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a b s t r a c t

In this paper,we performamultiscale entropy analysis on theDow Jones Industrial Average
Index using the Shannon entropy. The stock index shows the characteristic of multi-scale
entropy that caused by noise in themarket. The entropy is demonstrated to have significant
predictive ability for the stock index in both long-term and short-term, and empirical
results verify that noise does exist in themarket and can affect stock price. It has important
implications on market participants such as noise traders.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Efficient market hypothesis (EMH) proposed by Fama [1] in 1960s is the cornerstone of modern financial research. It
states that if all the information available in the past can be reflected in the stock price, the market is efficient. In this way,
the stock price would follow a randomwalk behavior and is unpredictable. However, it has beenwell documented that EMH
cannot be established in real market, implying that stock price is predictable to some extent.

Entropy is an important notion in nonlinear science, it is a measurement for the uncertainty and complexity of dynamic
system. Recently, entropy has been used to study the predictability of stock market. For instance, Maasoumi et al. [2] used
metric entropy to detect the predictability of stock market, and found that compared with traditional predicting method,
metric entropy can capture more nonlinear relations. Eom et al. [3] used metric entropy and Hurst index to study the
predictability of several stock indices, they found that the predictability of a stock index is positively related to the Hurst
index but negatively related to the value of metric entropy.

Shannon entropy is a measurement of information contained in a system. The greater value of Shannon entropy
indicates the more information is needed for people to understand this system. Caraiani [4] introduced the singular value
decomposition entropy based on the correlated coefficient matrix, and the entropy turns out to have predictive power for
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the Dow Jones Industrial Average Index. Following Caraiani, Gu et al. [5] studied the predictive power of singular value
decomposition entropy on Chinese Shenzhen stockmarket. They found that the predictive power is affected by the structural
breaks in the market, and it only works on the Shenzhen component index after the reform of non-tradable shares. This is
an interesting result that differ from Caraiani [4] to some degree.

Behavioral finance theory holds that irrational investors exist in the stock market. Both the useful information and
noise is the fundamentals of investors’ decision making. Though the traditional singular value decomposition technique
can effectively distinguish different information, the singular value decomposition entropy proposed by Caraiani [4] is a
compositemeasurement for all kinds of information. Then, themore efficientmeasurement of the different information and
further analysis of its predictive power for stockmarket index is an available topic that can promote a deeper understanding
of stock market.

In this paper we introduce a new notion of entropy, the multi-scale Shannon entropy, and apply it on the Dow Jones
Industrial Average Index to detect the predictive power of the singular value decomposition multi-scale entropy for the
index. Caraiani [6] suggests that what has been observed in terms of entropy as a systemic measure is also observable in
terms of local properties. We contribute in this direction by analyzing the implications of entropy for different local scales
for stock markets.

The remainder of paper is organized as follows: Section 2 is dedicated to an introduction about the singular value
decomposition multi-scale entropy. Section 3 is the multi-scale entropy analysis for the Dow Jones Industrial Average
Index. The predictive power of the singular value decomposition multi-scale entropy for the index is presented in Section 4.
Section 5 is a brief conclusion.

2. Singular value decomposition multi-scale entropy

2.1. Shannon entropy and its generalization

The conception of entropy stems comes from physics. In 1856, German physicist Clausius [7] originally put forward the
concept of entropy, which is used to describe the complexity of energy distribution in the space. Then Shannon [8] applied
the entropy into the field of information science, using it to measure the amount of information transmission.

In a system, if Pi stands for the occurrence probability of one event, then − log (Pi) is taken as the amount of transitive
information from the event. Thus, the statistical average value of the transitive information from all single events,
−


i Pi log (Pi) will be definited as the transitive information of the system. The statistical average value is called the
information entropy or Shannon entropy of a system and wrote as ent. That is:

ent = −


i

Pi log (Pi) . (1)

A systemwith higher Shannon entropy hasmore transitive information, which indicates greater uncertainty. It is noticed
that the event with higher occurrence probability contributes less transitive information to the system. On the contrary, the
event with lower occurrence probability contributes more transitive information to the system. In order to distinguish the
amount of transitive information from the event with different occurrence probabilities, we introduce the following multi-
scale Shannon entropy.

