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Abstract In this paper, the axisymmetric vibration of a fluid-filled spherical membrane shell is studied based
on nonlocal elasticity theory. The membrane shell is considered elastic, homogeneous and isotropic. The shell
model is reformulated using the nonlocal differential constitutive relations of Eringen. The membrane shell is
completely filled with an inviscid fluid. The motion of the fluid is governed by the wave equation. Nonlocal
governing equations of motion for the fluid-filled spherical membrane shell are derived. Along the contact sur-
face between the membrane and the fluid, the compatibility requirement is applied and Legendre polynomials,
associated Legendre polynomials and spherical Bessel functions are used to obtain the natural frequencies of
the fluid-filled spherical membrane shells. The frequencies for both empty and fluid-filled spherical membrane
shell are evaluated, and their comparisons are performed to confirm the validity and accuracy of the proposed
method. An excellent agreement is found between the present and previous ones available in the literature.
The variations of the natural frequencies with the small-scale parameter, density ratio, wave speed ratio and
Poisson’s ratio are also examined. It is observed that the frequencies are affected when the size effect is taken
into consideration.

1 Introduction

Free vibration of a spherical shell is one of the basic elastodynamic problems. Most spherical shell systems
operate in complex environments that are coupled with an inner or outer fluid. It is well known that the dynamic
behavior of a fluid-filled spherical shell will be different from uncoupled ones. Moreover, the dynamics of the
fluid-filled spherical shell is of technological importance in some modern industrial, biomedical, biological
and many other applications [1]. Therefore, the dynamic behavior of the spherical shells filled with fluid is of
substantial practical interest and has been widely investigated. Rayleigh [2] solved the problem of axisymmetric
vibrations of a fluid in a rigid spherical shell. The solution for vibrations of the fluid-filled spherical membrane
appears in [3]. Frequency equations and mode shapes have been obtained analytically for the axisymmetric,
extensional and nontorsional vibrations of the fluid-filled elastic spherical shells and rigid prolate spheroidal
shells [4]. Motivated by the fact that the human head can be represented as a shell filled with fluid, Engin and
Liu [5] considered the free vibrations of a thin homogeneous spherical shell containing an inviscid irrotational
fluid. Advani and Lee [6] investigated the vibration of the fluid-filled shell using higher-order shell theory
including transverse shear and rotational inertia. Guarino and Elger [7] have looked at the frequency spectra
of a fluid-filled sphere, both with and without a central solid sphere, in order to explore the use of auscultatory
percussion as a clinical diagnostic tool. The general nonaxisymmetric free vibration of a spherically isotropic
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elastic spherical shell filled with a compressible fluid medium has been investigated by Chen and Ding [8].
Exact frequency equations have been presented for a piezoceramic spherical shell submerged in a compress-
ible fluid medium [9]. The general solutions for the spherical-symmetric steady-state response problem of the
fluid-filled piezoelectric spherical shell have been presented in Ref. [10]. Young [11] studied the free vibration
of spheres composed of inviscid compressible liquid cores surrounded by spherical layers of linear elastic,
homogeneous and isotropic materials. In another work, the dynamical behavior of a gas-filled neo-Hookean
spherical shell surrounded by a Newtonian fluid has been studied for the special case of spherically symmetric
motions [12]. Recently, axisymmetric vibrations of a hollow piezoelectric sphere submerged in a compressible
viscous fluid medium have been studied [13]. More recently, axisymmetric vibrations of a viscous fluid-filled
piezoelectric sphere, with radial polarization, submerged in a compressible viscous fluid medium have been
investigated by Hu et al. [1].

In recent years, size-dependent theories of continuum mechanics have attracted attention because of the
necessity of modeling and analysis of very small-sized mechanical structures and devices in the rapid devel-
opments of micro-/nanotechnologies. One of the well-known models is the nonlocal elasticity theory [14–16].
It seems that this theory could potentially play a useful role in analysis related to nanotechnology appli-
cations. Therefore, several researchers have applied the nonlocal elasticity theory for the mechanical ana-
lysis of micro- and nanostructures in more recent years [17–25]. However, most of these studies have focused
on beam-like, plate-like and cylindrical shell-like structures.

