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a b s t r a c t

We model and analyze an elevator system during up-peak. We study the round-trip time,
whose distribution depends strongly on the number of passengers waiting at the lobby, as
well as the number of stops and the highest reversal floor. The distribution functions of the
passenger queue length in the lobby, the round-trip time, the waiting time, the ride time
and the journey time are derived.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, high-rise buildings are normally serviced by elevators, as the vertical traffic transport equipment. The
parameters such as the elevator capacity and running speed must be confirmed during the building design. This requires
that we analyze the elevator traffic reasonably [1,2]. Studies on elevator system in a high-rise building have been performed
by [1–6]. The analysis of elevator traffic has mostly concentrated on up-peak, since it is the worst traffic situation from the
elevator capacity point of view [7]. During up-peak, passengers arrive randomly at an entrance floor (lobby), and randomly
choose one of the higher floors as their destination. The elevator moves from the lobby, up to all the destination floors of the
passengers inside the elevator, stops when it arrives at the highest destination floor, and goes back to the lobby only when
new passengers are present there.
In designing a building, the usual criterion for deciding the capacity of elevators, is that passenger’s waiting time should

not exceed some specified value during up-peak. Another criterion used in elevator design is that one shouldminimize some
weighted sum ofwaiting time and riding time, since time spent riding a crowded elevator is at least as onerous as time spent
waiting in a lobby [8]. If a passenger’s objective is simply to reach his destination as soon as possible, he would give equal
weight to waiting or riding time.
Until now, there are few papers to analyze, mathematically, the performance of an elevator during up-peak. Siikoken [7]

discussed passenger service in an elevator system during up-peak. She derived the mean values of the round-trip time and
the passenger ride time. Assuming that the round-trip times follow i.i.d. Erlangian distributions, and the elevator is always
busy, she derived the mean values of the passenger waiting time and the passenger journey time. Newell [8] derived the
mean value of the journey time for various strategies in order to compare their performance. While most of the analyses in
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the literature [7–11] have derived only the mean values of the performance measures during up-peak, this paper obtains
their distributions.
In this paper, we model and analyze an elevator system during up-peak, where passengers arrive randomly at a lobby

according to a Poisson process. According to [12], the Poisson arrival assumption at least cannot be rejected [7]. Inter-floor
travel times and stop times at a floor (including accelerating, decelerating, opening and closing of the door) are taken as a
constant. Only up-peak traffic is considered. The elevator has finite capacity, and passengers arriving in the lobby are served
in the order of arrival. To analyze several performancemeasures of the elevatormodel, a discrete-timeMarkov chain (DTMC)
is embedded at departure epochs from the lobby, arrival epochs at a highest destination floor, and departure epochs from
such a floor back to the lobby. By including the number of stops between two consecutive Markov points, a discrete-time
semi-Markov sequence is introduced forwhich the semi-Markov kernel can be calculated. Knowing this kernel, the one-step
transition probabilities of the DTMC are calculated and the steady-state distribution of the DTMC is found usingwell-known
methods for M/G/1 type queues. Having available the steady-state distribution, we continue to study the round-trip time
of the elevator, the passenger waiting time at the lobby, the passenger ride time, and the passenger journey time. For the
round-trip time we derive the distribution function, using the semi-Markov kernel and the steady-state distribution of the
DTMC. For the passenger waiting time, we derive the Laplace–Stieltjes Transform (LST), considering a virtual passenger and
using a series of conditioning and unconditioning arguments. To find the distribution of the passenger ride time, we use the
distribution of the number of passengers in the elevator during the ride of the virtual passenger. Finally, the LST of the pas-
senger journey time is found by a series of conditioning/unconditioning arguments. Numerical examples are presented for
an elevator system. We present figures of the probability mass function of the number of passengers in the elevator system
(for different values of the passenger arrival rate) at departure epoch from the lobby, the cumulative distribution functions of
the round-trip time, and (in one figure) themean round-trip time, ride time and journey time as a function of the arrival rate.