Assuming that P1, P2, . . ., Pn is the probability distribution, for any scale q ≠ 0, define a qth-order Shannon entropy as:

entq =


i

Pi

log P−1

i

q1/q

. (2)

For scale q = 0, we define qth-order Shannon entropy as

entq =


i

ePi

log P−1

i


. (3)

Eqs. (2) and (3) are jointly called as the generalized Shannon entropy or the multiscale Shannon entropy. Especially, the
generalized Shannon entropy is the normal Shannon entropy when q equals to 1.

The generalized Shannon entropy describes themulti-scale characteristic of a system from the perspective of information
transmission, which is similar with generalized Hurst exponent [9]. The generalized Shannon entropy shares some similar
characteristics with the generalized Hurst exponent. For instance, the form of generalized Shannon entropy entq depends on
scale q. For negative q, entq mainly describes those transitive information from events with higher occurrence probability.
For positive q, entq mainly describes those transitive information from events with lower occurrence probability.

2.2. Singular value decomposition multi-scale entropy

Caraiani [4] proposed the singular value decomposition entropy and investigated in its predictive power for the Dow
Jones Industrial Average Index. The definition of the singular value decomposition entropy is presented as follows:
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Assuming Sk is the kth constituent stock from one stock index, Sk,t is the closing price of stock k at moment t , ykt =

log(Sk,t/Sk,t−1) is the logarithmic return series of stock k, and A = (Ri,j) is the correlation matrix of the stock index. Where
Ri,j stands for the Pearson correlations between stock i and j, namely by:

Ri,j =
⟨(yit − ⟨yit⟩)(yjt − ⟨yjt⟩)⟩

σiσj
(4)

where ⟨·⟩ stands for the mean of the returns of the stock, while σk is the standard deviation of the logarithmic return series
of stock k.

We pick the unitary matrix U and V to make the following equation come into existence.

A = USV T (5)
where V T is the transpose of matrix V , S = diag(λ1, λ2, . . . , λp), is a diagonal matrix. The Eq. (5) is the singular value
decomposition of matrix A. Where λ1, λ2, . . . , λp are singular values of matrix A, which is also called singular values of the
stock index.

Set λ̄i = λi/


j λj, where


i λ̄i = 1. The following Shannon entropy is:

Ent = −


i

λ̄i log

λ̄i

. (6)

It is called singular value decomposition entropy of correlation matrix of the stock index, or singular value decomposition
entropy of the stock index. It is a measurement for those information contained in the correlation matrix.

In Eq. (5), the singular values in the diagonal matrix are ranked in order of numerical values. Singular values are always
consistent with the importance of information in correlation matrix. It is known from [10] that the bigger singular values
ranked ahead reflect the amount of useful information, and the smaller singular values ranked behind reflect the amount
of noise. Thus, the singular value decomposition technique can effectively distinguish different kinds of information in
correlation matrix.

The singular value decomposition entropy defined by Eq. (6) is a composite measurement for all kinds of information. In
order to measure the amount of useful transitive information and noise in correlation matrix respectively, we introduce the
notion of singular value decomposition multi-scale entropy based on correlation matrix.

For any scale s, the following sth-Shannon entropy is:

ENT s =


i

λ̄i

log λ̄−1

i

s 1
s

(7)

for s ≠ 0:

ENT s =


i

eλ̄i

log λ̄−1

i


(8)

for s = 0, it is called the singular value decomposition multi-scale entropy of the correlation matrix of the stock index,
briefly, the singular value decomposition multi-scale entropy of the stock index. (Note: This is different from the multi-
scale singular value decomposition entropy proposed by Gu and Shao in [11].)

If ENT s are the same for different scale s, then the stock index has the characteristic of single-scale entropy. Otherwise,
the stock index has the characteristic of multi-scale entropy. For negative scale s, entropy ENT s mainly reflect the amount of
useful transitive information, and for positive scale s, entropy ENT s mainly reflect the amount of noise in correlation matrix.

