recur-

sive equations are as follows:

Wn(R′) = max
sn≤R′

Fn(sn, t), (2)

Wj(R′) = max
sn≤R′
{Fj(sj, t)Wj+1(R′ − sj)}, (3)

0 ≤ R′ ≤ RS, j = n− 1, . . . , 1.

Thenumber of stages isn (the number of activities) and the state
of each stage is the remaining resource, which is available for
the remaining activities. Finally, W1(RS), the optimal resource
allocated to each activity can be determined. In other words,
max P(T ≤ t | RS) = W1(RS).

Example 2. Consider the project shown in Figure 4.

Activities 1 and 2 are the same as in Example 1. The
probability functions of Activities 3 and 4 depend on the
resource allocated to them, as shown in Table 4.

The objective is to maximize P(T ≤ t | RS) where t = 6
and RS = 15. The optimal allocation for path 1–2 is obtained
by applying dynamic programming, similar to Example 1, as
shown in Table 5.

By applying dynamic programming in a parallel case, we can
determine the optimal resource allocation, as follows:

(s∗1, s
∗

2, s
∗

3, s
∗

4) = (3, 3, 4, 5) and
MaxP(T ≤ 6 | RS = 15) = 0.79861.
Figure 4: Network of Example 2.

Table 4: Probability function of Activities 3 and 4 in Example 2.

s3 P3(s3, t3) t3 s4 P4(s4, t4) t4

3 2
5 4 4 1

7 4
1
5 5 1

3 5
1
5 6 1

3 6
1
5 7 1

3 7

4 1
4 3 5 1

6 4
1
4 4 2

6 5
1
4 5 2

6 6
1
4 6 1

6 7

Table 5: Optimal resource allocation for path 1–2.

RS12 s1 s2 max P(T ≤ 6 | RS12)

5 3 2 0.88889
6 3 3 0.95833
7 3 4 0.96875
8 4 4 0.975

Figure 5: Network (a), a single series network.

4. Reducible and irreducible subnetworks/networks

Consider a subnetwork (or network), say N , containing
several paths (from the source node to the sink node.) It is called
reducible if it can be divided into two (or more) subnetworks,
say Nk, k = 1, 2, . . . .K , such that if a ∈ Nk, then, a ∉ N l, l ≠ k.
Otherwise, it is irreducible.

Let the network of n activities andm paths be represented by
amatrix. In that case, the element located on the ith row and jth
column of the matrix is equal to 1, if the jth activity is on the ith
path, and equal to 0 otherwise. Then, this network is reducible
if the set of rows can be partitioned into two (or more) subsets,
such that, after partitioning, all (1) elements of each column are
only in one subset.

Example 3. Consider the following networks.

The network shown in Figure 5 consists of two activities in-
series and has only one path, thus, it is irreducible.
a. The network shown in Figure 5 consists of two activities in-

series and has only one path, thus, it is irreducible.
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Figure 6: Network (b), a parallel with 3 paths.

Figure 7: Network (c), irreducible with 3 paths.

The path-activity matrix of this network is as below:
1 1


.

b. The network shown in Figure 6 contains of 3 paths that can
be divided into three subnetworks: {1, 2},{3} and {4}. Thus,
it is reducible.

The path-activity matrix of this network is as below:

1 1 0 0
0 0 1 0
0 0 0 1.

c. The network of Figure 7 has 3 paths. It is irreducible.

The path-activity matrix of this network is as below:

1 1 0 0 0
1 0 1 0 1
0 0 0 1 1.

d. The network of Figure 8 is reducible and can be partitioned
into two subnetworks: {1, 2} and {3, 4, 5, 6}.

The path-activity matrix of this network is as below:

1 1 0 0 0 0
0 0 1 1 0 0
0 0 1 0 1 1.

5. Resource allocation in irreducible subnetworks/networks

In projects with parallel paths, since the completion times of
paths are independent randomvariables, we can apply dynamic
programming to obtain the optimal resource allocation. How-
ever, in irreducible subnetworks (networks), some paths are
cross and random variables of paths whose completion times
Figure 8: Network (d), reducible with 3 paths.

are dependent. Consequently, dynamic programming is not an
appropriate technique to apply. Here, we develop an algorithm
(algorithm 1) that solves the problem without using dynamic
programming. By selection of some suitable activities and con-
ditioning duration, and also their amount of resources, the net-
work is considered as an independent parallel path (conditional
form of project). So, first, the conditional cumulative distribu-
tion function (CDF) of the project is obtained. Then, it is trans-
formed into an unconditional form.