2. Analysis of elevator system

2.1. Description of model

Let N be the number of floors above the lobby, tr the run time of an elevator for one floor at the nominal speed, tl the stop
time of the elevator at the lobby and ts the stop time at the other floors. Each stop time includes accelerating, decelerating,
transferring of passengers, and the opening and closing of the door. It is assumed that tr , tl and ts are all constants.
During up-peak, passengers are assumed to arrive at the lobby according to a Poisson process with arrival rate λ, and no

passengers arrive at the other floors. Hence, there are no stops from the highest reversal floor to the lobby. A single elevator
serves thewaiting passengers at the lobby by FCFS (First-Come First-Served). The elevator can serve up to c passengers at the
same time. The destination floor of each passenger is uniformly distributed among all the floors. If there are no passengers
waiting at the lobby when the elevator arrives at the highest reversal floor, then the elevator stays idle at the floor and is
activated by the first passenger arrival at the lobby; if there are passengers waiting at the lobby, the elevator is returned to
the lobby.

2.2. Number of passengers in the elevator system

The elevator system is embedded at departure epochs from the lobby, arrival epochs at a highest destination floor, and
departure epochs from such a floor back to the lobby. We define by Ln the total number of passengers in the elevator system
at the nth embedded point, and by Fn the location of the elevator at the nth embedded point. Let Sn be the number of stops
between the (n− 1)st and the nth embedded points.
It follows from the properties of the Poisson process that {(Ln, Fn), n = 1, 2, . . .} forms a Markov chain with state space

{(i, j), i = 0, 1, . . . , j = 0, 1, . . . ,N, i+ j > 0}. Since the random variables Sn, n = 1, 2, . . ., are conditionally independent
under the condition that {(Ln, Fn), n = 1, 2, . . .} is given, the sequence of trivariate {(Ln, Fn, Sn), n = 1, 2, . . .} forms a
discrete-time semi-Markov sequence.
The semi-Markov process is characterized by the semi-Markov kernel, defined as
Q(i,j),(k,l)(m) ≡ P{Ln = k, Fn = l, Sn = m|Ln−1 = i, Fn−1 = j},

i, k = 0, 1, . . . , j, l,m = 0, 1, . . . ,N, i+ j > 0, k+ l > 0.
To derive the semi-Markov kernel Q(i,j)(k,l)(m), we define the conditional probability Gi(l,m), 1 ≤ i ≤ c , 1 ≤ l ≤ N ,
1 ≤ m ≤ (i, l)−, that the elevator stops m times before the up-trip is ended at the highest reversal floor l, given that the
elevator leaves the lobby with i passengers. Finding an expression Gi(l,m) requires the calculation of the probability that,
in an experiment of throwing i numbered balls randomly into N boxes, at least one ball ends up in box l, no ball ends up in
any of the boxes l+ 1, . . . ,N , and exactlym− 1 boxes of the boxes 1, . . . , l− 1 will end up non-empty. We can obtain the
conditional probability Gi(l,m) as follow:

Gi(l,m) =
1
N i

(
l− 1
m− 1

) ∑
g1+···+gm=i

1≤g1,...,gm≤i−m+1

m∏
e=1

i− e−1∑
a=1

ga

ge

 , (1)
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where(
n
m

)
=

n!
m!(n−m)!

.

The semi-Markov kernel Q(i,j),(k,l)(m) is given by

Q(i,j),(k,l)(m) =


G(i,c)−(l,m)[λ(ltr +mts)]

k−(i−c)+e−λ(ltr+mts)/(k− (i− c)+)!
if i ≥ 1, j = 0, k ≥ (i− c)+, 1 ≤ l ≤ N, 1 ≤ m ≤ (i, l, c)−,
[λ(tl + jtr)]k−ie−λ(tl+jtr )/(k− i)! if i ≥ 1, 1 ≤ j ≤ N, k ≥ i, l = 0,m = 1,
1 if i = 0, 1 ≤ j ≤ N, k = 1, l = j,m = 0,
0 otherwise,

where (a1, a2, . . . , an)− indicates the minimum of a1, a2, . . . , an and (a1, a2, . . . , an)+ indicates the maximum of
0, a1, a2, . . . , an.
The Markov chain {(Ln, Fn), n = 1, 2, . . .} is irreducible and aperiodic with one-step transition matrix P = {P(i,j),(k,l)}:

P(i,j),(k,l) =
(i,l,c)−∑
m=0

Q(i,j),(k,l)(m). (2)

Let {πi,j} be the steady-state distribution of the Markov chain {(Ln, Fn), n = 1, 2, . . .}. The steady-state distribution {πi,j} is
found by the similar argument in [13] where the steady-state distribution in an M/G/1 type queue is derived.