The following singular value decomposition multi-scale entropy mentioned in this paper particularly means this multi-
scale Shannon entropy.

3. The multi-scale entropy analysis for the DJIA

3.1. Description of data

As the application of singular value decomposition multi-scale entropy on stock market, we consider one of the main
stock market indices of America—the Dow Jones Industrial Average Index (here after, DJIA). We collect the daily closing
prices of the Dow Jones Industrial Average Index and its component stocks. The DJIA index is composed of thirty component
stocks listed in Table 1, among which Visa (March 19, 2008), Goldman Sachs Group, Inc. (Maybe 4, 1999) and Cisco Systems,
Inc. (Feb. 16, 1990) are three latest listed stocks, so the price data of these three stocks are eliminated.We choose the sample
covering from February 16, 1990 to June 30, 2016 (totally 6645 observations). The stock prices are treated by forward right
in database and all data comes from the Yahoo finance website.

3.2. Multi-scale entropy of the DJIA

Andreadis and Serietis [12] investigated in the DJIA and found that the index has the characteristic of multi-fractal. In the
following part, we will reveal the multi-scale characteristic of the index from the perspective of information entropy.
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Table 1
The component stocks of the Dow Jones Industrial Average Index.

Company Abbrev. Company Abbrev.

Apple Inc. AAPL The Coca-Cola Company KO
American Express Company AXP McDonald’s Corporation MCD
The Boeing Company BA 3M Company MMM
Caterpillar, Inc. CAT Merck & Company, Inc. MRK
Cisco Systems, Inc. CSCO Microsoft Corporation MSFT
Chevron Corporation CVX Nike, Inc. NKE
E.I. du Pont de Nemours and Company DD Pfizer, Inc. PFE
The Walt Disney Company DIS Procter & Gamble Company PG
General Electric Company GE The Travelers Companies, Inc. TRV
The Goldman Sachs Group, Inc. GS United Health Group incorporated UNH
The Home Depot, Inc. HD United Technologies Corporation UTX
International Business Machines Corporation IBM Visa V
Intel Corporation INTC Verizon Communications Inc. VZ
Johnson & Johnson JNJ Wal-Mart Stores, Inc. WMT
JP Morgan Chase & Co. JPM Exxon Mobil Corporation XOM

Table 2
Singular values of DJIA.

Order number Singular value Order number Singular value Order number Singular value Order number Singular value

1 8.3128 8 0.6437 15 0.2203 22 0.0794
2 6.5013 9 0.5652 16 0.1827 23 0.0710
3 2.7504 10 0.5430 17 0.1592 24 0.0597
4 2.1868 11 0.4548 18 0.1355 25 0.0517
5 1.7089 12 0.3833 19 0.1201 26 0.0396
6 1.1769 13 0.2889 20 0.1117 27 6.8e−16
7 0.9147 14 0.2514 21 0.0872 28 6.8e−16

Table 3
The singular value decomposition multi-scale entropy of DJIA.

s ENT s s ENT s

−150 1.2243 1 2.2548
−100 1.2292 5 3.3625
−50 1.2443 10 4.1898
−20 1.2892 20 5.8607
−10 1.3552 50 18.0479
−5 1.4610 100 26.2753
−1 1.7944 150 29.7797

In order to test the multi-scale characteristic of DJIA, we construct the correlation matrix of the index using Eqs. (4) and
(5), and conduct the singular value decomposition. The empirical results are shown in Table 2.

FromTable 2,we can find that the first six singular values ofDJIA are on single digit level, and from the 7th to 22th singular
value, the number falls on decile level. From the 21th to 26th number, singular values ofDJIA are on percentile level, followed
by the 27th and 28th singular values falling on 10−16 level. It obviously shows that the useful information ismainly reflected
by the first six singular values, and the noise is centrally reflected by the last ten singular values, especially the last two. We
can measure the amount of useful information and noise of DJIA using singular value decomposition multi-scale entropy
based on different scales, the two highest singular values are 8.3128 and 6.5013 and the lowest singular values is 6.8e−16.

