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a b s t r a c t

We develop a constraint generation solution method for robust optimization problems in radiation
therapy in which the problems include a large number of robust constraints. Each robust constraint must
hold for any realization of an uncertain parameter within a given uncertainty set. Because the problems
are large scale, the robust counterpart is computationally challenging to solve. To address this challenge,
we explore different strategies of adding constraints in a constraint generation solution approach. We
motivate and demonstrate our approach using robust intensity-modulated radiation therapy treatment
planning for breast cancer. We use clinical data to compare the computational efficiency of our constraint
generation strategies with that of directly solving the robust counterpart.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Robust Optimization (RO) deals with optimization problems in
which some problem parameters are uncertain and modeled as
belonging to an ‘‘uncertainty set’’ [1,2]. One of the areas in which
robust optimization has been applied is radiation therapy (RT)
treatment planning. In RT, the goal is to deliver radiation beams
fromdifferent angles to a cancer patient so that the beams intersect
at the cancerous target (i.e., a tumor), while sparing as much of
the surrounding healthy tissue as possible. Robust optimization
has been used to manage uncertainties in RT treatment planning
problems including uncertainties in patient geometry [3], dose
calculations [4], breathing motion [5–10], and range and setup
errors in proton therapy [11–14].

Much effort in RO is placed on deriving tractable robust coun-
terparts, which are finite-sized deterministic equivalents to the
original RO problem. However, the resulting robust counterpart
can still be quite large and computationally challenging to solve
for real-world problem instances. In radiation therapy treatment
planning for example, the original problem is often of a very large
scale and the robust counterpart is even larger. Therefore, there is
a need for specialized solution methods to solve these problems.

∗ Corresponding author. Tel.: +1 416 978 4585; fax: +1 416 978 7753.
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Decomposition methods, which have a long history [15,16],
represent a wide range of methods that can be used to solve
large-scale optimization problems. Constraint generation is one
type of decomposition method that has been used extensively to
solve large-scale optimization problems in applications such as
timetable scheduling [17], network reliability [18], network de-
sign [19], facility location [20], and network interdiction [21,22].
Oskoorouchi et al. [23] developed an interior point constraint gen-
eration algorithm for semi-infinite problems that was applied to
radiation therapy.

In this paper, we develop a family of constraint generation
strategies to solve large-scale robust optimization problems in ra-
diation therapy. We focus on problems with multiple sets of ro-
bust constraints, which necessitates exploring different strategies
for choosing constraints to be added at each iteration. We test
several strategies for finding and adding constraints efficiently.
We also compare the computational efficiency of the constraint
generation methods with that of directly solving the robust coun-
terpart. Our solution approach ismotivatedby the robust intensity-
modulated radiation therapy (IMRT) treatment planning problem
for breast cancer, in which there exists a large number of robust
constraints [8].

2. Breast cancer IMRT treatment planning

Previously, a robust optimization model that incorporated
conditional value-at-risk (CVaR) [24,25] was developed for breast
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cancer IMRT to control the tail dose to the tumor and organs-at-
risk under breathingmotion uncertainty [8]. In this section,we first
introduce this problem and then briefly describe the optimization
model in order to motivate the development of our constraint
generation strategies.

2.1. Background

In IMRT, the radiation beams can be modeled as a collection of
small beamlets whose intensities are optimized. An optimization
problem is to find the intensity of each beamlet such that sufficient
dose is delivered to the tumor while minimizing the dose to
the surrounding healthy tissue. Our approach to breast cancer
IMRT follows the clinical protocol at the Princess Margaret Cancer
Centre [26,27]. There are two opposed beams that are tangent to
the body and deliver radiation to a target volume in the breast
tissue. In left-sided breast cancer, parts of the left lung and the
heart are usually inside the treatment field and are considered
to be organs-at-risk (OAR). Since the radiation is delivered to
the patient while the patient is breathing, the organs move and
deform throughout the course of the treatment. In particular, the
heart may move inside the treatment field and become exposed
to excessive radiation. Four-dimensional computed tomography
(4D-CT) images are used to obtain geometrical information about
the organs over the phases of the patient’s breathing cycle from
inhale to exhale. The uncertain parameter in this problem is the
patient’s breathing pattern, which ismodeled as a probabilitymass
function (PMF) that captures the fraction of time that the patient
spends in each breathing phase. We construct the uncertainty set
by including upper and lower error bounds on a nominal breathing
pattern[8].