2.3. Elevator round-trip time

The time from the departure from the lobby until the next arrival at the lobby is called the round-trip time. We will now
derive the distribution function of the round-trip time. Denoting the round-trip time by R, we define

R(x) ≡ P{R ≤ x}

for all non-negative real number x. With probability πi,0/
∑
∞

j=1 πj,0, i = 1, 2, . . ., the round-trip begins with i passengers at
the lobby. We call the round-trip beginning with i passengers at the lobby the type-i round-trip, where i = 1, 2, . . . , c + 1.
The distribution function of the type-i round-trip time Ri, i = 1, 2, . . . , c + 1, is denoted by Ri(x), and its discrete and
continuous parts by Rdi (x) and R

c
i (x), respectively, with R

c
c+1(x) = 0, i.e., Rc+1(x) = R

d
c+1(x).

Then, the probability distribution function of the type-i round-trip time is given by

Rdi (x) =
∞∑
k=1

N∑
l=1

d(x−2ltr−tl)/tse∑
m=1

Q(i,0),(k,l)(m),

Rci (x) =
N∑
l=1

d(x−2ltr−tl)/tse∑
m=1

Q(i,0),(0,l)(m)
[
1− e−λ(x−mts−2ltr−tl)

]
,

where dxe is the largest integer less than or equal to x. Thus, we can write

R(x) =

[
∞∑
i=1

πi,0R(i,c+1)−(x)

]/ ∞∑
j=1

πj,0

=

[
Rc+1(x)+

c∑
i=1

πi,0 {Ri(x)− Rc+1(x)}

]/ ∞∑
j=1

πj,0

=

[
Rdc+1(x)+

c∑
i=1

πi,0
{
Rdi (x)+ R

c
i (x)− R

d
c+1(x)

}]/ ∞∑
j=1

πj,0. (3)

2.4. Passenger waiting time at the lobby

We will find the waiting time W for a passenger. We define Xi,j as the time period between a Markov point with state
(i, j) and the next Markov point. Then,

Xi,j ≡

idle period at the jth floor if i = 0, j > 0,
duration of down-trip from jth floor and stop time at the lobby if i > 0, j > 0,
duration of up-trip serving (i, c)− passengers if i > 0, j = 0.
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That is, if i = 0 and j > 0, then the probability distribution of Xi,j is an exponential distribution with mean 1/λ. If i > 0 and
j > 0, then Xi,j has the deterministic value jtr + tl. Finally, if i > 0 and j = 0, then Xi,j has the following distribution:

P{Xi,j = ltr +mts} = G(i,c)−(l,m), l = 1, 2, . . . ,N,m = 1, 2, . . . , (i, l, c)−.
The mean ηi,j of Xi,j is given by

ηi,j =


1/λ if i = 0, j > 0,
jtr + tl if i > 0, j > 0,
N∑
l=1

(i,l,c)−∑
m=1

(ltr +mts)G(i,c)−(l,m) if i > 0, j = 0.

Now consider a virtual passenger that arrives at the lobby. The passenger may arrive during one of the following three
time periods; up-trip, down-trip and idle period. With probability πi,jηi,j/

∑
k,l πk,lηk,l the virtual passenger arrives during a

time period Xi,j. The Laplace–Stieljes Transform(LST) for the conditional waiting timeWi,j of the passenger arriving during a
time period Xi,j is denoted byW ∗i,j(s). Then the conditional waiting timeW0,j, j = 1, 2, . . . ,N , is the duration of a down-trip
from jth floor, i.e.,W0,j = jtr + tl, with LST

W ∗0,j(s) = e
−s(jtr+tl).