Table 3 shows singular value decomposition multi-scale entropy ENTs of DJIA when scale s is set from −150 to 150. We
can find that multi-scale entropy ENT s monotonically increase with the increase of scale s, which means the index DJIA has
the obvious characteristic of multi-scale entropy.

With further observation, we can find that ENT stays between 1.2 and 1.8 for every negative scale s, while it increases
from2.2548 to 29.7797when s increases from1 to 150. This indicates that singular value decompositionmulti-scale entropy
ENT s of DJIA are insensitive to negative scale, but sensitive to positive scale. In other words, the multi-scale characteristic of
ENT s is only presented on the positive scale part. For negative s, entropy ENT s mainlymeasure the amount of useful transitive
information. For positive s, entropy ENT s mainlymeasure the amount of transitive noise. Thus, themulti-scale characteristic
of DJIA is mainly caused by the transmission of noise.

4. The predictive power of multi-scale entropy for DJIA

From the discussion above, we have known that the useful information and noise have different impacts on the multi-
scale characteristic of singular value decomposition entropy ofDJIA. In the following part, wewill study the predictive power
of useful information and noise on the DJIA respectively.
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Table 4
Descriptive statistic test.

Series Mean Std. Dev. Skewness Kurtosis Jarque–Bera P-value

DJIA 9.0781 0.5041 −0.8154 2.6235 746.2235 0.0000

ENT y
−50 −0.4186 0.3739 −0.7819 3.4111 696.4823 0.0000

ENT y
50 2.8891 0.0018 0.0996 2.5669 60.5317 0.0000

ENT hy
−50 −0.4201 0.3214 −0.8378 3.2784 783.7229 0.0000

ENT hy
50 2.8891 0.0016 0.0329 2.6662 31.4316 0.0000

ENT q
−50 −0.4280 0.3187 −0.7569 3.3468 431.963 0.0000

ENT q
50 2.8891 0.0016 0.0729 2.3788 558.836 0.0000

ENTm
−50 −0.4442 0.3657 −1.1625 4.7958 2381.966 0.0000

ENTm
50 2.9125 0.0017 −0.2202 2.6924 79.3442 0.0000

4.1. Construction of singular value decomposition multi-scale entropy series

We compute singular value decomposition multi-scale entropy series employing moving time windows. In Caraiani [4],
the width of moving time window was set as one year (about 252 observations). In order to make comparison, we set the
moving time window to be half of one year (about 126 observations), one quarter of one year (about 63 observations) and
one month (about 22 observations). Then we mark the window width as y (one year), hy (half of a year), q (one quarter of
a year) and m (one month). Form Eq. (7), we can see that ent(s) related to larger positive scale s reflects more noise and
ent(s) related to larger negative scale s reflects more useful information. In Table 3, we can see that the ent(s) increases
monotonously with the scale s. The differences between ent(50) and ent(−50) is large enough to differentiate noise and
information. So, to simplify the measurement, we fixedly set scale s as −50 and 50.

For each width w in {y, hy, q,m} and each scale s in {−50, 50}, we compute singular value decomposition multi-scale
entropy of DJIA using moving time windows with formulas (4)–(8), which is written as ENTw

s . With t denoting the ending
date of the window, we can obtain singular value decomposition entropy series with width w and scale s, ENTw

s (t). For
example, ENT y

s (Jan. 1, 1977) denotes the singular value decomposition multi-scale entropy with scale s calculated in the
one-year window from Jan. 2, 1976 to Jan. 1, 1977.

Through the singular value decomposition multi-scale entropy series calculated by moving time windows, we can
observe the dynamic changes of amount and complexity of information in the market under different time scales.