In various modern biomedical and biological applications, some components such as micro-/nanosized
spherical shells, which are used as targeted drug delivery systems [26], biological cells, which are hollow
spherical membranes filled with liquid [27], and spherical viruses can be modeled as a fluid-filled spherical
membrane structure. For this purpose, the objective of the present study is to include the effect of small scale
on the fluid–structure interactions by investigating the axisymmetric vibrations of the fluid-filled spherical
membrane shell. Governing equations of the spherical membrane shell are reformulated using the nonlocal
differential constitutive relations pioneered by Eringen [15,16]. It is assumed that the shell is completely filled
with a compressible and inviscid fluid. Therefore, the motion of the fluid is governed by the wave equation.
The governing equations of the membrane shell and inner compressible nonviscous fluid are coupled through
the interface continuity conditions. The interface conditions for a shell joined to an acoustic medium are (i) the
normal pressure load on the shell must be equal to the boundary pressure of the fluid and (ii) the normal velocity
of the shell surface has to be equal to the normal velocity component of the fluid boundary. Using Legen-
dre polynomials, associated Legendre polynomials and spherical Bessel functions, the coupled axisymmetric
vibration of the fluid-filled spherical membrane shell with considering the small-scale effect is obtained in the
form of a frequency equation. To validate the accuracy of solutions, the results are compared with those found
in the literature. Furthermore, numerical results in the form of frequency spectra are presented for different
material and small-scale parameters.

2 Formulation of the problem

2.1 Review of nonlocal elasticity theory

For nonlocal linear elastic solids, the equations of motion have the form [15,16]

ti j, j + fi = ρüi , (1)

where ρ and fi are the mass density and the body or applied force density, respectively. ui is the displacement
vector, and ti j is the stress tensor of the nonlocal elasticity, which is defined by

ti j (x) =
∫

V

α(
∣∣x ′ − x

∣∣ , χ)σi j (x
′)dV (x ′), (2)

where x is a reference point in the body and α(
∣∣x ′ − x

∣∣ , χ) is the nonlocal modulus or attenuation function
whose arguments are the Euclidean distance

∣∣x ′ − x
∣∣ and material constant χ = e0a/ l. e0 is a nonlocal scaling

parameter that has been assumed as a constant appropriate to each material, a and l are the internal and external
characteristic lengths, respectively. σi j is the local stress tensor in classical elasticity theory at any point x ′ in
the body, which satisfies the constitutive relations

σi j = Ci jklekl , (3)
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in which Ci jkl are the elastic modulus components and ekl is the strain tensor. The nonlocal modulus is found
by matching the curves of plane waves with those due to atomic lattice dynamics. Various different forms of
α(

∣∣x ′ − x
∣∣ , χ) and their properties have been discussed in detail by Eringen [15,28]. When α(|x |) takes on a

Green’s function of a linear differential operator L , that is

Lα
(∣∣x ′ − x

∣∣) = δ
(∣∣x ′ − x

∣∣) , (4)

the nonlocal constitutive relation (2) is reduced to the differential equation

Lti j = σi j , (5)

and the integro-partial differential equation (1) is correspondingly reduced to the partial differential equation

σi j, j + L( fi − ρüi ) = 0. (6)

By matching the dispersion curves with lattice models, Eringen [15,16] proposed a nonlocal model with the
linear differential operator L defined by

L = 1 − (e0a)2∇2, (7)

where ∇2 is the Laplace operator. Therefore, according to Eqs. (3), (5) and (7), the constitutive relations may
be simplified to

(
1 − (e0a)2∇2) ti j = Ci jklekl . (8)

It should be noted that Eq. (8) has been widely adopted for tackling various problems of linear elasticity and
micro-/nanostructural mechanics.

