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Abstract 

Financial modeling for the life insurance industry involves two main difficulties: (1) Selecting the 

minimal and critical variables for modeling while considering the impreciseness and 

interrelationships among the numerous attributes and (2) measuring plausible synergy effects among 

variables and dimensions that might cause undesirable biases for an evaluation model. To overcome 

these difficulties, this paper proposes a two-stage hybrid approach: Rough financial knowledge is 

retrieved first, and then the obtained core attributes are measured and synthesized using 

fuzzy-integral-based decision methods. The main innovation of this study is the use of rough 

knowledge retrieval procedures and fuzzy measures for exploring the synergy effects on financial 

performance. This approach is expected to support insurers to systematically improve their financial 

performance. A group of life insurance companies in Taiwan was analyzed, and the findings support 

the existence of interrelated synergy effects among the core criteria. In addition, five companies were 

examined to illustrate financial performance improvement planning with this approach. This study 

bridges the gap between advanced soft computing techniques and pragmatic financial modeling in a

dynamic business environment. 

Keywords: Multiple criteria decision-making (MCDM); DEMATEL-based Analytic network process 

(DANP); Rough set theory (RST); Fuzzy integral; Financial performance (FP); Multi-attribute utility 

theory (MAUT). 
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1. INTRODUCTION

The financial industry is critical to the stability of a nation’s economy. Therefore, since the

global financial crisis of 2008, increasing interest has been shown in examining the financial 

performance (FP) of the financial industry, especially for the benefit of stakeholders (e.g., investors, 

management, and governments). Two mainstream research topics are related to the FP of financial 

institutions (mainly banks and insurance companies), namely bankruptcy and financial failure 

prediction [29], and FP evaluation for credit scoring and investment purposes [43]. The present study 

focused on the evaluation of the FP of life insurance companies. The methodologies adopted in 

previous research [12] for assessing the FP of financial institutions can be categorized as follows: (1) 

methodologies based on statistical models, (2) methodologies based on machine learning and 

soft-computing techniques, and (3) methodologies involving multiple criteria decision-making 

(MCDM) methods [61]. In addition, because of the dynamics and complexity of business 

environments, hybrid approaches (i.e., the integration of more than two methodologies) are 

increasing rapidly. For example, under the framework of SMAA TRI [54], Angilella and Mazzù [3]

proposed the ELECTRE TRI [63] for building a judgmental rating model to support the financing 

decisions for small and medium-sized enterprises (SMEs). In their model, qualitative judgments and 

quantitative financial data were considered and integrated for rating SMEs.  

Conventional social science studies have mainly been based on statistical methods for 

identifying the relationships between selected financial variables and the subsequent FP of financial 

companies. Methods such as discriminant analysis, factor analysis, principal component analysis 

(PCA), and logit regression have been widely adopted in previous research. Following the work of 

Altman [1], discriminant analysis has been widely used for analyzing the financial failure of 

companies [28]. Subsequently, the logit-regression-based synthesized score approach (Z-score) 

presented in the influential papers [1-2] became prominent; for example, West [60] used logit 

regression along with factor analysis to measure the FP of banks. Other statistical methods, such as 

probit analysis and PCA, have been applied or combined for predicting the FP of banks [8]. Kumar 

and Ravi [28] presented a systematic review of this research area. However, regarding the statistical 

approach, the following three aspects are questionable: (1) The assumption of independence among

the variables, (2) certain probabilistic assumptions, and (3) the additive-type aggregation in the 

synthesized score approach. In a complex financial environment, interrelationships among variables 

often exist; however, owing to the limitations of statistical methods, certain interrelated or 

nonadditive-type influences cannot be measured or modeled accurately. 

Machine learning techniques (e.g., artificial neural networks (ANNs), genetic algorithms (GAs), 

decision trees (DTs), and support vector machines (SVMs)) are useful for determining nonlinear 

relationships among data sets. Most machine learning techniques do not require the probabilistic 

distribution of data to be assumed; therefore, they are more practical for real business applications. A 

recent survey of machine learning methods used for predicting financial crises [30] suggested that 
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bankruptcy prediction and credit scoring could be regarded as classification problems in machine 

learning. The survey categorized the adopted techniques as single or hybrid classifiers. Of the various 

classifiers, the ANN-related techniques (e.g., back-propagation, self-organizing map, and competitive 

learning neural networks) are probably the most dominant for financial prediction problems. For 

example, a previous study [7] compared the financial distress prediction results of ANN techniques 

with statistical methods for life insurance companies. The back-propagation ANN technique was 

found to outperform traditional statistical methods. ANN techniques mimic the learning mechanism 

of the brain, and the learned results are stored in the connections between neurons; the learning 

process and learned results are often criticized as a ―black box,‖ implying that understanding the 

outcomes is difficult [13]. Some single classifiers, such as SVM [59] and GA [37], have a similar 

drawback. Hybrid classifiers often involve the integration of two or more techniques (e.g., GA + 

ANN+ ARIMA [58] and DT + ANN + SVM [24]). One of the techniques is used for performing the 

initial classification, and the others are used for the tuning parameters of the hybrid models [23]. 

Generally, machine-learning-based studies have focused on increasing the accuracy of classification 

or prediction.  

Soft computing techniques (mainly the fuzzy set [64] and rough set [39] theories, which are 

discussed here) are based on solid mathematical foundations, and are used for modeling the 

impreciseness or uncertainty in a system. They have been widely applied in engineering [66] and 

social economics [56] [66]. One of the key advantages of soft computing techniques is their logical 

reasoning capability, which can help obtain meaningful knowledge (i.e., logic or rules) for solving a 

problem. These techniques are often integrated with machine learning techniques for solving the FP 

evaluation problem. For example, ANN techniques and fuzzy inference were integrated to address 

the credit scoring problem [33] and the adaptive-network-based fuzzy inference system was 

integrated with the dominance-based rough set approach (DRSA) for evaluating the FP of banks [45]. 

As suggested by the aforementioned survey [30], soft-computing-integrated classification techniques 

appear to be the most promising direction for future research on FP prediction.  

The third category of methodology used for assessing the FP or operational efficiency of 

financial institutions comprises MCDM methods. Recently, Fethi and Pasiouras [13] and Zopounidis 

et al. [67] presented updated reviews on this approach. The fuzzy set theory is commonly 

incorporated in MCDM methods for FP evaluation problems [34] [44] to mimic the imprecise 

judgments and reasoning of decision-makers (DMs). The MCDM approach considers multiple 

criteria (the terms ―attributes‖ and ―criteria‖ are used interchangeably in this paper) simultaneously to 

make ranking or selection decisions, and is based on utility theory, as developed in economics. Other 

methods that involve the construction of decision models on the basis of pairwise comparisons 

between criteria are also used; of these methods, analytic hierarchy process (AHP) extended methods 

have attracted the most attention. The original AHP [41] is based on the assumption of the 

independence of criteria. The generalized analytic network process (ANP) [42] allows internetwork 
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relationships in its model. The generalized ANP has been adopted for evaluating the performance of 

wealth management banks [62] and commercial banks [46]. The MCDM approach is based on the 

experience and knowledge of DMs and experts, and is therefore appropriate for in-depth 

investigations of relationships between the predefined criteria (attributes) of a complex problem, or 

system.  

FP modeling for financial institutions involves difficulties related to (1) the selection of the 

minimal and critical variables, (2) the clarification of cause–effect relationships among variables, and 

(3) the measurement of plausible synergy effects among the criteria and dimensions. The complexity 

of imprecise and conjoint relationships among dimensions and criteria cannot be measured or 

modeled accurately using statistical models, a single soft computing technique, or an MCDM method. 

Therefore, a novel hybrid approach is proposed in this paper. In addition, although a considerable 

number of studies have adopted various methods and techniques to increase the classification 

accuracy of FP evaluation, or devise a system of logic or rules for the problem, limited research has 

been undertaken to diagnose the FP of financial companies for improvement planning. Only a few 

recent studies [46] [48-49] have pursued this direction. Moreover, the present study attempts to 

obtain more constructive implications regarding improvement planning for addressing the FP 

modeling problem.  