2.2. A robust-CVaR optimization model for breast cancer IMRT

Here, we briefly introduce the optimization model from Chan
et al. [8], which proposes the robust optimization model that we
consider. Let wb be the intensity of beamlet b ∈ B, where B is the
set of all beamlets. The body is discretized into small volumetric
pixels called ‘‘voxels’’. Let VT and VH be the set of all voxels
in the clinical target volume (inside the breast) and the heart,
respectively. A breathing PMF is defined over the set of breathing
phases I.

The total dose to each voxel is the sum of the dose accumulated
over all breathing phases and depends on the uncertain fraction
of the time spent at each phase. Let ∆v,i,b be the influence matrix,
which quantifies the amount of dose that voxel v receives when
the patient is in phase i per unit intensity of beamlet b. A robust
upper β-CVaR constraint on the target can be formulated as:

ζ
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1
1 − β


v∈VT
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
0,


i∈I


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≤ UT
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The variable ζ is the value-at-risk (VaR) of the dose distribution,
which captures the β percent of an organ that is receiving the
highest amount of dose. Parameter UT

β is the upper bound on the
conditional-value-at-risk (CVaR)which is the averageβ% of the tail
of the dose distribution. Constraint (1) is a β-CVaR constraint and
must be met for all breathing patterns p̃ in the given uncertainty
set P , which is a polyhedral set. Lower CVaR constraints can
be formulated similarly. Model (2) shows the robust-CVaR IMRT
model with one set of upper and lower β-CVaR constraints for
limiting overdose and underdose to the target.
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In a robust IMRT problem, there may exist multiple CVaR
constraints on an organ for different values of β . Notice that
constraint (2c) and (2e) must hold for all voxels in the tumor. We
define a type of robust constraint as one that must hold for the
same set of voxels for the same β value and in the same inequality
direction (i.e., upper or lower CVaR constraints) for all p̃ ∈ P .
For example, all the upper β-CVaR constraints in (2c) are of the
same type, although they are separate constraints for each voxel
on the tumor. On the other hand, the sets of robust constraints (2c)
and (2e) are of different types. Similarly, constraints for different β
values or for different organs would be of different types.

Because the original problem is linear and the uncertainty set
is polyhedral, the robust counterpart of this problem is linear.
However, the large number of robust constraints make the robust
counterpart very large. Alternatively, because the uncertainty
set is polyhedral, an equivalent reformulation exists by simply
enumerating the vertices of P . In general though, enumerating all
the vertices of a polyhedron is NP-hard [28] and could lead to an
exponential number of constraints. Thus, we consider constraint
generation as an alternative solution method.

3. A constraint generation solution method

In this section, we first formulate a general form of the previous
RO problem with multiple uncertain constraints. Then, we define
the steps of the constraint generation algorithm and develop
several constraint addition strategies.

3.1. A robust optimization problem with uncertain constraints

Consider a robust optimization problem with uncertain con-
straints of different types k ∈ K thatmust hold for every v ∈ V(k).
Letw be the decision vector. The uncertainty is in the vector p̃ ∈ P ,
which is a parameter that affects all robust constraints. In other
words, all robust constraints must hold for all values of p̃ in the
uncertainty set P . Let c be the vector of objective function coeffi-
cients and Av,k be the constraint coefficient matrix for constraint
type k ∈ K for every v ∈ V(k). Given that |I| and |B| are the sizes
of the vectors p̃ and w, respectively, the size of the matrix Av,k is
|I| × |B| for each v, k. The parameter av,k is the right hand side
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and corresponds to the upper or lower bound on the dose to be
delivered. The general robust optimization problem is

minimize
w

c′w (3a)

subject to p̃′Av,kw ≥ av,k, ∀v ∈ V(k), k ∈ K, p̃ ∈ P , (3b)

w ≥ 0. (3c)

For simplicity, we omit constraints that do not depend onP , which
may also be present in the problem.

3.2. Problem decomposition

We decompose (3) into a master problem and a subproblem.
The master problem is a linear program. An optimal solution to
the master problem is passed to the subproblem, which identifies
constraints to be added to the master problem or provides a
certificate of optimality for the original problem.

3.2.1. The master problem
Formulation (4) shows a general form of the master problem.

minimize
w

c′w (4a)

subject to p̃′

v,kAv,kw ≥ av,k, p̃v,k ∈ P n
v,k,

∀v ∈ V(k), k ∈ K, (4b)

w ≥ 0.

The initial set P 1
v,k consists of a single p ∈ P for all v ∈

V(k), k ∈ K . At every iteration n, a finite number of constraints
are added to the master problem, updating the set P n

v,k. Thus, the
master problem is a linear program. An optimal solution w∗ is
passed to the subproblem.