2.2 Spherical membrane shell equations based on nonlocal elastic model

Spherical shells may vibrate in both axisymmetric and nonaxisymmetric modes. The axisymmetric modes are
independent of the circumferential coordinate (θ ), whereas the nonaxisymmetric modes depend upon both
meridional (ϕ) and circumferential coordinates. The nonaxisymmetric modes are degenerate, meaning that the
nonaxisymmetric frequencies are identical to corresponding axisymmetric modes [29]. Hence, the axisym-
metric modes are studied here. Considering the axisymmetric torsionless motion of the spherical membrane
shell of median radius R and denoting the meridional (ϕ-direction) and radial (r -direction) displacements at
the median radius, as u and w, respectively, it can be shown that the strain–displacement relations are written
as

tϕϕ −
(e0a

R

)2
(
∂2tϕϕ
∂ϕ2 + cot ϕ

∂tϕϕ
∂ϕ

)
= E

1 − ν2

(
eϕϕ + νeθθ

)
, (9)

tθθ −
(e0a

R

)2
(
∂2tθθ
∂ϕ2 + cot ϕ

∂tθθ
∂ϕ

)
= E

1 − ν2

(
eθθ + νeϕϕ

)
, (10)

where E is the elastic modulus of the spherical shell and ν denotes Poisson’s ratio. Moreover, the strains are
expressed as

eϕϕ = 1

R

(
∂u

∂ϕ
+ w

)
,

eθθ = 1

R sin ϕ
(u cosϕ + w sin ϕ) . (11)

In the nonlocal elastic shell model, the stress resultants are defined based on the stress components in Eqs. (9)
and (10), and thus can be expressed as follows by referencing the kinematic relations:

Nϕϕ =
h
2∫

− h
2

tϕϕ
(
1 + z

R

)
dz,

i.e. Nϕϕ − ( e0a
R

)2
(
∂2 Nϕϕ
∂ϕ2 + cot ϕ ∂Nϕϕ

∂ϕ

)
= Eh

R(1−ν2)

[
∂u
∂ϕ

+ w + ν (u cot ϕ + w)
]
,

(12)
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Nθθ =
h
2∫

− h
2

tθθdz,

i.e. Nθθ − ( e0a
R

)2
(
∂2 Nθθ
∂ϕ2 + cot ϕ ∂Nθθ

∂ϕ

)
= Eh

R(1−ν2)

[
u cot ϕ + w + ν

(
∂u
∂ϕ

+ w
)]
,

(13)

where h is the wall thickness of the spherical shell. It should be noted that the principle of virtual work is inde-
pendent of the constitutive relations. So this can be applied to derive the equilibrium equations of the nonlocal
spherical shell. Using the principle of virtual displacements, following governing equations can be obtained:

∂Nϕϕ
∂ϕ

+ (Nϕϕ − Nθθ ) cot ϕ = Rρsh
∂2u

∂t2 , (14)

−(Nϕϕ + Nθθ )+ Rq = Rρsh
∂2w

∂t2 , (15)

in which ρsh is the mass density per unit lateral area of the spherical shell and q is normal pressure load.
Substituting Eqs. (12) and (13) into (14) and (15), the equations of motion for the spherical shell in terms of
meridional and radial displacements of the mean surface of the spherical shell, (u, w), are obtained as

∂2u

∂ϕ2 + ∂u

∂ϕ
cot ϕ − (ν + cot2 ϕ)u + (1 + ν)

∂w

∂ϕ

= ρs(1 − ν2)R2

E

[
∂2u

∂t2 −
(e0a

R

)2
(

∂4u

∂t2∂ϕ2 + ∂3u

∂t2∂ϕ
cot ϕ − (1 + cot2 ϕ)

∂2u

∂t2

)]
, (16)

∂u

∂ϕ
+ u cot ϕ + 2w = −ρs(1 − ν)R2

E

[
∂2w

∂t2 −
(e0a

R

)2
(
∂4w

∂t2∂ϕ2 + ∂3w

∂t2∂ϕ
cot ϕ

)]

+ (1 − ν)R2

Eh

[
q −

(e0a

R

)2
(
∂2q

∂ϕ2 + ∂q

∂ϕ
cot ϕ

)]
. (17)

From relations (16) and (17), it is easily seen that the classical or local shell theory is recovered if the parameter
e0a is set to zero.