5.1. Algorithm 1

Let M i represent the set of activities located on exactly i
different paths of N. The set of feasible allocation of the
constrained resource is denoted by Z = {(sl1 , . . . , sln) |

n
j=1 sli

≤ RS}.
Step 1. SetW = 1,Q = ∅, R = ∅, i = 1.
Step 2. Select one activity from M i and call it c. Let q represent
the set of all paths to which c belongs. Let A(q) represent the set
of activities of all paths that belongs to q. If p is a member of q,
then A(p) represents the set of activities of p. Set:

Q = Q ∪ {c} , (4)
R = R ∪ A(q), (5)

∀i M i
= M i

− A(q), (6)

W ← W · Fc

sc,min
p∈q

t −

j∈A(p)
j≠c

tj


 . (7)

If M i
≠ ∅, repeat this step; otherwise, if R = A(N), then, go to

Step 3; otherwise, set i = i+ 1 and repeat this step.
Step 3:W is the conditional CDF of project completion time. So,
the CDF of project completion time will be as follows:

W ((s1, . . . , sn), t)

=


t1


t2

· · ·


tj

· · ·W


j∈R−Q

Pj(sj, tj). (8)

It is evident that the conditioned activities’ set is R − Q . After
the execution of algorithm 1 for all members of Z , we have:

F(RS, t) = P(T ≤ t | RS) = maxW ((s1, . . . , sn), t)
(s1, . . . , sn) ∈ Z . (9)

Example 4. Consider the network (c) in Figure 7. The proba-
bility function of activities depends on the resources allocated
to them, and shown in Table 6. The objective is to maximize
P(T ≤ t | RS), where t = 7 and RS = 16.
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Table 6: Probability function of activities in Example 4.

s1 P1(s1, t1) t1 s2 P2(s2, t2) t2

3 1
2 1 3 1

2 2
1
2 2 1

2 3

4 1
3 1 4 3

5 2
2
3 2 2

5 4

s3 P3(s3, t3) t3 s4 P2(s4, t4)

2 2
5 2 4 3

7 5
3
5 3 4

7 6

3 1
3 1 5 4

7 4
2
3 2 3

7 5

s5 P5(s5, t5) t5

2 1
3 2
2
3 3

3 1
4 1
3
4 2

Table 7: Optimal resource allocation in Example 5.

s∗1 s∗2 s∗3 s∗4 s∗5 MaxF(16, 7) = MaxP(T ≤ 7 | RS = 16)

3 3 2 5 3 0.6375

Applying Algorithm 1, we have:

MaxF(16, 7) = MaxP(T ≤ 7 | RS = 16)

= Max
5

j=1
sj≤16


t1


t2

F2(s2, 7− t1)

× F3(s3, 7− t1 − t5)F4(s4, 7− t5)

× P1(s1, t1)P5(s5, t5)


.

The optimal solution is shown in Table 7.
Algorithm 1 obtains the optimal constrained resource

allocation by considering all feasible allocations. Suppose |Q | =
m′. Assuming the constant values for durations of activities of
R − Q , the project network is transformed into m′ parallel
and independent subnetworks. An improvement is made by
combining algorithm 1 with dynamic programming. Thus,
Algorithm2,which is a combination of algorithm1anddynamic
programming, is proposed.

5.2. Algorithm 2

Step 1. Determine the set of R − Q , using steps 1 and 2 of
algorithm 1. Then, suppose that:

Z ′ =


sj, j ∈ R− Q |


j∈R−Q

sj ≤ RS −

j∈Q

min sj


. (10)

Step 2. Let sj represent the resource allocated to activity j, which
can have bj different random values. So, the duration time of
members of R − Q can have


j∈R−Q bj = B different cases. Let

PB, . . . , P1 represent the occurrence probability of these cases,
then compute PB, . . . , P1.
Figure 9: Transformed network in Example 5.

Step 3. Select one member of Z ′ and call it S (It is obvious that
it is a vector.). Then, set Z ′ ← Z ′ −


S

. R(S) is the sum of the

components of S.
Step 4. For each member of Q denoted by c , τ represents
minp∈q(t −


j∈A(P)
j≠c

tj). Then, allocate the remaining resource

(RS − R(S)) to the activities of Q by applying dynamic
programming as follows:

U (b)
m′ (R

′) = F (b)
m′ (τ , R′) R′ ≤ RS − R(S), (11)

U (b)
k (R′) = F (b)

k (τ , sk)U
(b)
k+1(R

′
− sk), (12)

k = m′ − 1, . . . , 1, b = 1, . . . , B,

V̂m′(R′) = max
B

b=1

PbU (b)
m′ (R

′), (13)

V̂k(R′) = max
B

b=1

PbU
(b)
k (R′). (14)

Step 5. If Z ′ = ∅, then max P(T ≤ t | RS) = maxS∈Z ′ V̂1(RS −
R(S)), otherwise, go to Step 3.