Next, consider the case that a virtual passenger arrives y time units before the end of a down-trip Xi,j, i, j > 0, during
the down-trip period. Note that the duration of a down-trip Xi,j is jtr + tl. If α denotes the number of passengers that arrive
during Xi,j − y, then

E
[
e−sWi,j | arrival at y, α = n

]
= e−sy[R∗c+1(s)]

d(i+n)/ce, i, j > 0,
where R∗i (s), i = 1, 2, . . . , c + 1, denotes the LST of a type-i round-trip time Ri. Unconditioning on α yields

E
[
e−sWi,j | arrival at y

]
=

∞∑
n=0

e−sy[R∗c+1(s)]
d(i+n)/ce [λ(jtr + tl − y)]

n

n!
e−λ(jtr+tl−y)

= e−sy−λ(jtr+tl−y)
∞∑
n=0

[λ(jtr + tl − y)]n

n!
[R∗c+1(s)]

d(i+n)/ce.

Since the arrival time y is uniformly distributed between 0 and jtr+tl, its probability density function is given by dy/(jtr+tl).
Therefore, unconditioning on the arrival time y yields

W ∗i,j(s) =
e−s(jtr+tl)

jtr + tl

∞∑
n=0

λn

n!
[R∗c+1(s)]

d(i+n)/ce
∫ jtr+tl

0
yne−(λ−s)ydy

=
e−s(jtr+tl)

(λ− s)(jtr + tl)

∞∑
n=0

(
λ

λ− s

)n
[R∗c+1(s)]

d(i+n)/ce

[
1−

n∑
k=0

[(λ− s)(jtr + tl)]k

k!
e−(λ−s)(jtr+tl)

]
, i, j > 0.

Finally, we consider the case that a virtual passenger arrives y time units before the end of an up-trip Xi,0, i = 1, 2, . . .,
during the up-trip period. If α denotes the number of passengers that arrive during Xi,0 − y, then

E
[
e−sWi,0 |Xi,0 = ltr +mts, arrival at y, α = n

]
= e−s(y+ltr+tl)[R∗c+1(s)]

d{i−(i,c)−+n}/ce.

Unconditioning on α yields
E
[
e−sWi,0 |Xi,0 = ltr +mts, arrival at y

]
=

∞∑
n=0

e−s(y+ltr+tl)[R∗c+1(s)]
d{i−(i,c)−+n}/ce [λ(ltr +mts − y)]

n

n!
e−λ(ltr+mts−y)

= e−s(y+ltr+tl)−λ(ltr+mts−y)
∞∑
n=0

[λ(ltr +mts − y)]n

n!
[R∗c+1(s)]

d{i−(i,c)−+n}/ce, i > 0.

Unconditioning on the arrival time y yields

E
[
e−sWi,0 |Xi,0 = ltr +mts

]
=
e−s(2ltr+mts+tl)

ltr +mts

∞∑
n=0

λn

n!
[R∗c+1(s)]

d{i−(i,c)−+n}/ce
∫ ltr+mts

0
yne−(λ−s)ydy

=
e−s(2ltr+mts+tl)

(λ− s)(ltr +mts)

∞∑
n=0

(
λ

λ− s

)n
[R∗c+1(s)]

d{i−(i,c)−+n}/ce

×

[
1−

n∑
k=0

[(λ− s)(ltr +mts)]k

k!
e−(λ−s)(ltr+mts)

]
, i > 0.

Furthermore, by the batch effect, the probability that the period Xi,0 during which the virtual passenger arrives is ltr + mts
is given by (ltr + mts)G(i,c)−(l,m)/ηi,0, i > 0. Therefore, by unconditioning on the length of Xi,0, we get the following LST
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W ∗i,0(s) for the waiting time of the virtual passenger that arrives during the up-trip Xi,0;

W ∗i,0(s) =
N∑
l=1

(c,i,l)−∑
m=1

E
[
e−sWi,0 |Xi,0 = ltr +mts

] (ltr +mts)G(i,c)−(l,m)
ηi,0

=
e−stl

(λ− s)ηi,0

N∑
l=1

(c,i,l)−∑
m=1

e−s(2ltr+mts)G(i,c)−(l,m)
∞∑
n=0

(
λ

λ− s

)n
×[R∗c+1(s)]

d{i−(i,c)−+n}/ce

[
1−

n∑
k=0

[(λ− s)(ltr +mts)]k

k!
e−(λ−s)(ltr+mts)

]
, i > 0.