2.3 Fluid equation

The motion of an inviscid and irrotational fluid undergoing small oscillations is governed by the wave equation.
In spherical coordinates, the wave equation can be written as

1

r2

∂

∂r

(
r2 ∂�

∂r

)
+ 1

r2 sin ϕ

∂

∂ϕ

(
sin ϕ

∂�

∂ϕ

)
= 1

c2

∂2�

∂t2 , (18)

where � is the velocity potential and c is the speed of sound in the fluid. The velocity potential function is
related to pressure through the relationship

P = −ρ f
∂�

∂t
, (19)

where ρ f is the density of the fluid.

2.4 Fluid–structure interaction

The interface conditions for a shell joined to a fluid are that the normal pressure load, q , on the shell has to be
equal to the boundary pressure, P , of the fluid:

q(ϕ, t) = P(R, ϕ, t), (20)

and the velocity potential and the radial displacement are interconnected through the kinematic boundary
condition, that is the radial velocities of the shell and normal velocity component of the fluid boundary are
equal:

∂w

∂t
(ϕ, t) = ∂�

∂r
(R, ϕ, t). (21)
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2.5 Frequency equation

To simplify the analysis, the following nondimensional quantities are defined:

ψ = u

R
ξ = w

R
τ = cst

R
cs =

√
E

ρs(1 − ν2)
s = c

cs

�1 = �

Rcs
f = ρ f R

ρsh
r1 = r

R
� = ωR

c
μ = e0a

R
.

(22)

Using Eq. (20) and substituting from Eq. (22) into (16)–(18) and (21) yields:

∂2ψ

∂ϕ2 + ∂ψ

∂ϕ
cot ϕ − (ν + cot2 ϕ)ψ + (1 + ν)

∂ξ

∂ϕ
=

[
∂2ψ

∂τ 2 − μ2

(
∂4ψ

∂τ 2∂ϕ2 + ∂3ψ

∂τ 2∂ϕ
cot ϕ

−(1 + cot2 ϕ)
∂2ψ

∂τ 2

)]
, (23)

(1 + ν)

[
∂ψ

∂ϕ
+ ψ cot ϕ + 2ξ

]
= −

[
∂2ξ

∂τ 2 − μ2
(

∂4ξ

∂τ 2∂ϕ2 + ∂3ξ

∂τ 2∂ϕ
cot ϕ

)]

− f

[
∂�1

∂τ
(1, ϕ, t)− μ2

(
∂3�1

∂τ∂ϕ2 (1, ϕ, t)+ ∂2�1

∂τ∂ϕ
(1, ϕ, t) cot ϕ

)]
, (24)

1

r2
1

∂

∂r1

(
r2

1
∂�1

∂r1

)
+ 1

r2
1 sin ϕ

∂

∂ϕ

(
sin ϕ

∂�1

∂ϕ

)
= 1

s2

∂2�1

∂τ 2 , (25)

∂ξ

∂τ
(ϕ, τ ) = ∂�1

∂r1
(1, ϕ, τ ). (26)

Separating the wave equation (25) yields �1(r1, ϕ, τ ) = H(r1)G(ϕ) exp(i�sτ), with

1

sin ϕ

d

dϕ

(
sin ϕ

dG

dϕ

)
+ n(n + 1)G = 0, (27)

1

r2
1

d

dr1

(
r2

1
d H

dr1

)
+

[
�2 − n(n + 1)

r2
1

]
H = 0, (28)

where n is integer. Equation (27) is the self-adjoint from of Legendre’s equation, and the spherical Bessel
functions are the solution of Eq. (28). The requirement for boundedness and the linearity of (25) leads to its
general solution:

�1(r1, ϕ, τ ) =
∑
n=0

Cn jn(�r1)Pn(cosϕ) exp(i�sτ), (29)

when Cn are unknown coefficients, jn(�r1) are spherical Bessel functions of the first kind and Pn(cosϕ) are
Legendre polynomials of the first kind [3]. Now, let us consider the two partial differential equations (23)
and (24). In order to reduce these equations to a pair of equivalent algebraic equations, assume the following
expansions for ξ and ψ :