3.2.2. The subproblem
The subproblem (5) finds a distinct vector pv,k ∈ P for each v, k

for the corresponding constraint in (4b) to maximize the violation
of the constraints.

maximize
{pv,k:v∈V(k), k∈K}


v∈V(k)


k∈K

violv,k (5a)
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pv,k ∈ P , ∀v ∈ V(k), k ∈ K. (5c)

If the optimal value of the subproblem is 0, then the current
solution to the master problem is optimal. The optimal solution
p∗

v,k generates the largest violation for the constraint index v of
type k. In other words, p∗

v,k is the breathing pattern that generates
the worst-case violation of dose metric type k for voxel v. Note
that the subproblem is separable in v, k. In general, the complexity
of the subproblem depends on the uncertainty set P . Because we
consider a polyhedral uncertainty set in this paper, the subproblem
is linear.

3.2.3. Constraint addition strategies
Our robust model (3) has |K| sets of robust constraints, each

constituting a set of constraints for all v ∈ V(k). An optimal
solution to the subproblemmay identify numerous p∗

v,k that result
in a positive violation of its corresponding constraint. This leads to
several natural questions about adding constraints to the master
problem:

• How many constraints should be added to the master problem
at every iteration?

• Since different p∗

v,k vectors may generate worst case violations
for different v and k, which one(s) should be added to themaster
problem?

• Is it efficient to add a PMF, p, for all v of the same constraint
type k? In other words, is there a PMF that generates a large
aggregate violation over many v ∈ V(k)?

Let p∗

v,k generate the maximum violation for constraint index v
in constraint type k. Let p∗ be the PMF that generates the highest
violation among all constraints, which corresponds to a particular
index v∗ and constraint type k∗. In other words, p∗

= p∗

v∗,k∗

where (v∗, k∗) = argmax
v,k

(viol∗v,k). Some of the constraint addition

strategies we explore will add the same PMF, p∗, for all voxels
and other strategies add different PMFs, p∗

v,k, for each voxel. First
assume we have only one type of robust constraint (|K| = 1) for
all v ∈ V , and we need to choose constraint index v for which
we need to add constraints to the master problem. We call these
index-based strategies. These strategies are as follows:

S1. Add p∗ for all v ∈ V(k).
S2. Add p∗ for all v ∈ V(k) for which the maximum violation is

greater than zero.
S3. Add p∗

v,k for all v ∈ V(k) for which the maximum violation is
greater than zero.

S4. Add p∗ for all v ∈ V(k) for which the maximum violation is
greater than some threshold δ > 0.

S5. Add p∗

v,k for all v ∈ V(k) for which the maximum violation is
greater than some threshold δ > 0.

S6. Add p∗ for only v∗.

The strategies are ordered based on the number of constraints
that they add at each iteration. Strategies S2 and S3 add the
same number of constraints but for different p vectors in the first
iteration. The same is true for strategies S4 and S5.

Now consider the case where we have more than one type
of constraint. All the index-based strategies can be implemented
either for all constraint types or only for constraint type k∗. We call
this second decision the type-based strategy. Thus, in total, we have
twelve strategies to test, which are summarized in Table 1.

3.2.4. Solution update
After updating the master problem with new constraints, stan-

dard dual simplex iterations are used to find a new optimal
solution. The solution update time depends on the number of con-
straints added at each iteration, which depends on the constraint
addition strategy employed. The last column in Table 1 shows the
number of constraints that are added in each iteration for each
strategy.

3.2.5. Stopping criterion
The algorithm terminates when the maximum violation of all

constraints is less than a given tolerance ϵ > 0. In Section 4, we
explore the sensitivity of the results to different values of ϵ.

3.2.6. Overview of the solution method
Algorithm 1 shows an overview of the solution method.

4. Results

We applied the constraint generation approach with all the
different addition strategies on the breast cancer IMRT treatment
planning model (2). A clinical patient dataset was provided by
the Princess Margaret Cancer Centre, Toronto, Canada. There were
6824 voxels in the target volume and 13249 voxels in the heart.
The beam included 901 beamlets. The problem included upper
and lower robust-CVaR constraints on the target, with β = 0.5%,



4 H. Mahmoudzadeh et al. / Operations Research for Health Care ( ) –

Table 1
Strategies for adding constraints.

Strategy name Added p Index-based Type-based Constraints per it.