4.2. Basic statistical analysis

We conduct the logarithmic processing to DJIA and these entropy series ENTw
s , and we mark the logarithmic series as

log(DJIA) and log(ENTw
s ) representing DJIA and ENTw

s respectively. Table 4 exhibits the descriptive statistics of these series.
It shows that all entropy series have smaller mean value than DJIA, the mean value of entropy series ENTw

s is negative
when s = −50 and positive when s = 50 for all time windows w in {y, hy, q,m}. All entropy series have smaller volatility
than DJIA, and volatility of entropy series ENTw

−50 is significantly smaller than ENTw
50 for all time windows w. The entropy

series ENTw
s is left-skewed when s = −50 and right-skewed when s = 50 for time windows w in {y, hy, q}, while ENTm

s are
always left-skewed. The entropy series ENTw

−50 have kurtosis greater than three for all timewindowsw and other series have
lower kurtosis. All series follow the non-normal distribution, since the null hypothesis of normal distribution is rejected at
1% significant level in Jarque–Bera test.

4.3. Stationarity test

Weexamine the stationarity of all series before doing Granger causality test, using the ADF unit root test. Table 5 presents
the results of the ADF unit root test.

It is seen from Table 5 that all the entropy series ENTw
s are stationary, because the null hypothesis of having unit root is

rejected at 1% significant level by the ADF test with intercept or trend and intercept. However, the DJIA is integrated with
one-order difference, because the null hypothesis of having unit root falls to be rejected at 10% significant level, but it can
be rejected at 1% significant level with the first order difference.

4.4. Linear Granger causality test

4.4.1. Test method
Granger causality test is a useful tool in testing the predictive power of one economic variable on another one.

Granger [13] investigated in the question that whether variant x causes y based on the prediction theory. The variant y
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Table 5
Unit root test.

Series Level Difference
None Intercept Trend and intercept None Intercept Trend and intercept

DJIA 2.2184 −1.6783 −2.0031 −60.447*** −60.517*** −6.5175***
ENT y

−50 −3.6460*** −5.5987*** −5.7280***

ENT y
50 −0.1026 −4.3912*** −4.5054***

ENT hy
−50 −4.8759*** −8.3102*** −8.3393***

ENT hy
50 −0.1039 −7.0377*** −7.1313***

ENT q
50 −7.5341*** −13.293*** −13.455***

ENT q
50 0.0324 −11.578*** −11.794***

ENTm
50 −7.4245*** −20.925*** −21.679***

ENTm
50 −0.0550 −18.151*** −18.992***

Notes: Values in the table are t-statistics. *, ** and *** denote that the statistic is significant at 10%, 5% and 1% level respectively.

cannot be caused by x, if

MSE

Ê(Yt+j|Yt , Yt−1, . . .)


= MSE


Ê(Yt+j|Yt , Yt−1, . . . , xt−1, xt−2, . . .)


(9)

for each j = 1, 2, . . . , where MSE =
1
j

j
k=1


ŷt+k − yt+k

2 is the mean-square error.
The vector auto-regression (VAR) model is a tool introduced by Sims [14,15] to capture the linear correlation among

multiple time series. The following VAR (p) can be used to test Granger causality of two stationary series xt and yt :

xt = a1 +

p
j=1

β1jxt−j +

p
j=1

γ1jyt−j + a1t (10)

yt = α2 +

p
j=1

β2jxt−j +

p
j=1

γ2yt−j + a2t . (11)

The a1t and a2t are two random disturbance terms, p is the optimal lag length obtained by the AIC criterion. If β2j = 0 is
established for all j = 1, 2, . . . , p in Eq. (11), then the null hypothesis that xt does not Granger cause yt is true.

It is noted that if any sequence between xt and yt is not stationary, then this method cannot work. Then Toda and
Yamamoto [16] proposed an extensive VAR model which does not require the stability of time series in operation.

xt = α1 +

p+dmax
j=1

β1jxt−j +

p+dmax
j=1

γ1jyt−j + a1t (12)

xt = α2 +

p+dmax
j=1

β2jxt−j +

p+dmax
j=1

γ2jyt−j + a2t . (13)

The dmax is the maximal integration order of xt and yt . If xt does not Granger cause yt , then β2i = 0 is established for all
j = 1, 2, . . . , p in Eq. (13), which can be tested by the Wald coefficient test. For convenience, we call this test T–Y Granger
causality test. As for the test that based on VAR model and is affected by the linear relations between variables, we call it
linear Granger causality test.