To overcome the aforementioned difficulties, this study proposes a two-stage approach. In the 

first stage, the learning capability of a soft computing technique is used to retrieve rough knowledge.  

In the second stage, the core attributes are synthesized using a nonadditive-type fuzzy aggregator to 

construct a hybrid MCDM model. The expected contributions of the proposed approach are as 

follows: (1) Retrieving core attributes and rough financial knowledge (decision rules) for enabling 

in-depth analyses, (2) refining the rough knowledge by identifying cause–effect influences among the 

core attributes, (3) measuring the synergy effects among dimensions and criteria for performing 

accurate FP evaluations, and (4) facilitating systematic improvement planning for insurance 

companies.  

The innovations of this study can be outlined in two parts, namely modeling and business 

applications. Regarding modeling, a novel mechanism is devised for retrieving rough knowledge 

from historical data, and a nonadditive approach is applied to measure the plausible synergy effects 

among variables. In literature, the classical financial optimization model (i.e., mean-variance theory 

[35]) has strengths regarding obtaining optimal results under the expected returns and risk. 

Mean-variance theory has been applied in many fields (e.g., in supply chain risk analysis [10]); 

however, it is based on the presumed statistical distributions of data, which have the limitations of the 

aforementioned statistical approach (e.g., the independence of variables). This study differs from the 

classical financial optimization model in emphasizing exploring the imprecise patterns and 

knowledge provided by historical data, which requires fewer assumptions for financial modeling. In 

the era of ―big data,‖ developing ways of leveraging the strengths of machine learning and soft 



ACCEPTED MANUSCRIPT

computing techniques to realize accurate modeling is a challenging and yet valuable research topic.  

For business applications, new tools for facilitating systematic FP improvement are proposed, 

namely internetwork relationship maps (INRMs) and directional flow graphs (DFGs). Thus, this 

study is expected to provide an enhanced understanding of how multidisciplinary methodologies can 

be integrated to obtain implicit and critical knowledge regarding FP modeling, thereby bridging the 

gap between academia and practice. Empirical cases of registered life insurance companies in Taiwan 

were analyzed to illustrate the proposed approach. 

The remainder of this paper is organized as follows: Section 2 introduces the background and 

discusses the development of existing methodologies. Section 3 elucidates the proposed hybrid 

approach. In Section 4, a group of registered life insurance companies in Taiwan are analyzed as 

empirical cases. The results and implications of the current study are discussed in Section 5. Finally, 

Section 6 concludes the study and presents suggestions for future research. 

 

2. PRELIMINARY  

This section briefly introduces the background of the present study and discusses the 

development of methods used for FP prediction and the evaluation problem. The purposes of 

adopting each method and technique in the proposed approach are also explained and discussed. 

 

2.1 Rough Set Theory and Dominance-Based Rough Set Approach  

Proposed by Pawlak [39], the rough set theory (RST) has become a widely applied soft 

computing technique for rule induction and attribute reduction in various applications, such as 

medical diagnosis [11] [55], marketing [31], FP prediction [45], technical analysis (TA) for 

investment [47], and business analytics [49]. The RST is acknowledged to be suitable for inducting 

vague or imprecise patterns and knowledge by analyzing the indiscernibility of the attributes of an 

information system; it has the advantage of being capable of machine learning by processing 

nonlinear data. Furthermore, it can be used for knowledge retrieval.  

However, the classical RST ignores the fact that the attributes of an information system often 

have ordinal (or preferential) characteristics in certain applications. For example, when predicting the 

financial insecurity of banks, a low debt ratio is often preferred for classifying a bank as being secure. 

Therefore, the RST research group proposed a DRSA for decision-making [18-19], in which 

dominance relationships among the condition and decision attributes are considered for making 

classifications. This approach is more suitable for solving MCDM problems [14] [67]. In the present 

study, the use of the DRSA was proposed for learning from historical data and for inducting rough 

knowledge—namely, the core attributes (see Section 3.1) and decision rules—and thereby 

establishing an initial framework for constructing a hybrid decision model. 
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2.2 DEMATEL Technique and DEMATEL-Based ANP Method 

The Battelle Memorial Institute at Geneva [15] proposed the DEMATEL technique for analyzing 

and resolving complex social problems. The DEMATEL technique is capable of dividing interrelated 

criteria and dimensions into cause and effect groups [48]. Furthermore, it can be used for developing 

a graphical illustration (i.e., an INRM) [40], which may be helpful to life insurance companies for 

planning systematic improvements. Because the DEMATEL technique can decompose the cause–

effect interrelationships in a complex problem, it has been successfully applied to the analysis of 

various problems, such as portfolio selection [20], supplier selection in a green supply chain [21], and 

the selection of glamour stocks [50]. 

In addition, the DEMATEL-based concept can be used to modify the equal-weight assumption 

for the supermatrix in the original ANP method [16]. The ANP method modified by the DEMATEL is 

called the DEMATEL-based ANP (DANP) method [38]. The DANP method is based on an extension 

of the concepts underlying the AHP and ANP methods [57]. A recent review [34] observed that over 

the past two decades, apart from hybrid fuzzy MCDM models, extensions of the AHP or ANP 

methods have been the most widely used. In this study, the DANP method was used for obtaining 

raw influential weights for use as the initial weights in the calculation of the fuzzy measure 

parameters (see Sections 3.2 and 3.3). 

 

2.3 Fuzzy Integral for Nonadditive-Type Performance Aggregation 

A considerable number of MCDM methods are based on utility theory, especially the classical 

multi-attribute utility theory (MAUT) [26]. A fundamental operation (aggregation) is required for 

obtaining the final evaluation result. However, the widely used additive-type aggregators (e.g., 

simple average weighting (SAW) and ordered weighted averaging operators [62]) cannot measure 

interactions between criteria [17]. Therefore, the fuzzy integral technique [52] was used to measure 

and aggregate the interrelated influences among criteria and dimensions in this study. The fuzzy 

integral technique has been used in various applications [22] [27] [32]. Nevertheless, few studies 

have been performed on the use of the nonadditive-type aggregators for solving the FP evaluation 

problem [9]. Therefore, the present study attempts to combine the concepts of fuzzy measure [36] 

and DANP influential weights [40] [50] to construct a hybrid fuzzy-integral-based decision model. 

The objective is to measure (and comprehend) the plausible complex and interrelated influences 

among the criteria and dimensions. The main goal is to construct a model that could be used not only 

to make ranking (or selection) decisions but also for planning to improve the FP of life insurance 

companies toward the aspiration levels. 

 

3. ROUGH-KNOWLEDGE-BASED HYBRID APPROACH  

In this section, the framework and procedure of the proposed approach are introduced. The 
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   { : }P PD x y U yD x  

   { : }P PD x y U xD y  

approach is divided into two parts: (1) DRSA for investigating imprecise patterns and granules of 

knowledge by obtaining core attributes and decision rules, and (2) a DRSA-core-attribute-based 

hybrid decision model for evaluating the nonadditive performance effects among the attributes 

(criteria). 

 

3.1 DRSA for Retrieving Rough Knowledge  

In the first stage, a DRSA classifier is adopted to identify the critical factors (i.e., core attributes) 

and decision rules (along with granules of knowledge) from complex data. Unlike other 

machine-learning-based studies that have mainly focused on increasing the prediction accuracy, for 

the construction of the decision model the present study attempted to leverage the capability of the 

DRSA for capturing imprecise and implicit patterns and knowledge by preserving the roughness of 

the processed granules.  

The DRSA [18-19] organizes alternatives in a 4-tuple information system (IS); in other words, 

 , , ,IS U A V f , where U is a finite state of the universe, 1 2{ , ,..., }mA a a a  is a finite set of m 

attributes (criteria), aV  is the value domain of attribute a, and f is a total function defined as 

:f U A V   ( ( , ) af x a V  for each x U  and a A ). In the DRSA, A typically comprises 

multiple condition attributes (
CA ) and a decision attribute. Each attribute can be divided into several 

states, and the decision attribute is often categorized into ordered classes, such as 

{ , 1,..., }tCl Cl t v  . Although the DRSA can be used to process all the raw figures directly, to 

preserve the roughness of the granules (in each attribute) for the construction of the decision model, 

each condition attribute was divided into certain states in the present study, thereby approximating 

how experts comprehend these concepts in complex business environments.  