S1-1 p∗
∀v ∈ V(k) k = k∗

|V(k∗)|

S1-2 ∀k


k∈K |V(k)|

S2-1 p∗
∀v ∈ V(k) : |violv,k| > 0 k = k∗

≤ |V(k∗)|

S2-2 ∀k ≤


k∈K |V(k)|

S3-1 p∗

v,k ∀v ∈ V(k) : |violv,k| > 0 k = k∗
≤ |V(k∗)|

S3-2 ∀k ≤


k∈K |V(k)|

S4-1 p∗
∀v ∈ V(k) : |violv,k| > δ

k = k∗
≤ |V(k∗)|

S4-2 ∀k ≤


k∈K |V(k)|

S5-1 p∗

v,k ∀v ∈ V(k) : |violv,k| > δ
k = k∗

≤ |V(k∗)|

S5-2 ∀k ≤


k∈K |V(k)|

S6-1 p∗ v = v∗ k = k∗ 1
S6-2 ∀k |K|

Algorithm 1
1: n = 1. LetP 1

v,k be a single element fromP , for all v ∈ V(k), k ∈

K .
2: Solve master problem (4) with P n

v,k and pass optimal solution
wn to the subproblem.

3: Solve the subproblem (5) and find optimal pn
v,k for all v ∈

V(k), k ∈ K .
4: if the optimal value of the subproblem is positive and the

stopping criterion is not met then
5: go to 9.
6: else
7: go to 10.
8: end if
9: Add new constraints to the set P n

v,k to construct P n+1
v,k ,

increment n, and go to 2.
10: Output wn and stop.

U = 45.79 and β = 95%, L = 39.01, respectively. The parameter
δ was set to 0.1 Gy which is considered a clinically negligible dose.
The objective was to minimize the mean dose to the heart.

There were 13,648 (


k∈K |V(k)|) robust constraints in total.
The constraint generation algorithm was coded using C++ and
CPLEX 12.1 was used to solve the optimization problems. The
robust counterpart was solved using both C++/CPLEX and
AMPL/CPLEX for comparison. All trials were run using a single
Linux node of a Dell PowerEdge R410 computer with a 3.07 GHz
12-core CPU and 32 GB of RAM.

4.1. Computational efficiency

Table 2 shows the total run times for all constraint generation
strategies and the robust counterpart. Strategy S3 tailors the added
vector p to each violated constraint indexed by v, which results
in a faster solution time than strategy S2, which adds the same
vector p to all violated constraints. Both strategies S2 and S3 start
with adding the same number of constraints in the first iteration,
but strategy S3 takes fewer iterations than strategy S2, since the
constraints it adds aremore effective. The same trend is seenwhen
comparing strategies S5 and S4. Overall, tailoring the added vector
p to each violated constraint produces the fastest solution times. S6
did not find an optimal solution within the time limit provided, so
we did not further examine this strategy. The robust counterparts
were an order of magnitude slower than the fastest constraint
generation approach. Table 1 also suggests tailoring the added
constraint to the particular type of robust constraint that exhibited
a violation can speed up the computation. This was true for S1 and
S3. AMPL’s pre-processing capabilitywas the reason AMPL’s robust
counterpart solved more quickly than the C++ equivalent.

Table 3 shows the breakdown between master and subprob-
lem computation times for each constraint generation strategy.

Table 2
Computation times (min).

Strategy Constraint generation Robust counterpart
S1 S2 S3 S4 S5 S6 AMPL C++

k = k∗ 170 35 12 38 13 >1000 180 322
∀k 195 30 19 38 13 >1000

Table 3
Detailed computation times (min) and the number of iterations for each strategy.
The total time includes post-optimization processing between the iterations of the
algorithm.

Strategy Subproblem Master problem Total time # of iterations

S1-1 0.29 156 170 40
S1-2 0.18 184 195 24
S2-1 0.37 19 35 51
S2-2 0.27 17 30 37
S3-1 0.05 6 12 7
S3-2 0.06 12 19 6
S4-1 0.54 17 38 73
S4-2 0.50 18 38 69
S5-1 0.07 7 13 10
S5-2 0.04 7 13 5

Fig. 1. The number of constraints added at each iteration.

For all strategies, the time to solve the initial master problem was
the same (4.2 min). The subproblem column reports the total time
spent solving the subproblemover all iterations. Similarly, the time
spent for updating themaster problem over all iterations is shown.

Fig. 1 shows the exact number of constraints that were added
per iteration for strategies S2–S5. Strategies S1 and S6 add a fixed
number of constraints and are not shown. The strategies that add
p vectors for all types of constraints (∀k) have a smoother trend
compared to those that add them for only one type (k = k∗). The
reason is that different types of constraints will most likely have
different worst-case p vectors at each iteration.
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Table 4
The effect of using different values of ϵ. The last two columns show the percentage of voxels that have a violation for some constraint
and the mean of positive violations for all voxels, for the upper bound (U) and lower bound (L) constraints.