4.4.2. Test result
From the ADF unit root test, we know that all entropy series ENTw

s are stationary, but the index series DJIA is integrated
with one-order difference. So, we will employ T–Y Granger causality test to study the causality from entropy to the index.
The results are displayed in Table 6, where the optimal lag orders are ascertained by the AIC criterion.

We can find that for all time windows w, the singular value decomposition multi-scale entropy ENTw
s are not the linear

Granger causes of theDJIA for scale s = −50 or 50, as the null hypothesis that ENTw
s do not Granger causeDJIA is not rejected

at 10% significant level, nomatter judging from F-statistic or Chi-sq statistic. This indicates that, useful information and noise
do not have the predictive power on the DJIA.

It is noticed that linearGranger causality test is based on the assumption that there exist linear relation between variables.
Bake and Brock [17] pointed out that the linear Granger causality test can occur deviations if the relation between variables
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is nonlinear. Therefore, it is necessary for us to further conduct nonlinear tests on the correlation between DJIA and entropy
series ENTw

s , including nonlinear Granger causality tests.

4.5. Nonlinear Granger causality test

4.5.1. Test method
A basic assumption in linear Granger causality test is that there exist linear correlations between variables [18]. However,

the correlation between financial variables often turns out to be nonlinear due to the impact of financial crisis, policy
change and other events [19]. If the nonlinearity is neglected, the result of linear Granger causality test may have significant
deviations [20,21]. So Diks and Panchenko [22] introduced a new nonparametric test for nonlinear Granger causality and it
can be stated as following:

Considering {xt} and {yt} are two stationary series, and X lx
t =


xt−lx+1, . . . , xt


, Y ly

t =

yt−lx+1, . . . , yt


are two delay

vectors, with lx, ly ≥ 1. The null hypothesis that yt cannot be nonlinear Granger cause of xt means that the observations X lx
t

contain no additional information (except that in Y ly
t ) about yt+1.

H0 : yt+1

X lx
t ; Y ly

t


∼ yt+1

 Y ly
t . (14)

We set Wt =


X lx
t , Y ly

t , zt

with zt = yt+1. Then formula (14) implies that the distribution of


X lx
t , Y ly

t , zt

is invariant. If

we ignore the time index and suppose that lx = ly = 1, then the formula (14) implies that the distribution of z when giving
(x, y) = (u, v) is the same as the z when giving y = v. Considering the joint distribution, the formula (14) is reconstructed,
the joint probability density function fx,y,z (u, v, w) and its marginal density function should satisfy the following equation:

fx,y,z(u, v, w)

fy(v)
=

fx,y(u, v)

fy(v)
·
fy,z(v, w)

fy(v)
. (15)

Diks and Panchenko [22] pointed out that the null hypothesis implies:

q ≡ E

fx,y,z(x, y, z)fy(y) − fx,y(x, y)fy,z(y, z)


= 0. (16)

Supposing f̂W (Wi) is the local density estimator of a dW -variate random vector W at Wi. It is defined as f̂W (Wi) =

(2εn)−dw (n − 1)−1
j:j≠i I

W
ij where IWij = I

Wi − Wj
 < εn


, with the indicator function I(·), the bandwidth εn, and the

sample size n. Then, the following formula is the scaled sample version of q in (16):

Tn (εn) =
n − 1

n (n − 2)


i


f̂x,y,z (xi, zi, yi) f̂y (yi) − f̂x,y (xi, yi) f̂y,z (yi, zi)


. (17)

Diks and Panchenko [22] found that for lx = ly = 1, if εn = C−β
n (C > 0, (1/4) < β < (1/3)), then the Eq. (17) satisfies the

following formula:

√
n
(Tn (εn) − q)

Sn
D
−→ N (0, 1) (18)

where
D
−→ denotes convergence in distribution and Sn is an estimator of the asymptotic variance of Tn(·). Adopting Diks and

Panchenko’s method, we implement a single-tailed test. The null hypothesis will be rejected if the left part of the formula
(18) is too large. For convenience, we call this test D–P Granger causality test.