ξ(ϕ, τ ) =
∑
n=0

An Pn(cosϕ) exp(i�sτ), (30)

ψ(ϕ, τ) =
∑
n=1

Bn P1
n (cosϕ) exp(i�sτ), (31)

where An and Bn are coefficients and P1
n (cosϕ) are the associated Legendre polynomials of the first kind and

first order. Substitution of equations (29) and (30) into the boundary condition (26) yields the coefficients Cn .
These coefficients, for each integer value of n, are

Cn = is
d jn(�)

d�

An . (32)
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Substituting Eqs. (29)–(32) into Eqs. (23) and (24) results in two sets of homogeneous algebraic equations
for An and Bn . It should be noted that the higher-order derivatives of Pn(cosϕ) and P1

n (cosϕ) have been
eliminated by the recursive use of the differential equations that they satisfy:

d2 Pn

dϕ2 + cot ϕ
d Pn

dϕ
+ n(n + 1)Pn = 0, (33)

d2 P1
n

dϕ2 + cot ϕ
d P1

n

dϕ
+ (n(n + 1)− (1 + cot2 ϕ))P1

n = 0. (34)

For the nontrivial solution, the determinant of this set of equations must be zero. Hence, the frequency equation
is obtained as below:
For n = 0

2(1 + ν)−
(

1 + f
j0(�)

�
d j0(�)

d�

)
�2s2 = 0. (35)

For n ≥ 1

�4s4(1 + μ2n(n + 1))2
(

1 + f
jn(�)

�
d jn(�)

d�

)

− �2s2(1 + μ2n(n + 1))

{
2(1 + ν)−

(
1 + f

jn(�)

�
d jn(�)

d�

)
[(1 − v)− n(n + 1)]

}

− {
2(1 + ν)[(1 − v)− n(n + 1)+ (1 + ν)2n(n + 1)]} = 0.

(36)

It should be noted that by setting f = 0 in (36), the frequency equation of an empty closed spherical membrane
shell is obtained. For f = 0, it was shown that (35) and (36) can be written as polynomial equations, so there
exists a finite number of roots for each mode. However, for a membrane shell containing compressible and
inviscid fluid, the situation is quite different. Since the frequency equations (35) and (36) contain spherical
Bessel’s functions of the first kind that involve circular transcendental functions, there exists an infinite number
of roots for each mode.

In general, the frequency equations (35) and (36), being nonlinear equations involving transcendental
functions, cannot be easily solved analytically. However, the roots of frequency equations can easily be solved
numerically. In the next Section, the numerical results are given to present a better understanding of the coupled
axisymmetric vibration of the fluid-filled spherical membrane shell.

3 Numerical results and discussion

The reliability of the present formulation for spherical membrane shells is checked by extensive comparison
with the existing results in the literature. First, let us discuss the case of f = 0 corresponds to the absence
of the fluid. Setting f = 0, μ = 0 and defining a new nondimensional frequency �̄ = �s in (36) yields the
local frequency equation of the empty membrane shell. Table 1 compares the present results for an empty local
spherical membrane shell and those obtained earlier by Nayfeh and Arafat [30]. Excellent agreement between
the present solutions and those given in Ref. [30] is achieved.

In addition, in an attempt to demonstrate the relevance of the present elastic shell model for the coupled
vibration of the fluid-filled spherical membrane shell, the frequency spectrum predicted by the present model

Table 1 Comparison of frequency parameters �̄ = �s for spherical membrane shell when ν = 0.3

Source of results Mode sequence number

1 2 3 4 5 6 7

Present
Lower branch 0 0.70093 0.82995 0.88057 0.90544 0.91948 0.92818
Upper branch 1.97484 2.72188 3.63472 4.59615 5.57496 6.56160 7.55238

Nayfeh and Arafat [30]
Lower branch 0 0.70096 0.83006 0.88093 0.90630 0.92124 0.93139
Upper branch 1.97484 2.72190 3.63474 4.59617 5.57499 6.56163 7.55242
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Fig. 1 The comparison between the results of present model and those given by Engin and Liu [5] for frequency spectrum of
water-filled spherical bone shell