ϵ # it. Run time (min) Maximum violation (Gy) Percentage of voxels Mean of viols >0
U L U L

1 3 10.07 0.90 5.29 4.60 0.79 0.90
0.8 5 11.05 0.57 3.53 3.50 8.8 × 10−3 0.17
0.5 6 11.50 0.37 2.29 3.09 3.5 × 10−3 4.7 × 10−3

0.1 7 11.83 0.031 3.33 3.33 4.4 × 10−5 4.4 × 10−5

0.03 8 12.14 0.026 2.62 2.78 1.5 × 10−4 3.0 × 10−7

0.01 9 12.39 1.8 × 10−11 2.21 3.18 1.8 × 10−13 2.6 × 10−13

10−10 9 12.39 1.8 × 10−11 2.21 3.18 1.8 × 10−13 2.6 × 10−13

Fig. 2 compares the solution times (in min) of the strategies
versus the average number of constraints that are added per
iteration. It shows that adding amoderate number of constraints in
each iteration generally results in the shortest computation time.
Strategies S1 and S6 (omitted from the figure) exhibit the largest
computation time and add the largest and the smallest number of
constraints in each iteration, respectively.

4.2. Solution quality vs. computation time

The results presented in Section 4 are based on ϵ = 0.1. In
this section, we compare the solution quality and computation
time for different values of ϵ using strategy S3-1, which is the
fastest strategy. To quantify the solution quality, we calculate the
maximum violation (in units of Gy, which is a measure of radiation
dose) of all constraints in the final solution.

Table 4 compares the results using different values of ϵ. It shows
the number of iterations, total run time and the maximum viola-
tion from any of the constraints in units of Gray (Gy). The last two
columns show the percentage of voxels that have a violation for
some constraint and the mean of positive violations for all vox-
els, for the upper bound (U) and lower bound (L) constraints. It can
be seen that as ϵ is varied, the solution time is minimally affected
with a changing ϵ and the number andmagnitude of constraint vi-
olations is well-controlled. Fig. 3 shows a dose–volume histogram
(DVH) which provides a more clinical view of the solution quality.
A DVH shows the fraction of an organ that receives a certain dose
or higher. As Fig. 3 illustrates, the solutions corresponding to ϵ = 1
and ϵ = 10−10 result in treatments with essentially identical dosi-
metric properties.

5. Discussion

The fact that strategy S3-1 was the fastest constraint addition
strategy reinforces the need to tackle individual voxels separately
as eachmay have differentmaximumviolations for different PMFs.
It seems that adding a moderate number of constraints at each
iteration resulted in the best performance. The natural strategy
of adding one constraint at a time (S6) turned out to be the most
inefficient, due to the large number of iterations thatwere required
to converge. At the other end of the spectrum, adding the same
vector p for each k and v also resulted in long computation times.

For most strategies, adding the new constraint(s) for the same
type k = k∗ results in a shorter computation time than adding
them for all k. This confirms that identifying different types of
constraints can help reduce the computation time. In the IMRT
case, for example, inhale- and exhale-weighted breathing patterns
can have different effects on upper and lower CVaR constraints on
the dose to each organ.

Adding a violation threshold δ > 0 (used in S4 and S5) resulted
in a slightly higher computation time inmost of the cases, due to an
increase in the number of iterations and corresponding decrease
in the number of constraints added per iteration. Our hypothesis

Fig. 2. Comparing the average number of constraints per iteration and total time.

Fig. 3. The effect of ϵ on solution quality.

was that some constraints added earlier in the algorithm might
obviate the need for additional constraints later, because those
corresponding infeasibilities would have been addressed by the
earlier constraints. This turned out not to be the case.

Finally, we solved the robust problem by enumerating all ver-
tices of the uncertainty set (which was possible here since it was
only five dimensional) as another comparison. This version of the
problem took about 30min to solve, which is faster than the robust
counterpart, but still much slower than the best constraint gener-
ation strategy.

6. Conclusions and future work

In this paper, we developed a decomposition-based solution
method for robust optimization problems with a large number
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of uncertain constraints. We developed strategies for finding
and adding constraints at each iteration. We defined types
of constraints and demonstrated the computational benefit of
categorizing the constraints based on their type. We applied
our method to a large-scale robust IMRT optimization model for
breast cancer and compared the computation time of our solution
method with that of solving the robust counterpart. Our results
showed that constraint generation can typically save one order of
magnitude in computation time.

We believe that using geometric information about the voxels
(i.e., which voxels are in close proximity to each other) may
result in further reductions in computation time for the breast
cancer IMRT problem. Also, clustering the breathing patterns based
on similarity and prioritizing the addition of different breathing
patterns may also help improve computational efficiency. These
are topics for future study.
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