Subsequently, 
a
 is defined as a weak preference relation on U with respect to criterion a 

( a A ). Then, for objects ,x y U , if 
ax y , it denotes that ―x is at least as good as y in terms of 

attribute a.‖ For a set of preference-ordered decision classes (DCs), the upward and downward 

unions of DCs can be defined as s rr s
Cl Cl


  and s rr s

Cl Cl


 ; for brevity, only the upward 

union is used for the explanation. The upward and downward unions of DCs may therefore describe 

the dominance relation for any partial set of condition attributes CP A . Furthermore, PxD y  

denotes that x P-dominates y for all the subsets of attributes in P. The P-dominating and P-dominated 

sets are defined in (1) and (2). 

                                              (1) 

                                           (2) 

Consequently,  PD x
 and  PD x

 can be used to define the P-lower and P-upper 

approximations as (3) and (4). The boundary regions, defined by (5), preserve the uncertain granules 
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    { : }r P rP Cl x U D x Cl     

      P r r rBn Cl P Cl P Cl   

    
  2,...,P P rr m

Cl U Bn Cl U 


 

of knowledge in reasoning; in other words, the impreciseness in each pair of concepts (e.g., high debt) 

can be retained to capture the imprecise patterns or relationships in a complex system. 

    :r P rP Cl x U D x Cl                              (3) 

                       (4) 

                           (5) 

To measure the quality of approximation for every CP A ,  P Cl  is defined as follows for 

preference-ordered DCs related to P;  denotes the cardinality of a set in (6).  

                                 (6) 

Dominance-based rough approximations of the upward and downward unions of DCs can be 

used to obtain a set of decision rules in the form of ―if antecedents, then consequence.‖ In addition, 

each minimal subset P of 
CA  (i.e., CP A ) that satisfies    CP A

Cl Cl   is called a REDUCT; 

the intersection of all REDUCTs is the core set, which comprises the minimal attributes that may 

maintain the same level of approximation quality for a DRSA IS. In other words, the core attributes 

obtained by the DRSA represent the criteria that are indispensable for acquiring rough knowledge in 

a complex system, and they are the inputs for the second stage, in which a hybrid decision model is 

constructed. 

Step 1: Discretize the condition and decision attributes. The discretized intervals should approximate 

how domain experts comprehend the concepts of the addressed problem. 

Step 2: Divide data into a training set and a testing set. Implement the DRSA classifier using the 

training set until an acceptable level of learning result is obtained. The testing set is then used 

to validate the learning result. 

Step 3: Identify the core attributes and decision rules. Once an acceptable DRSA model is obtained, 

the corresponding core attributes and decision rules are adopted for constructing the hybrid 

decision model. 

 

3.2 DEMATEL Technique and DANP method  

The DEMATEL technique [15] identifies the cause–effect influence relations among the core 

dimensions or attributes, and determines the influential weights of the DANP (DANP weights), 

which are used as the initial weights for the subsequent fuzzy measures.  

Step 4: Collect experts’ opinions (using questionnaires) for constructing the initial direct influence 

relation matrix = [ ]
ij n n

r


R , where ijr  denotes the influence of attribute i on another attribute 

j as perceived by experts. Averaged opinions are used to form the initial average influence 
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matrix A . All the attributes adopted in the questionnaire are sourced from the core attribute 

set of the first stage. 

                    

1 1 1 1

1

1

j n

i ij in

n nj nn

a a a

a a a

a a a

 
 
 
 
 
 
 
 

A                             (7) 

In (7), n equals the number of total attributes in the core set from DRSA (1 i n   and 1 j n  ). 

Step 5: Normalize A  to obtain the direct influence relation matrix D . The matrix [ ]
ij n n

d


D  

can be derived using (8) and (9), and   is a constant used for normalizing A . 

                           D A                          ( 8 )                                     

                
1 1

1 1
min ,

max maxn n
j ii ij j ij

a a


  

  
  

  

,  , 1, ,i j n           ( 9 ) 

Step 6: Obtain the total influence relation matrix T . The indirect effects of the model diminish with 

an increase in the power of D . T  can be expressed as (10) [15]. 

2 1... ( )( )w w       T D D D D I D I D , and 

              
1( )

ij n n
t = 


   T D I D  w h i l e   lim 0w

n nw 
D            ( 1 0 ) 

Step 7: Analyze the sum of each column and each row in T to obtain the cause–effect influence 

relations among the core attributes.  

The sum of each row and each column in T can be denoted by 
C

i
r  (

1

nC

i ijj
r t


  for 

1,...,i n ) and 
C

j
s  (

1

nC

j iji
s t


  for 1,...,j n ). Moreover, the difference 

C C

i i
r s  (for i = 

1,…,n) can be used to divide the criteria (attributes) into two groups, namely the cause and 

effect groups. If 0c c

i i
r s  , then the ith criterion belongs to the cause group; otherwise, it 

belongs to the effect group. Similarly, the cause–effect influence relations among the 

dimensions could be determined by 
D D

i i
r s . 

The T  defined in (10) can be denoted as CT  by assuming that there were k dimensions and n 

criteria in T . Then, by using the notations from the index matrices [4] (K, L be fixed sets of 

indices), the submatrices in CT  can be indicated by (11), and the submatrix 
,i jk l

CT  is assumed to 
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indicate the 
ik th (i.e., Di with p sub-criteria) and the jl th (i.e., Dj with q sub-criteria) dimensions, 

where 1 ,p q n  . The submatrix 
,i jk l

CT  can be further defined in (12). The normalization of 
,i jk l

CT  

is conducted by  , ,

,

1 1

1i j i j

p q
k l k lij

C i j CN t
 

  

 
  
 
T T . Thus, the normalized CT  can be defined as 

N

CT  

in (13).  

 

1 1 1 1

1

1

1

, , ,

1

, , , ,

, , ,

[ , , ]

j k

i j i i j i k

k k j k k

j k

k l k l k l

C CC

k l k l k l k l

C i C CC

k l k l k l
k

C CC

l l l

k

K L k

k



T TT

T T TT

T TT

                         (11) 

 

          

1 1 1 1

1

1

, , ,

,

, , ,

, , ,

p

i j

p

q q q p

ij ij ij

i j i j i j

k l ij ij ij

i j i j i jC

ij ij ij

i j i j i j

t t t

t t t

t t t



   



 
 
 
 

  
 
 
  

T , where 1 q  and 1 p             (12) 

 

         

     

     

     

1 11 1

1

1

, ,,

, , ,

, , ,

j k

i i j i k

k k j k k

k l k lk l

C CC

k l k l k lN
C CC C

k l k l k l

C CC

N NN

N NN

N NN

 
 
 
 
 
 
 
 
 
 

T TT

T TT T

T TT

                         (13) 

Step 8: Transpose 
N

CT  to be the unweighted supermatrix W in the DANP model (i.e.,  N

C


W T ). 

In addition, matrix DT  is normalized to become 
N

DT  as in (14) and (15), and 

1
,  1,  2,...,  

ij

k ij

i Dj
d t i k


   in (15). 

                       

1 1 1 1

1

1

j k

D D D

i ij ik
D D D D

k kj kk

D D D

t t t

t t t

t t t

 
 
 
 
 
 
 
 

T                                 (14) 
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D D i D i D i D D D

k kj kk Nk Nkj Nkk

D k D k D k D D D

t d t d t d t t t

t d t d t d t t t

t d t d t d t t t

   
   
   
    
   
   
   

  

T      (15) 

 

Step 9: Obtain the weighted (DEMATEL-adjusted) supermatrix 
N N

D
W T W  [38].  

The raw influential weight C

iw  of each criterion ( 1,2,..., )i n  can then be obtained as

 lim
z

N

z W  until stable; that is, the raw influential weights of the criteria are 

1( ,..., ,..., )C C C C

i nw w ww .  