4.5.2. Test result
In order to analyze that whether nonlinear relation exists between DJIA and the entropy series ENTw

s , we conduct linear
filtrations for the DJIA and ENTw

s using the VARmodel. Then we examine that whether the residuals of VAR are independent
and identically distributed (here after, i.i.d.) through BDS statistic. Table 7 presents the results of the BDS statistic test for
residuals from VAR(1).

From Table 7, we can find that results of BDS statistic test to all residual series of DJIA significantly reject the null
hypothesis at 1% level. The same results occur when the BDS statistic test is applied on residuals of ENTw

s . This shows that,
for each time window w and each scale s, there does exist nonlinear relation between entropy series ENTw

s and index DJIA.
Therefore, we can further detect the nonlinear causality relation between entropy series ENTw

s and DJIA.
First, we directly conduct nonlinear causality between ENTw

s and DJIA, using the D–P Granger causality test. Since ENTw
s

are stationary and DJIA is integrated with one-order difference, the D–P Granger causality test is applied on the series of
ENTw

s and the first-order difference of DJIA. The results are presented in Table 8.
Table 8 shows that, for scale s = −50, the null hypothesis that ENT hy

−50 does not nonlinear Granger cause DJIA is
significantly rejected at 10% level for lag 1, and the null hypothesis is significantly rejected at 1% level for other lags,
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Table 6
T–Y Granger causality test.

Null hypothesis Lag F-statistic (probability) Chi-sq (probability)

ENT y
−50 does not Granger cause DJIA 6 1.0049 (0.4200) 6.0298 (0.4199)

ENT y
50 does not Granger cause DJIA 7 0.2966 (0.9555) 2.0765 (0.9555)

ENT hy
−50 does not Granger cause DJIA 6 1.0785 (0.3726) 6.4712 (0.3725)

ENT hy
50 does not Granger cause DJIA 8 0.4610 (0.8840) 3.6884 (0.8841)

ENT q
−50 does not Granger cause DJIA 4 1.0665 (0.3713) 4.2662 (0.3712)

ENT q
50 does not Granger cause DJIA 8 0.4297 (0.9039) 3.4383 (0.9039)

ENTm
−50 does not Granger cause DJIA 3 1.6945 (0.1659) 5.0837 (0.1658)

ENTm
50 does not Granger cause DJIA 6 0.6494 (0.6907) 3.8965 (0.6907)

Table 7
Nonlinearity test for VAR-residuals of DJIA.

VAR(1) BDS statistic
m
2 3 4 5 6

DJIA ENT y
−50 0.0175*** 0.0396*** 0.0565*** 0.0678*** 0.0734***

DJIA ENT y
50 0.0174*** 0.0396*** 0.0564*** 0.0678*** 0.0734***

DJIA ENT hy
−50 0.0175*** 0.0396*** 0.0564*** 0.0676*** 0.0731***

DJIA ENT hy
50 0.0175*** 0.0396*** 0.0565*** 0.0676*** 0.0731***

DJIA ENT q
−50 0.0176*** 0.0396*** 0.0563*** 0.0675*** 0.0731***

DJIA ENT q
50 0.0176*** 0.0396*** 0.0563*** 0.0675*** 0.0731***

DJIA ENTm
−50 0.0173*** 0.0389*** 0.0553*** 0.0662*** 0.0717***

DJIA ENTm
50 0.0173*** 0.0390*** 0.0553*** 0.0663*** 0.0717***

Note:m is embedding dimension. *, ** and *** denote rejection of the null hypothesis at 10%, 5% and 1% significance levels, respectively.

Table 8
Nonlinear D–P Granger causality test for level series.