Example 5. Example 4 can be solved by Algorithm 2. In
Example 4, Q = {2, 3, 4} and R − Q = {1, 5}. Resource
allocation to the activities ofR−Q can bedone in 4 (


j∈R−Q kj =

4) different ways. Assuming a constant duration for both
activities of R − Q , the project network is transformed into
a network with 3 parallel independent paths, as shown in
Figure 9.

Then, by applying dynamic programming for the 4 cases above,
the optimal resource allocation is obtained, as presented in
Table 7.

6. Resource allocation in reducible networks

To allocate the available resource among the mutually
exclusive subnetworks, we apply the dynamic programming
technique. Algorithm 3 is developed for this purpose.

6.1. Algorithm 3

Step 1: Partition the network into some mutually exclusive K
subnetworks of Nk k = 1, . . . , K . Suppose that Rl(Nk) is the
minimal amount of resource required to process all activities
of subnetwork k, and Ru(Nk) is the total available resource (RS)
minus the minimal amount of resource required to process all
other subnetworks. In other words, Ru(Nk) is the maximum
amount of resource that can be allocated to this subnetwork.
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Table 8: Probability function of activities in Example 5.

s1 P1(s1, t1) t1 s2 P2(s2, t2) t2

2 1
3 3 3 1

4 2
2
3 4 3

4 3

3 1
5 2 4 6

7 2
4
5 3 1

7 3

s3 P3(s3, t3) t3 s4 P2(s4, t4) t4

2 1
2 2 3 1

2 3
1
2 3 1

2 4

3 3
4 2 4 1

3 2
1
4 3 2

3 3

s5 P5(s5, t5) t5 s6 P6(s6, t6) t6

4 1
2 1 3 1

2 1
1
2 2 1

2 2

5 2
3 1 4 3

4 1
1
3 2 1

4 2

Table 9: Optimal resource allocation in Example 6.

s∗1 s∗2 s∗3 s∗4 s∗5 s∗6 MaxP(T ≤ 6 | RS = 20)

3 3 2 4 4 4 15
16

3 3 3 4 4 3 15
16

It is obvious the system is infeasible if Rl(Nk) > Ru(Nk). On the
other hand, if Ru(Nk) is greater than the maximum amount of
resource needed for all activities of N , then, this extra resource
cannot be consumed.
Step 2. Suppose thatR(Nk) represents the admissible resource of
subnetworkNk. By applying Algorithm 2, the optimal allocation
for each activity, and for every value of the admissible resource
of subnetwork Nk, (Rl(Nk) ≤ R(Nk) ≤ Ru(Nk)) is determined.
Step 3. Allocate RS to the network, such that P(T ≤ t | RS)
be maximized. This is performed by the dynamic programming
technique, as discussed before.

Notice that in the solution of Example 2, Step 1 of Algorithm
3 results in partitioning the network into 3 subnetworks. Step
2 of Algorithm 3 has to be performed for all subnetworks.
For instance, Step 2 is performed for one of the subnetworks
comprising Activities 1 and 2, and the result is presented in
Table 5. Then, by applying dynamic programming in Step 3, the
optimal resource allocation is obtained.

Example 6. Consider network (d) in Figure 8. The probability
function of activities depends on the resource allocated to them,
which is shown in Table 8. The objective is to maximize P(T ≤
t | RS), where t = 6 and RS = 20.

Implementing Algorithm 3 results in optimal resource alloca-
tion, as Table 9.

7. Conclusions and recommendations for future studies

In this paper, we developed an analytical approach to
allocate a limited resource to the activities of a PERT-Type
Network (PTN) to maximize the probability of completion time
within some desired period. This approach gains satisfactory
results for moderate size networks.

For further research, the following extensions are recom-
mended.
1. Allocation of constrained resources to the activities could be
extended to continuous values.

2. Generalization of the problem for the case of more than one
constrained resource.

3. A combination of extensions 1 and 2.
4. We can change the objective function to consider the cost

of resource utilization, together with a reward for early
completion, and a penalty for late completion, of the project.
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