 

3.3 Synthesized Fuzzy Integral Using DANP Influential Weights and Fuzzy Measure 

DMs and researchers planning to evaluate the performance of alternatives on the basis of C
w  

(using the DANP), cannot overlook the plausible intercriteria or interdimension effects (also termed 

synergy effects). Consequently, additive-type aggregators (e.g., SAW) might not be suitable for 

measuring the aforementioned synergy effects; therefore, the use of a nonadditive-type fuzzy integral 

aggregator [52] is proposed in this study.  

Step 10: Calculate the  -measure function [25]. Let g  be a  -measure function that is defined 

on a power set  P C  for the finite set (i.e., the core attribute set inducted using the DRSA). 

Then, g should satisfy the following properties [52]: 

         : [0,1],g P C     0g   ,  and   1g C              (16) 

                            ,
A B

c c P C  , 
A B

c c                          (17) 

                                                          , for 1    .     (18) 

In (18),   indicates the aforementioned nonadditive (synergy) effect; for 0  , 0  , and 

0  , it denotes the substitutive, additive, and multiplicative effect, respectively. Next, 
i

g  fuzzy 

density function is defined as (19).  

         
1 2

1 2 1

1
1

1 2 1 2
1 1 1

1

({ , ,..., })

1
( (1 ) 1) 1,  for 1

n n n
n

n i i i n
i i i i

n

i
i

g c c c g g g g g g

g

  

 





   



  



   

       
     ( 1 9 ) 

Step 11: Calculate the fuzzy measure based on the concept of MAUT [26]. The aggregated utility 

regarding C can be indicated as (20).  

          A B A B A B
g c c g c g c g c g c
    

   
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 ( ) (1) (2)

1 2
1 1,

1 ( )

1 2

({ , ,..., }) ({ }) ({ }) ({ })

({ }) ({ }) ({ })

n n
n

n i i j
i i j i

n n

n

g c c c g c g c g c

g c g c g c

   

  




  



  

 

 1

1 2 1 2 1 2
1 1,

( , ,..., ) ( ) ( ) ( ) ( ) ( ) ( )
n n

n

n i i i j i j n n
i i j i

u c c c wu c w w u c u c w w w u c u c u c  

  

    

 1 1 1 2 1
( ) ( ) ( ) [ ( ) ( )] ( ) [ ( ) ( )] ( )

n n n n n
c hdg h p g H h p h p g H h p h p g H

       

(20) 

where 
0 0 0

1 2
( , ,..., ) 0

n
u c c c   and 1 2

( , ,..., ) 1
n

u c c c    ; ( )
i

u c  is a conditional utility function of 
i

c , and 

0( ) 0
i

u c  , ( ) 1
i

u c  , for 1,  2, ,  i n ; 
0( ,  )

i i i
w u c c


 ;   is a solution of 

1

1 (1 )
n

i
i

w 


   . 

Thus, (19) can be redefined as (21) based on the concept of MAUT. 

 

            (21) 

where
( ) ( )

1 2 1 2
({ , ,..., }) ({ , ,..., }) 1n n

n n
g c c c g c c c 

     ; also, 
(1) ({ }) 1

i
g c

  and 
(1) 0({ }) 0

i
g c   (for 

1,  2, ,  i n ). In addition, 
0 (1)( ,  ) ({ })

i i i i
w u c c g c




  and 

(1)

1

1 (1 ({ }))
n

i
i

g c 


   .  

Step 12: Incorporate the influential weights 1
( ,..., ,..., )C C C C

i n
w w ww  obtained using the DANP as 

the initial weights for fuzzy measures.  

1 1 1
({ }),..., ({ }),..., ({ }) ( ,..., ,..., ) ( ,..., ,..., )C C C C C C

i n i n i n
g c g c g c w w w w w w                   (22)                             

In (22),   is the adjustment coefficient; 
C

iw  is the DANP influential weight of the i th criterion.  

Step 13: Aggregate the final performance score based on the fuzzy integral.  

Let h  be a measurable set function for performance, defined on the fuzzy measurable 

space. Assume that 
1 2

( ) ( ) ... ( )
n

h p h p h p   , then the fuzzy integral (also termed the 

Choquet integral, e.g., ( )c hdg ) of the fuzzy measure ( )g   with respect to ( )h   can be 

defined as (23), according to the previous work [32]: 

         (23)                         

where 
11

{ }
p

H c , 
1 22

{ , }
p p

H c c ,…, 
1 2

{ , ,..., }
nn p p p

H c c c C  .  

The research flow corresponding to the aforementioned steps is shown in a simplified form in 

Fig. 1. It consists of two main parts: the hybrid model and business applications. The details of how 

each technique is integrated are presented in Fig. 2.  

 

 

 

 

 
Rough Knowledge-Based Hybrid MCDM Model Business Applications 
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Main functions/purposes of the involved methods 

Methods DRSA DEMATEL DANP Fuzzy integral 

Functions 

(Purposes) 

1. Retrieve 

CORE 
attributes 

2. Obtain rough 

knowledge  

1. Adjust dimensional 

weights in DANP 

2. Obtain internetwork 

relationship map 

(INRM) for guiding 

systematic 

improvements 

1. Adjust 

parameters in 

fuzzy measures 

for forming fuzzy 

integral 

performance 

evaluation 

1. Measure plausible 

synergy effects 

among criteria  

2. Obtain the final 

performance scores 

for ranking or 

selection  

3. Identify priority 

gaps for improving  

towards the 

aspiration levels 

Foundations Soft computing 

and applied 

mathematics 

MCDM MCDM Soft computing, 

applied mathematics, 

and economics  

Fig. 1 Research flows with main functions of the incorporated methods 

N N
DW T W  

 1 1
1 1
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
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i iC C
c h dg




1{ , , }

( )
k

k k
C C

c h dg




1{ , , }
( ) kD D
c h dg
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C
 

lim ( )N z
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DANP 

Questionnaires 

from experts  

N
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N
DT  

DEMATEL technique  DANP method DRSA model 
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Decision 

rules  

DRSA 

rough 
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Questionnaires 

(from experts’ 

knowledge)  

iD
g  kD

g  

DT  

CT  

1 i
i iCCg g



   

Performance scores of alternatives on each criterion as inputs 

Final performance score  

 

Fig. 2 Integration of techniques and methods in the proposed approach 

 

Aside from applying the proposed approach to the FP modeling of companies or institutions, 
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this hybrid approach can be further generalized for solving other decision problems, such as the 

evaluation or selection of various new suppliers, products, and projects. The generalized model 

comprises two stages. The first stage adopts the rough machine learning mechanism to induct the 

minimal and indispensable CORE attributes regarding the evaluation of alternatives, as shown in (24). 

The second stage uses an additive or nonadditive aggregator to synthesize the weighted performance 

scores for ranking or selection. The additive and nonadditive performance aggregations are indicated 

in (25.1) and (25.2) respectively. 

                                   
. .R M

C

n
A A                                        (24) 

                                   max jF                                       (25) 

                               while 
1

n

i ij j

i

w P F


  , for i = 1,…,n                   (25.1) 

                               while   i ij jw P dg F , for i = 1,…,n                 (25.2) 

In (24), A denotes the original IS set that comprises all the relevant attributes regarding the 

evaluation of alternatives, C

nA  indicates the CORE set that has n attributes, and 
. .R M

 indicates the 

rough machine learning that transforms A into C

nA . Assume that there are m alternative in this model, 

the generalized model aims to select the alternative with the highest F ( jF  represents the final 

performance score of the jth alternative in (25)) in the second stage (for j = 1,…,m); 
iw  denotes the 

relative importance of the ith criterion in (25.1) and (25.2). 
1

n

i
  indicates an additive type aggregator, 

which is not limited to the SAW method. Similarly,   dg  indicates any nonadditive aggregator 

(e.g., the Choquet integral in this study) that is capable of measuring the synergy effects among the 

core criteria. In addition, this model can be extended to support an alternative (e.g., a company or a 

project) to identify its improvement priority using its weighted performance scores. Therefore, 

compared with the conventional MCDM or financial models, this hybrid decision model could play a 

more constructive role in solving practical problems. 