By unconditioning on the state of the Markov chain before the virtual passenger arrives, we get the LST for the waiting
time of a virtual passenger;

W ∗(s) =
∑
i,j

πi,jηi,jW ∗i,j(s)
/∑

k,l

πk,lηk,l. (4)

2.5. Passenger ride time

After an elevator has arrived to serve a passenger, the ride time of the passenger begins when the passenger steps inside
the elevator. The ride time endswhen the passenger exits the elevator. During up-peak,when several passengers travel in the
elevator, the passenger ride time consists of the elevator run time to the destination floor and the stop times before reaching
the destination floor of a virtual passenger. Hence, it depends on the destination floor and the number of intermediate stops
before the destination. Withm stops on the way before getting to destination floor l, the ride time consists of the sum of ltr
andmts. The value ltr refers to the run time to the destination floor l. The valuemts refers to the sum ofm stop times during
the ride. Thus, the passenger ride time T takes the only values of the form ltr+mts for l = 1, 2, . . . ,N andm = 0, 1, . . . , l−1.
Let M be the number of passengers inside the elevator, to which a virtual passenger belongs, when it leaves the lobby.

By the batch effect, we obtain

P{M = i} =


iπi,0/

[
c −

c−1∑
j=1

(c − j)πj,0

]
if i = 1, 2, . . . , c − 1,

c

[
1−

c−1∑
j=1

πj,0

]/[
c −

c−1∑
j=1

(c − j)πj,0

]
if i = c.

We obtain, by considering all the possible stop combinations before reaching destination floor,

P{T = ltr +mts|M = i} =
1
N i

(
l− 1
m

) ∑
m+1≤g1+···+gm+1≤i
1≤g1,...,gm+1≤i−m

(N − l)

(
i−
m+1∑
e=1

ge

)m+1∏
e=1

i− e−1∑
a=1

ga

ge


 , (5)

where 00 is assumed to be 1. Unconditioning onM yields

P{T = ltr +mts} =
c∑

i=m+1

P{M = i}P{T = ltr +mts|M = i} (6)

for l = 1, 2, . . . ,N andm = 0, 1, . . . , (l− 1, c − 1)−.

2.6. Passenger journey time

Wewill find the journey time, which is defined as the total time a passenger spends in an elevator system. Let us assume
that arriving passengers form a queue in the order of arrivals in the lobby. LetM ′ denote the number of passengers who are
served at the same time as the virtual passenger, under the condition that nomore passengers are allowed to join the lobby.
We denote by J∗(s|i, j) the LST of the remaining journey time of a virtual passenger with position i, given that M ′ = j

immediately before a round-trip time. Then,

J∗(s|i, j) =


T ∗j (s) if i ≤ c, i ≤ j ≤ c,
T ∗c (s)[R

∗

c+1(s)]
i/c−1 if i > c, i = 0 mod c, j = c

c−j−1∑
k=0

R∗c+1(k, s)
[
J∗(s|i− c, j+ k)− [R∗c+1(s)]

di/ce−1T ∗c (s)
]
+ T ∗c (s)[R

∗

c+1(s)]
di/ce

if i > c, i 6= 0 mod c, i− di/cec ≤ j ≤ c,
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where
T ∗j (s) = E[e

−sT
|M = j], j = 1, 2, . . . , c,

R∗i (k, s) =
∫
∞

0
e−sx

(λx)ke−λx

k!
dRi(x), i = 1, 2, . . . , c + 1, k = 0, 1, . . . .

The LST for the conditional journey time Ji,j of the passenger arriving during a time period Xi,j is denoted by J∗i,j(s). Then
the conditional journey time J∗0,j(s), j > 0, is

J∗0,j(s) = e
−s(jtr+tl)

[
T ∗c (s)+

c−2∑
k=0

[λ(jtr + tl)]k

k!
e−λ(jtr+tl)

{
T ∗k+1(s)− T

∗

c (s)
}]
, j > 0.