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6 7 8 9 10

Ω

n

μ = 0 μ = 0.15 μ = 0.25 μ = 0.5

Fig. 2 Comparisons of frequency spectrum with different values of the small-scale parameter

(35) and (36) with local condition, μ = 0, for a fluid-filled spherical membrane shell with ν = 0.3 and f
equal to 9.38 (bone-water) is plotted in Fig. 1 with comparison to the results given by Engin and Liu [5] based
on the classical elastic model. It is to be noted that this and all other spectra that are plotted in this paper are
discrete, that is only those points corresponding to integer values of the n are physically meaningful. It can
be seen that the predicted numerical results by the present model are in reasonable agreement with the results
reported in literature.
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Fig. 3 Comparisons of frequency spectrum with different values of density ratio f

The effect of the dimensionless small-scale parameter, μ, on the frequencies of the fluid-filled spherical
membrane shell given by the present model for s = 0.5, ν = 0.3 and f = 3 as a function of the mode number
is shown in Fig. 2. Our results from Fig. 2 show that the frequencies are not very sensitive to changes of the
small-scale parameter for higher frequency branches (� > 10). For lower branches, all frequencies decrease
with increasing small-scale parameter, and the rate of decrease of the frequencies are not the same for all
branches. Actually, the nonlocal theory introduces a more flexible model as the nanostructures can be viewed
as atoms linked by elastic springs while the local model assumes spring constants to take on an infinite value.
Consequently, the frequency reduction in the nonlocal model is physically justifiable.

To elucidate the effect of density ratio, the frequency spectrum is plotted for s = 0.5, ν = 0.3 andμ = 0.25
in Fig. 3. It is observed that there are an upper branch and a lower branch of the frequency spectrum in absence
of the fluid. In addition, the coupled frequencies of the two lower branches decrease as the density ratio
increases due to the added mass effect. On the contrary, the situation is reverse for higher branches. Moreover,
it can be seen from Fig. 3 that the frequencies of the second lower branch are not very sensitive to changes of
the density ratio for higher mode numbers (n > 7).

The influence of Poisson’s ratio on the coupled natural frequencies of the fluid-filled spherical membrane
shell is shown in Fig. 4. Numerical results in this figure have been calculated for the following particular values
of different parameters: s = 0.25, f = 3 and μ = 0.1. For a given mode number, the coupled frequencies of
two lower branches decrease as Poisson’s ratio increases. Moreover, the frequencies of third lower branch are
not sensitive to Poisson’s ratio. It is also observed that the frequencies of the higher branches increase with
increasing Poisson’s ratio.

The effect of the wave speed ratio, s, is studied as the final numerical example. Figure 5 shows the variation
of the coupled frequencies with two different values of wave speed ratio s = 0.25 and 0.5, f = 2.5, ν = 0.3
and μ = 0 as function of mode number. It is observed that by increasing the wave speed ratio, frequencies
have a decreasing trend. Moreover, the frequency spectrum is distorted when the value of the wave speed ratio
is changed.

4 Conclusion

The influence of small scale on the coupled axisymmetric vibration of the fluid-filled spherical membrane
shell was studied in this paper. In spite of some achievement in vibration analysis of the fluid-filled spherical
membrane shell, to the authors’ knowledge, there has been no attempt to tackle the problem described in the
present investigation. Developing the nonlocal elastic shell model is the main contribution of the present paper.
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The validity of the obtained results was successfully verified through comparison with data available in the
literature. The main results of the present work are summarized as follows.

(1) For a membrane shell containing the compressible and inviscid fluid, there exist an infinite number of
frequencies for each mode.

(2) For lower frequency branches, all frequencies decrease with increasing small-scale parameter, and the
rate of decrement is not identical for all branches.

(3) The coupled frequencies of two lower branches decrease as the density ratio increases due to the added
mass effect.



2020 S. A. Fazelzadeh, E. Ghavanloo

Finally, it is hoped that the results proposed in this investigation would be helpful for the design of the
micro-/nanosized spherical shells containing fluid.
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