 

4. EMPIRICAL CASES FROM THE LIFE INSURANCE INDUSTRY 

In view of the importance of the life insurance industry to the stability of the national economy, 

in 2009 Taiwan made it mandatory for all registered life insurance companies to report their 

operational and financial performance to the public. To illustrate the application of the proposed 

nonadditive hybrid approach to FP diagnoses, openly accessible data from the life insurance industry 

in Taiwan were analyzed.  
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4.1 Data 

The data examined were obtained from two sources: openly accessible historical reports of life 

insurance companies, and the opinions and knowledge of eight domain experts (for the fuzzy 

measures). The historical reports were obtained from the Taiwan Insurance Institute [53], and all the 

available data—from 2009 to 2013—were used for DRSA modeling in the first stage of the proposed 

approach for acquiring rough financial knowledge. The aforementioned reports contained 17 

indicators from five dimensions: Capital Structure (D1), Payback (D2), Operational Efficiency (D3), 

Revenue Quality (D4), and Capital Efficiency (D5). A one-period lagged model was constructed by 

matching each company’s condition attributes (i.e., the 17 indicators) at time t with its subsequent FP 

(return on assets (ROA) at time t + 1 was considered as the decision attribute).  

At the second stage, the core attributes obtained in the first stage were used to design a 

questionnaire, and eight domain experts’ opinions were collected to calculate the DANP weights and 

fuzzy measures and construct a nonadditive hybrid decision model. All the experts have worked in 

the life insurance industry for more than 15 years, and their job positions include manager, unit 

manager, assistant vice president, deputy director, and sales director; the experts are from three 

insurance companies. In addition, a former government official who had worked for the Insurance 

Bureau in Taiwan was also included as an expert.   

 

4.2 DRSA Model for Exploring Core Attributes and Decision Rules 

To retrieve understandable decision rules from the historical data, each attribute was divided into 

three intervals (i.e., granules of knowledge), such as high (H), middle (M), and low (L), or good 

(GD), mediocre (MD), and bad (BD), before the construction of the DRSA model; this procedure is 

also termed as discretization. The three intervals were chosen to mimic the intervals defined by 

experts for easy comprehension of rough concepts. A commonly used three-level discretization 

method was employed, and the values of the top 1/3, middle 1/3, and bottom 1/3 companies, which 

were ranked on the basis of their performance for each condition attribute, were defined as ―H,‖ ―M,‖ 

and ―L,‖ respectively. Furthermore, the top 1/3, middle 1/3, and bottom 1/3 companies in a ranking 

list based on the decision attribute were discretized as ―GD,‖ ―MD,‖ and ―BD,‖ respectively.  

The sample data comprised 117 observations in four time frames. Observations in the recent time 

frame were used as the testing set, and the other observations comprised the training set. The DRSA 

model was implemented by jMAF [6]. In addition, variable-consistency DRSA (VC-DRSA) and 

SVM (by DTREG [51]) models were constructed for comparison. The classification accuracy (CA) 

rate was used to calculate the correctly classified alternatives and measure each model, and a fivefold 

cross-validation was repeated five times for each classifier on the training set. The average CA of 

each classifier is summarized in Table 1. The DRSA model achieved an average CA of 65.39%, the 
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highest average CA among the classifiers. In addition, the entire training set was used to construct a 

trained DRSA model, which achieved 93.91% (i.e., 108/115) accuracy. The model was further 

examined using the test set, and an acceptable CA was obtained (i.e., 62.96%, in Table 1) for rough 

knowledge induction.  

TABLE 1 CLASSIFICATION ACCURACY OF VARIOUS CLASSIFIERS (UNIT: %) 

 DRSA VC-DRSA 

(CL = 0.95) 

VC-DRSA 

(CL = 0.90) 

SVM 

(RBF kernel) 

1 65.21 60.87 62.61 56.14 

2 69.57 63.48 67.83 62.61 

3 66.96 60.00 69.57 60.87 

4 60.87 67.83 62.61 56.82 

5 64.35 63.48 59.13 59.52 

Average 65.39 63.13 64.35 59.19 

Testing set 62.96 51.85 59.26 55.55 

 

The trained DRSA model generated a set of 13 core attributes. To maintain the same level of 

approximation accuracy, the core set attributes should represent the indispensable variables and 

criteria for the FP diagnosis problem. Therefore, the core attributes were used to devise a 

questionnaire to collect the opinions and knowledge of the experts for use in the DANP and fuzzy 

measures. Brief definitions of the core attributes are provided in Table 2 and strong decision rules 

obtained from the DRSA model are presented in Table 3. 

TABLE 2 CORE ATTRIBUTES OBTAINED USING DRSA 

Dimensions Condition 

attributes at t 

 Definitions/Descriptions 

Capital 

Structure (D1) 

Debt C1 Total debt/total assets 

 Provision C2 Change rate of provision for life insurance reserve 

Payback 

(D2) 

1
st
 Y_Premium C3 First year premium ratio 

RY_Premium C4 Renewable premium ratio 

Operational 

Efficiency 

(D3) 

NCost C5 New contract cost/new contract revenue 

 Equity C6 Change rate of share holders’ equity 

 NetProfit C7 Change rate of net profit 

CapInvest C8 Total invested capital/total assets 

Earning  

Quality (D4) 

Persistency C9 Persistency of the valid contracts in the  25
th

 month 

Capital 

Efficiency  

(D5) 

NetProfitC C10 Net profitability of capital utilization 

ROI C11 Return on investment ratio 

OProfit C12 Operational profits/operational incomes 

RealEstate C13 Investment and loan on real estate/total assets 

Decision attribute at t + 1   

 ROA D Return on assets at t + 1 period 

 

TABLE 3 STRONG DECISION RULES ASSOCIATED WITH AT LEAST GOOD ( GD ) DC 

Premises Supports 

 NetProfit (C7) H   Persistency (C9) M   OProfit (C12) H 12 

1
st
 Y_Premium (C3) M   Persistency (C9) M   NetProfitC (C10) M   OProfit (C12) H 9 

 

4.3 DANP Weights for Supporting Fuzzy Measures  
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The CORE attributes could be used to identify the critical attributes and dimensions for 

constructing a hybrid FP diagnosis model. This study adopted DMATEL and DANP analyses for two 

main reasons: (1) for identifying the cause–effect influence relations among the core attributes and 

dimensions, and (2) for adjusting the dimensional weights in the conventional ANP model for 

obtaining DANP weights.  

For the DEMATEL analysis, experts were asked to provide their opinions regarding the 

influence of each attribute (criterion) i on another attribute j; the opinions ranged from 0 (no 

influence) to 4 (very strong influence) in the questionnaire (see [46]) for the format of the DEMATEL 

questionnaire). The average opinions of the eight experts formed the initial average matrix A (Table 

A.1). Next, A was transformed into T  (Table A.3) and the normalized dimensional influence 

relation matrix 
N

D
T  (Table A.4), respectively. The 

C C

i i
r s  and 

D D

i i
r s  were from matrices T  

and 
N

D
T , which were used to divide the criteria and dimensions into cause and effect groups, as 

summarized in Table 4. Furthermore, the influence relations are shown as an INRM in Fig. 3. 

 

 

Fig. 3 Internetwork relationship map (INRM) 

 

TABLE 4 CAUSE–EFFECT INFLUENCE RELATIONS AMONG THE CORE DIMENSIONS AND 

C1: Debt  

C2: Provision 

C3: 1
st Y_Premium 

C4: RY_Premium 

C5: NCost 

C6: Equity 

C7: NetProfit 

C8: CapInvest 

C9: Persistency 

C10: NetProfitC 
C11: ROI 

C12: OProfit 

C13: RealEstate 
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CRITERIA 

Dimensions D

ir  D

is  D D

i ir s  D D

i ir s  Criteria C

ir  C

is  C C

i ir s  C C

i ir s  

D1 0.62 0.64 -0.02 1.26 C1 2.02 1.96 0.06 3.98 

     C2 1.37 1.39 -0.02 2.76 

D2 0.79 0.69 0.10 1.48 C3 2.05 1.70 0.35 3.75 

     C4 2.07 1.88 0.19 3.95 

D3 0.75 0.92 -0.16 1.67 C5 2.20 2.07 0.13 4.27 

     C6 1.26 2.03 -0.77 3.29 

     C7 2.07 3.03 -0.96 5.10 

     C8 2.54 2.47 0.08 5.01 

D4 0.80 0.76 0.04 1.55 C9 2.21 2.03 0.18 4.24 

D5 0.87 0.82 0.05 1.69 C10 2.56 2.09 0.46 4.65 

     C11 2.72 1.88 0.84 4.60 

     C12 2.45 2.89 -0.44 5.34 

     C13 1.80 1.90 -0.09 3.70 

 

In addition, based on the INRM (Fig. 3), the directional influences among the dimensions and 

criteria can be integrated with the strong decision rules (Table 3) to form the DFG (Fig. 4) for 

gaining implications. DMs can obtain the cause–effect influence relations among the dimensions, 

criteria, and decision rules to plan for improvements systematically. 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Directional flow graph (DFG) 

 

The matrix T  was used to obtain the unweighted supermatrix of the criteria (W) (see Step 8), 

and the DANP influential weights from the weighted supermatrix 
W  are shown in Table 5. After 

increasing z in  lim
z

z




W  up to a level where the weighted supermatrix became stable, the 

DANP influential weights for the subsequent fuzzy measures were obtained (Table 5). 