Next consider the case that a virtual passenger arrives y time units before the end of a down-trip Xi,j, i, j > 0, during the
down-trip period. If α denotes the number of passengers that arrive during Xi,j − y, then

E[e−sJi,j | arrival at y, α = n] = e−sy
[
[R∗c+1(s)]

d(i+n)/ceT ∗c (s)

+

c−βd−2∑
k=0

(λy)ke−λy

k!

{
J∗(s|i+ n+ 1, βd + 1+ k)− [R∗c+1(s)]

d(i+n)/ceT ∗c (s)
}]
, i, j > 0,

where

βd = i+ n−
⌈
i+ n
c

⌉
c.

Unconditioning on α yields

E[e−sJi,j | arrival at y] = e−sy−λ(jtr+tl−y)
∞∑
n=0

[λ(jtr + tl − y)]n

n!

[
[R∗c+1(s)]

d(i+n)/ceT ∗c (s)

+

c−βd−2∑
k=0

(λy)ke−λy

k!

{
J∗(s|i+ n+ 1, βd + 1+ k)− [R∗c+1(s)]

d(i+n)/ceT ∗c (s)
}]
, i, j > 0.

Unconditioning on the arrival time y yields

J∗i,j(s) =
∞∑
n=0

λn

[
e−s(jtr+tl)

(jtr + tl)(λ− s)n+1
[R∗c+1(s)]

d(i+n)/ceT ∗c (s)

{
1−

∞∑
m=0

[(λ− s)(jtr + tl)]m

m!
e−(λ−s)(jtr+tl)

}

+
(jtr + tl)n−1

s
e−λ(jtr+tl)

c−βu−2∑
k=0

(
λ

s

)k 1
k!

{
J∗(s|i+ n+ 1, βd + 1+ k)− [R∗c+1(s)]

d(i+n)/ceT ∗c (s)
}

×

n∑
l=0

(−1)l(k+ l)!
[s(jtr + tl)]ll!(n− l)!

{
1−

k+l∑
m=0

[s(jtr + tl)]m

m!
e−s(jtr+tl)

}]
, i, j > 0.

Finally, we consider the case that a virtual passenger arrives y time units before the end of an up-trip Xi,0, i > 0, during
the up-trip period. If α denotes the number of passengers that arrive during Xi,0 − y, then

E[e−sJi,0 |Xi,0 = ltr +mts, arrival at y, α = n] = e−s(y+ltr+tl)
[
[R∗c+1(s)]

d{i−(i,c)−+n}/ceT ∗c (s)

+

c−βu−2∑
k=0

(λy)ke−λy

k!

{
J∗(s|i− (i, c)− + n+ 1, βu + 1+ k)− [R∗c+1(s)]

d{i−(i,c)−+n}/ceT ∗c (s)
}]
,

where

βu = i− (i, c)− + n−
⌈
i− (i, c)− + n

c

⌉
c.

Unconditioning on α yields
E[e−sJi,0 |Xi,0 = ltr +mts, arrival at y]

= e−s(y+ltr+tl)−λ(ltr+mts−y)
∞∑
n=0

[λ(ltr +mts − y)]n

n!

[
[R∗c+1(s)]

d{i−(i,c)−+n}/ceT ∗c (s)

+

c−βu−2∑
k=0

(λy)ke−λy

k!

{
J∗(s|i− (i, c)− + n+ 1, βu + 1+ k)− [R∗c+1(s)]

d{i−(i,c)−+n}/ceT ∗c (s)
}]
.
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Fig. 1. Probability mass function of the number of passengers at the lobby.

Unconditioning on the arrival time y yields

E[e−sJi,0 |Xi,0 = ltr +mts] =
∞∑
n=0

λn
[

e−s(2ltr+mts+tl)

(ltr +mts)(λ− s)n+1
[R∗c+1(s)]

d{i−(i,c)−+n}/ceT ∗c (s)

×

{
1−

∞∑
q=0

[(λ− s)(ltr +mts)]q

q!
e−(λ−s)(ltr+mts)

}
+
(ltr +mts)n−1

s
e−s(ltr+tl)−λ(ltr+mts)

×

c−βu−2∑
k=0

(
λ

s

)k 1
k!