TABLE 5 DANP WEIGHTS FOR THE EVALUATION MODEL 

Dimensions D1 D2 D3 D4 D5 
Dw  0.16 0.18 0.23 0.20 0.22 

Criteria C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 
Cw  0.09 0.07 0.08 0.10 0.05 0.05 0.07 0.06 0.20 0.05 0.04 0.08 0.05 

(Rank) (3) (5) (4) (2) (7) (7) (5) (6) (1) (7) (8) (4) (7) 

4.4 Integrated Fuzzy Integral Evaluation Model 

NetProfit (C7) H 

Persistency (C9) M 

OProfit (C12) H 

NetProfitC (C10) M 

1
st
 Y_Premium (C3) M 

Capital 

Efficiency (D5) 

At least Good  

( GD) DC 
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In previous studies, most decision models employed additive-type aggregators (e.g., SAW and 

VIKOR) for aggregating the final performance scores of alternatives on the basis of the assumption 

that no synergy effect (e.g., 1 1 2  ) existed among the criteria or dimensions. Nevertheless, as 

indicated by the results of the DEMATEL analysis in Section 4.3, cause–effect influence relations 

among the criteria or dimensions do exist. Therefore, adopting a nonadditive-type aggregator (i.e., 

fuzzy integral in this study) to measure or capture the synergy effects among the criteria and 

dimensions is reasonable (see Table 6).  

 

TABLE 6 FUZZY MEASURES FOR EACH DIMENSION AND WHOLE MODEL 

Whole model with 5 dimensions 1.087,  0.737w w   , (5)
1 2 3 4 5({ , , , , }) 1g D D D D D   

(1)
1({ }) 0.118g D   

(1)
2({ }) 0.133g D   

(1)
3({ }) 0.170g D   

(1)
4({ }) 0.147g D   

(1)
5({ }) 0.162g D   

 

 

 

 

 

(2)
1 2({ , }) 0.268g D D   

(2)
1 3({ , }) 0.309g D D   

(2)
1 4({ , }) 0.284g D D   

(2)
1 5({ , }) 0.301g D D   

(2)
2 3({ , }) 0.327g D D   

(2)
2 4({ , }) 0.301g D D   

(2)
2 5({ , }) 0.318g D D   

(2)
3 4({ , }) 0.344g D D   

(2)
3 5({ , }) 0.362g D D   

(2)
4 5({ , }) 0.336g D D   

(3)
1 2 3({ , , }) 0.487g D D D   

(3)
1 2 4({ , , }) 0.458g D D D   

(3)
1 2 5({ , , }) 0.477g D D D   

(3)
1 3 4{ , , }) 0.506g D D D   

(3)
1 3 5({ , , }) 0.408g D D D   

(3)
1 4 5({ , , }) 0.497g D D D   

(3)
2 3 4({ , , }) 0.527g D D D   

(3)
2 3 5({ , , }) 0.547g D D D   

(3)
2 4 5({ , , }) 0.517g D D D   

(3)
3 4 5({ , , }) 0.567g D D D   

(4)
1 2 3 4({ , , , }) 0.712g D D D D   

(4)
1 2 3 5({ , , , }) 0.735g D D D D   

(4)
1 2 4 5({ , , , }) 0.701g D D D D   

(4)
1 3 4 5({ , , , }) 0.758g D D D D   

(4)
2 3 4 5({ , , , }) 0.782g D D D D   

 

 

 

 

 

Capital Structure (D1) 1 13.202,  0.658D D   , (2)
1 2({ , }) 1g C C   

(1)
1({ }) 0.370g C   

(1)
2({ }) 0.288g C   

 

 

 

 

 

 

Payback (D2) 2 23.487,  0.643D D   , (2)
3 4({ , }) 1g C C   

(1)
3({ }) 0.286g C   

(1)
4({ }) 0.357g C   

 

 

 

 

 

 

Operational Efficiency (D3) 3 31.699,  0.665
D D   , (4)

5 6 7 8({ , , , }) 1g C C C C   
(1)

5({ }) 0.145g C   
(1)

6({ }) 0.145g C   
(1)

7({ }) 0.202g C   
(1)

8({ }) 0.173g C   

 

 

(2)
5 6({ , }) 0.325g C C   

(2)
5 7({ , }) 0.397g C C   

(2)
5 8({ , }) 0.361g C C   

(2)
6 7({ , }) 0.397g C C   

(2)
6 8({ , }) 0.361g C C   

(2)
7 8({ , }) 0.435g C C   

(3)
5 6 7({ , , }) 0.638g C C C   

(3)
5 6 8({ , , }) 0.594g C C C   

(3)
5 7 8({ , , }) 0.687g C C C   

(3)
6 7 8({ , , }) 0.687g C C C   

 

 

 

 

 

 

 

 

Revenue Quality (D4) (only one criterion in this dimension), (1)
9({ }) 1g C   

Capital Efficiency (D5) 5 51.191,  0.732
D D   , (4)

10 11 12 13({ , , , }) 1g C C C C   
(1)

10({ }) 0.166g C   
(1)

11({ }) 0.133g C   
(1)

12({ }) 0.266g C   
(1)

13({ }) 0.166g C   

 

 

(2)
10 11({ , }) 0.326g C C   

(2)
10 12({ , }) 0.486g C C   

(2)
10 13({ , }) 0.366g C C   

(2)
11 12({ , }) 0.442g C C   

(2)
11 13({ , }) 0.326g C C   

(2)
12 13({ , }) 0.486g C C   

(3)
10 11 12({ , , }) 0.696g C C C   

(3)
10 11 13({ , , }) 0.557g C C C   

(3)
10 12 13({ , , }) 0.748g C C C   

(3)
11 12 13({ , , }) 0.696g C C C   

 

 

 

 

 

 

 

 

Note: ( )
1th th({ ,..., })i

ig C C denotes that the fuzzy measure includes i elements (dimensions/criteria) in its measurement.  

 

5. RESULTS AND DISCUSSIONS 
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To examine the proposed approach, the data sets of five life insurance companies were obtained 

from the testing set. The five companies were Zurich International Insurance, Taiwan Branch (A), 

Fubon Life Insurance (B), China Trust Life Insurance (C), Prudential Life Insurance, Taiwan Branch 

(D), and First Aviva Insurance (E). The entire testing set (27 alternatives) was used to transform the 

raw data of the five companies into performance scores ranging from 0 (worst) to 10 (best) for each 

criterion. A percentile transformation method was used; for example, if a company’s persistency ratio 

was ranked to be in the bottom 10% of the test set, then the performance score for this company on 

this criterion would be 1. To compare the results obtained from the additive- and nonadditive-type 

aggregators, both SAW and fuzzy integral methods were used. The results are shown in Tables 7 and 

8.  

The proposed approach was developed for diagnosing the FP of life insurance companies and for 

supporting the companies in formulating an improvement plan. Therefore, both the final performance 

aggregation and improvement priority identification when using SAW (additive-type) and fuzzy 

integral (nonadditive-type) methods are compared and discussed in this section. The aggregated final 

performance scores (obtained using the aforementioned two methods) and the ranking results for the 

five example companies are presented in Table 8. 