{
J∗(s|i− (i, c)− + n+ 1, βu + 1+ k)− [R∗c+1(s)]

d{i−(i,c)−+n}/ceT ∗c (s)
}

×

n∑
p=0

(−1)p(k+ p)!
[s(ltr +mts)]pp!(n− p)!

{
1−

k+p∑
q=0

[s(ltr +mts)]q

q!
e−s(ltr+mts)

}]
, i, j > 0.

Unconditioning on the length of Xi,0, we get

J∗i,0(s) =
N∑
l=1

(c,i,l)−∑
m=1

E[e−sJi,0 |Xi,0 = ltr +mts]
(ltr +mts)G(i,c)−(l,m)

ηi,0

=
e−stl

ηi,0

N∑
l=1

(c,i,l)−∑
m=1

(ltr +mts)G(i,c)−(l,m)
∞∑
m=0

λn
[

e−s(2ltr+mts+tl)

(ltr +mts)(λ− s)n+1

×[R∗c+1(s)]
d{i−(i,c)−+n}/ceT ∗c (s)

{
1−

∞∑
q=0

[(λ− s)(ltr +mts)]q

q!
e−(λ−s)(ltr+mts)

}

+
(ltr +mts)n−1

s
e−s(ltr+tl)−λ(ltr+mts)

×

c−βu−2∑
k=0

(
λ

s

)k 1
k!

{
J∗(s|i− (i, c)− + n+ 1, βu + 1+ k)− [R∗c+1(s)]

d{i−(i,c)−+n}/ceT ∗c (s)
}

×

n∑
p=0

(−1)p(k+ p)!
[s(ltr +mts)]pp!(n− p)!

{
1−

k+p∑
q=0

[s(ltr +mts)]q

q!
e−s(ltr+mts)

}]
, i, j > 0.

By unconditioning on the state of the Markov chain before the virtual passenger arrives, we get the LST for the journey
time of the virtual passenger:

J∗(s) =
∑
i,j

πi,jηi,jJ∗i,j(s)/
∑
k,l

πk,lηk,l. (7)



430 Y. Lee et al. / Mathematical and Computer Modelling 49 (2009) 423–431

Fig. 2. Cumulative distribution function of the round-trip time.

Fig. 3. Mean of the round-trip time, the ride time and the journey time.

3. Numerical examples

In this section, some numerical examples are presented for an elevator system of 9 floors above the lobby, an elevator
capacity of 20 passengers, a constant inter-floor travel time of 2 s, and a constant stop time at a floor of 6 s. These parameters
are solely for illustration purposes and can be modified to reflect other situations. In the example, all the passengers arrive
randomly at the lobby according to Poisson process, with rate λ, and travel to one of the higher floors, chosen randomly as
their destination. After serving all passengers, the elevator returns to the lobby if there are passengers waiting at the lobby;
otherwise, the elevator stays idle at the highest destination floor and is activated by the first passenger arrival at the lobby.
Fig. 1 displays the probability mass function of the number of passengers in the elevator system (for different values of

passenger arrival rate) at the departure epoch from the lobby. As we expected, the tail of the number of passengers with
higher arrival rate λ = 0.2 is longer than that with lower arrival rate λ = 0.1.
Fig. 2 displays the cumulative distribution function of the round-trip time for λ = 0.1 and λ = 0.2. The round-trip time

for λ = 0.1 are shorter than that for λ = 0.2. Furthermore, when λ = 0.1 and λ = 0.2, the continuous part of the round-trip
time due to the idle time, if any, of the elevator at the highest reversal floor does not havemuch effect on the total round-trip
time.
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Fig. 3 displays the mean round-trip time, ride time and journey time as a function of the arrival rate. The mean round-
trip time and the mean ride time increase slowly with increasing arrival rate. The mean journey time, which is obtained
by calculating derivatives of the LST for the journey time at zero, increases rapidly as the arrival rate increases. Thus, as we
mentioned in Section 1, the conventional assumption that the waiting time, which is the difference between the journey
time and the ride time, is, at most, the round-trip time, is non-realistic.
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