 

TABLE 7 DANP WEIGHTS AND PERFORMANCE SCORES OF THE FIVE COMPANIES 

DANP weights  Alternatives (companies) 

 w
C
 w

L
 A B C D E 

D1 = 016        

C1 0.09 0.56 10 8 9 7 5 

C2 0.07 0.44 3 7 8 6 2 

D2 = 0.18  0.18       

C3 0.08 0.44 9 8 5 7 7 

C4 0.10 0.56 8 7 2 6 7 

D3 = 0.23         

C5 0.05 0.22 5 5 1 7 6 

C6 0.05 0.22 3 6 5 1 5 

C7 0.07 0.30 7 8 4 5 4 

C8 0.06 0.26 6 7 5 8 6 

D4 = 0.20         

C9 0.20 1.00 6 3 8 4 4 

D5 = 0.22         

C10 0.05 0.23 6 3 10 5 4 

C11 0.04 0.18 7 9 5 2 8 

C12 0.08 0.36 9 8 5 3 8 

C13 0.05 0.23 6 9 3 4 5 

Note: wL denotes local weight; for example, the local weight of C1 = 0.09 / 0.16 = 0.56. 

 

 

 

 

TABLE 8 FINAL PERFORMANCE SCORES AND RANKING RESULTS 

Companies A B C D E 
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(1)
2({ })g D

(2)
2 5({ , })g D D

(3)
2 4 5({ , , })g D D D

(4)
1 2 4 5({ , , , })g D D D D

 
(5)

1 2 3 4 5({ , , , , })g D D D D D

SAW 6.68
*
 6.28 5.70 5.01 5.25 

(Rank) (1) (2) (3) (5) (4) 

Fuzzy integral 6.11 5.81 5.01 4.56 4.80 

(Rank) (1) (2) (3) (5) (4) 

*Note: The final performance score for the jth company (SAW) is calculated by 
13

C

1
i ij

i

w p


 ; see Table 7. 

 

The aggregated performance score (Table 8) obtained using the fuzzy integral aggregator might 

require additional explanation. The criteria performance scores within each dimension should be 

aggregated before determining the final performance score. For company A, consider the case of C1 

and C2 in D1 as an example: Because the performance score on C1 is higher than that on C2, the fuzzy 

integral integrated performance score in D1 should be  10 3 0.37 3 1 5.59     . Similarly, the 

fuzzy integral aggregated performance scores for D2, D3, D4, and D5 are 8.29, 5.01, 6.00, and 6.97, 

respectively. Because the aggregated dimensional performance scores reflect the order h(D2) > h(D5) 

> h(D4) > h(D1)> h(D3), the final performance score obtained using the fuzzy integral can be 

presented as shown in Fig. 5. Although the SAW and fuzzy integral aggregators indicated the same 

ranking result (i.e., A B C E D ), the focus of this study was on FP diagnosis for supporting 

the improvement of FP. For example, the improvement priorities for company B, which are based on 

SAW and the  -measure, are presented in Table 9 for comparison. 

 

      

      

      

      

      

      

 
Note: In this case,            (1) (2) (3)

2 5 2 5 4 4 5 4 1 2 4 5( ) [ ] ({ }) [ ] ({ , }) [ ] ({ , , })C hdg h D h D g D h D h D g D D h D h D g D D D            

     (4)
1 3 1 2 4 5 3[ ] ({ , , , }) 1h D h D g D D D D h D     = 6.11 in Table 8. 

Fig. 5 Illustration of the fuzzy integral on the 5 dimensions for company A 

 

From Table 9, we can learn that the top three improvement priorities for company B obtained by 

using the additive-type (i.e., {C10, C5, C6}) and nonadditive-type (i.e., {C6, C13, C7}) aggregators 

differ. Moreover, the top priority (i.e., the lowest weighted performance score based on  -measure) 

for company B to improve is C6 ( Equity), which belongs to D3 (Operational Efficiency). According 

to the INRM (Fig. 3), within dimension D3, both C5 (NCost) and C8 (CapInvest) would have 

influences on C6. The other four dimensions also have direct influences on D3. Company B can thus 

identify the systematic cause–effect influence relations among the core attributes to devise 

improvement plans. 

h 

h(D2)=8.29 

h(D5)=6.97 

h(D4)=6.00 

h(D1)=5.59 

h(D3)=5.01 

g 
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In addition, in the event that company B intends to improve C6, the plausible performance 

improvement rates obtained by using SAW and the fuzzy integral method for aggregating the results 

would not be identical. Table 10 presents the final performance scores of company B and the 

corresponding improvement rates (C6 improved from 7 to 10) for the two types of aggregators. 

 

TABLE 9 IMPROVEMENT PRIORITY BY SAW AND  -MEASURE FOR COMPANY B 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 

iCP  8 7 8 7 5 6 7 8 3 3 9 8 9 

  wG (DANP) 0.09 0.07 0.08 0.10 0.05 0.05 0.07 0.06 0.20 0.05 0.04 0.08 0.05 
_

i i

G DANP
C C

P w  0.72 0.49 0.64 0.70 0.25 0.30 0.49 0.48 0.60 0.15 0.36 0.64 0.45 

(Priority criteria)     (2nd) (3rd)    (1st)    

wG (  -measure) 0.09  0.02  0.09  0.03  0.03  0.01  0.02  0.10  0.20  0.07  0.07  0.02  0.01  

_

i i

G
C C

P w   0.75  0.16  0.75  0.21  0.15  0.08  0.13  0.82  0.60  0.20  0.60  0.16  0.11  

(Priority criteria)      (1st) (3rd)      (2nd) 

Note: 
_

i

G DANP
C

w  and 
_

i

G
C

w 
 denote the global weights of the ith criterion according to the DANP and  -measure, respectively. 

Note:  -measure was collected and transformed from the questionnaires. 

 

TABLE 10 PERFORMANCE SCORE IMPROVEMENT RATE OF COMPANY B ON C6 

Aggregators C6 = 6 C6 = 7 C6 = 8 C6 = 9 C6 = 10 

SAW 6.28 6.33 6.38 6.43 6.48 

Improvement rate
SAW

  
a
0.80% 1.59% 2.39% 3.18% 

Fuzzy integral 5.81 5.88 5.93 5.96 5.99 

Improvement rate
FI

  1.20% 2.07% 2.58% 3.10% 
b
Differences of 

improvement rates 

 
0.40% 0.48% 0.19% -0.08% 

aNote: For example, when C6 = 7, the improvement rate = (6.33 - 6.28)/6.28*100% = 0.80% according to the SAW aggregator. 
bNote: Differences of improvement rates = (Improvement rateFI - Improvement rateSAW). 

 

If the performance score of C6 (of company B) was improved from 6 to 9, the improvement rates 

obtained using the fuzzy integral would outperform those obtained using SAW. The difference in the 

improvement rate would decrease from 0.48% to 0.19% for an improvement in C6 from 8 to 9. The 

management of company B should be aware of this type of nonlinear incremental result when 

evaluating the cost (or resources) involved in attaining different levels of improvement. 

 

6. CONCLUDING REMARKS 

In this study, a hybrid approach for the FP diagnosis of life insurance companies was proposed. 

The attribute reduction and implicit knowledge retrieval capabilities of DRSA helped induct rough 

financial knowledge from historical data in the first stage. In the next stage, a hybrid decision model 

constructed using the DANP and fuzzy integral methods was used to refine the rough financial 

knowledge in two ways: (1) the cause–effect influence relations among the core dimensions or 

criteria were identified using the DEMATEL technique and (2) the initial influential weight of each 

core dimension or criterion was evaluated and the synergy effects among the core set were measured.  

The present study enhances the previous research by providing a more detailed discussion of 
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how to retrieve and refine knowledge regarding FP improvements. Furthermore, the commonly 

observed additive-type aggregation approach can be adjusted and enhanced to measure the plausible 

synergy effects among the criteria and dimensions. This possibility was overlooked and 

underexplored by previous financial studies, which mainly relied on statistical analyses (see 

Introduction), and MCDM studies (such as those studies based on AHP and ANP methods). The 

findings of this research not only contribute to the integration or combination of heterogeneous 

methodologies in modeling, but also provide practical insights for life insurance companies.   

Although this study presents an approach for acquiring rough knowledge for FP improvement 

guidance for the life insurance industry, it has several limitations. First, only operational and financial 

indicators were considered in the modeling. Future research could incorporate other dimensions (e.g., 

marketing) to enrich the findings. Second, the rough machine learning mechanism used in the first 

stage is based on the assumption that historical patterns will reoccur in the near future. Third, the 

adopted fuzzy measure depends on the subjective judgments of the invited experts; the average 

opinions of the experts were used for calculating the parameters in the fuzzy integral model. Because 

the domain experience and knowledge of the invited experts are crucial to the modeling of a decision 

model, a plausible variance could be caused by different experts. Despite these limitations, future 

research has two potential directions. First, on the modeling side, the concept of intuitionistic fuzzy 

relations [4-5] could be integrated with fuzzy integrals for improving the decision model. Second, on 

the application side, collaboration for evaluating plausible improvement plans by using the proposed 

approach could be undertaken with a financial institution.  
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Appendix A (Supplementary Calculations of DEMATEL)  

 

1. In Step 4, form initial average influence matrix A  in Table A.1. 

2. Refer to (8)–(9) in Step 5 and normalize A to obtain the direct influence relation matrix D  

(Table A.2). 

3. Refer to (10) in Step 6 for obtaining the total influence relation matrix T  (Table A.3).  

4. Refer to (11)–(15) in Steps 7 and 8, to obtain the normalized N

DT  (Table A.4) 

 

TABLE A.1 INITIAL INFLUENCE AVERAGE MATRIX A  

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 
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C1 0.00 2.88  1.25  1.50  1.13  3.25  2.00  3.13  0.88  2.25  2.00  1.00  1.50  

C2 1.50  0.00 1.38  1.38  1.00  2.25  1.75  1.50  1.50  1.50  0.25  0.25  1.25  

C3 0.50  1.75  0.00 3.13  3.25  1.25  2.63  2.00  2.75  0.75  0.25  3.00  1.50  

C4 1.00  1.50  1.75  0.00 2.75  2.00  3.00  2.00  3.75  0.50  0.50  3.50  1.00  

C5 1.75  1.50  2.75  3.50  0.00 1.63  3.25  1.50  3.25  0.75  0.75  3.75  0.75  

C6 2.00  0.75  0.25  0.25  0.50  0.00 1.75  1.50  0.75  1.25  1.75  1.25  1.25  

C7 2.13  0.75  2.00  1.75  2.00  1.75  0.00 1.75  1.75  2.75  2.00  2.50  1.38  

C8 2.00  1.75  1.25  0.75  2.25  1.75  3.50  0.00 1.50  3.75  3.25  3.25  3.00  

C9 1.25  2.50  1.25  3.13  1.88  1.38  3.25  1.88  0.00 1.75  1.25  3.88  1.50  

C10 2.25  1.00  1.25  1.25  2.00  1.75  3.50  2.75  1.50  0.00 3.50  3.75  3.25  

C11 2.75  0.75  1.50  1.25  2.00  2.00  4.00  3.63  1.75  2.50  0.00 3.75  3.75  

C12 2.75  0.75  2.25  2.50  3.00  1.75  3.13  3.25  2.75  2.00  1.75  0.00 1.00  

C13 1.00  0.25  0.75  0.25  0.75  1.75  2.50  3.13  0.75  2.88  2.75  2.38  0.00 

 

TABLE A.2 DIRECT INFLUENCE RELATION MATRIX D  

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 

C1 0.000  0.084  0.036  0.044  0.033  0.095  0.058  0.091  0.026  0.066  0.058  0.029  0.044  

C2 0.044  0.000  0.040  0.040  0.029  0.066  0.051  0.044  0.044  0.044  0.007  0.007  0.036  

C3 0.015  0.051  0.000  0.091  0.095  0.036  0.077  0.058  0.080  0.022  0.007  0.088  0.044  

C4 0.029  0.044  0.051  0.000  0.080  0.058  0.088  0.058  0.109  0.015  0.015  0.102  0.029  

C5 0.051  0.044  0.080  0.102  0.000  0.047  0.095  0.044  0.095  0.022  0.022  0.109  0.022  

C6 0.058  0.022  0.007  0.007  0.015  0.000  0.051  0.044  0.022  0.036  0.051  0.036  0.036  

C7 0.062  0.022  0.058  0.051  0.058  0.051  0.000  0.051  0.051  0.080  0.058  0.073  0.040  

C8 0.058  0.051  0.036  0.022  0.066  0.051  0.102  0.000  0.044  0.109  0.095  0.095  0.088  

C9 0.036  0.073  0.036  0.091  0.055  0.040  0.095  0.055  0.000  0.051  0.036  0.113  0.044  

C10 0.066  0.029  0.036  0.036  0.058  0.051  0.102  0.080  0.044  0.000  0.102  0.109  0.095  

C11 0.080  0.022  0.044  0.036  0.058  0.058  0.117  0.106  0.051  0.073  0.000  0.109  0.109  

C12 0.080  0.022  0.066  0.073  0.088  0.051  0.091  0.095  0.080  0.058  0.051  0.000  0.029  

C13 0.029  0.007  0.022  0.007  0.022  0.051  0.073  0.091  0.022  0.084  0.080  0.069  0.000  

 

TABLE A.3 TOTAL INFLUENCE RELATION MATRIX T  

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C

ir  

C1 0.10  0.15  0.12  0.13  0.13  0.19  0.21  0.21  0.13  0.18  0.16  0.18  0.14  2.02  

C2 0.11  0.05  0.10  0.10  0.10  0.14  0.15  0.12  0.11  0.11  0.08  0.11  0.10  1.37  

C3 0.11  0.12  0.09  0.19  0.20  0.14  0.23  0.18  0.19  0.13  0.10  0.24  0.13  2.05  

C4 0.13  0.11  0.14  0.11  0.19  0.16  0.24  0.18  0.21  0.12  0.11  0.25  0.12  2.07  

C5 0.16  0.12  0.17  0.20  0.12  0.16  0.25  0.17  0.20  0.13  0.12  0.26  0.12  2.20  

C6 0.12  0.06  0.06  0.07  0.08  0.07  0.14  0.12  0.08  0.11  0.11  0.13  0.10  1.26  

C7 0.16  0.09  0.15  0.15  0.17  0.15  0.16  0.18  0.16  0.18  0.16  0.22  0.14  2.07  

C8 0.19  0.13  0.15  0.14  0.20  0.18  0.29  0.16  0.17  0.24  0.21  0.27  0.21  2.54  

C9 0.15  0.14  0.14  0.19  0.17  0.15  0.25  0.19  0.12  0.16  0.14  0.26  0.14  2.21  

C10 0.20  0.12  0.15  0.16  0.19  0.18  0.29  0.24  0.17  0.14  0.22  0.29  0.21  2.56  

C11 0.21  0.11  0.16  0.16  0.20  0.20  0.32  0.28  0.18  0.22  0.14  0.30  0.23  2.72  

C12 0.20  0.11  0.17  0.19  0.22  0.17  0.27  0.24  0.20  0.19  0.17  0.18  0.15  2.45  

C13 0.12  0.07  0.10  0.09  0.12  0.14  0.21  0.20  0.11  0.18  0.17  0.20  0.09  1.80  
C

is  1.96  1.39  1.70  1.88  2.07  2.03  3.03  2.47  2.03  2.09  1.88  2.89  1.90   

 

 

 

TABLE A.4 NORMALIZED DIMENSIONAL INFLUENCE MATRIX N

DT  

 D1 D2 D3 D4 D5 D

ir  
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D1 0.10 0.11 0.16 0.12 0.13 0.62 

D2 0.12 0.13 0.19 0.20 0.15 0.79 

D3 0.13 0.14 0.16 0.15 0.17 0.75 

D4 0.15 0.16 0.19 0.12 0.18 0.80 

D5 0.14 0.15 0.22 0.17 0.19 0.87 
D

is  0.64 0.69 0.92 0.76 0.82  
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