Null hypothesis Level series
Lag
1 2 3 4

ENT y
−50 does not Granger cause DJIA 2.815 (0.002) 2.803 (0.002) 1.819 (0.034) 1.275 (0.101)

ENT y
50 does not Granger cause DJIA 2.105 (0.017) 1.955 (0.025) 1.048 (0.147) 0.828 (0.203)

ENT hy
−50 does not Granger cause DJIA 1.419 (0.077) 0.810 (0.208) −0.332 (0.630) −0.471 (0.681)

ENT hy
50 does not Granger cause DJIA 0.739 (0.229) 0.567 (0.285) 0.030 (0.487) 0.094 (0.462)

ENT q
−50 does not Granger cause DJIA 3.928 (0.000) 3.521 (0.000) 2.913 (0.001) 2.773 (0.002)

ENT q
50 does not Granger cause DJIA 3.515 (0.000) 2.955 (0.001) 2.018 (0.021) 1.713 (0.043)

ENTm
−50 does not Granger cause DJIA 4.199 (0.00) 3.608 (0.000) 2.621 (0.004) 2.005 (0.022)

ENTm
50 does not Granger cause DJIA 3.903 (0.000) 3.121 (0.000) 1.849 (0.032) 1.582 (0.056)

Note: 1. The index series is the differential series of DJIA. 2. The values in table are T -statistic, and values in brackets are p-value of associated statistics.

suggesting that the useful information has some predictive power on the DJIA index in the long-term (at least one year).
However, for scale s = 50, the null hypothesis that ENT hy

50 does not nonlinear Granger cause DJIA cannot be rejected from lag
1 to 4 at 10% level, but other null hypothesis can be significantly rejected at 5% level for some lags. These unstable results
may be caused by the deviations due to the difference of series.

Although some predictive power of useful information on the DJIA index has been found, the difference calculation may
lead to the loss of some useful information in series, which may cause deviation in results. So we conduct the D–P Granger
causality test for residuals of VAR in order to confirm the predictive power of singular value decomposition multi-entropy
ENTw

s on the DJIA. Here, we use VAR(1) to filter the linear relation between ENTw
s and DJIA, then the D–P Granger causality

test is applied on the residuals of VAR(1) for capturing the nonlinear causality relation between these two series. The results
are presented in Table 9.

Table 9 shows that, for scale s = 50, only the null hypothesis that ENTm
50 does not nonlinear Granger cause DJIA is

significantly rejected at 5% level for lag 1, 2 and 4 and at 10% level for lag 3, suggesting that the noise only has predictive
power on the DJIA index in the short-term (about one month). However for scale s = −50, the null hypothesis that ENT hy

−50
does not nonlinear Granger cause DJIA cannot be rejected at 10% level for lag from 1 to 4, but other null hypothesis can
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Table 9
Nonlinear Granger causality test for VAR(1)-residuals.

Null hypothesis T -statistic (probability)
Lag
1 2 3 4

ENT y
−50 does not Granger cause DJIA 3.114 (0.000) 2.308 (0.010) 1.020 (0.153)v 0.593 (0.276)

ENT y
50 does not Granger cause DJIA −2.426 (0.992) −2.759 (0.997) −2.938 (0.998) −2.602 (0.995)

ENT hy
−50 does not Granger cause DJIA 0.388 (0.348) 0.504 (0.307) −0.042 (0.517) 0.162 (0.435)

ENT hy
50 does not Granger cause DJIA −1.017 (0.845) −1.348 (0.911) −1.262 (0.896) −1.085 (0.861)

ENT q
−50 does not Granger cause DJIA 2.469 (0.006) 2.952 (0.001) 3.580 (0.000) 3.877 (0.000)

ENT q
50 does not Granger cause DJIA −1.083 (0.860) −0.517 (0.697) −0.537 (0.704) −0.220 (0.587)

ENTm
−50 does not Granger cause DJIA 3.003 (0.001) 2.810 (0.002) 2.679 (0.003) 2.317 (0.010)

ENTm
50 does not Granger cause DJIA 1.728 (0.041) 2.118 (0.017) 1.495 (0.067) 1.681 (0.046)

Table 10
Nonlinear Granger causality test for VAR(k)-residuals.

Null hypothesis T -statistic (probability)
Lag
1 2 3 4

ENT y
−50 does not Granger cause DJIA 2.853(0.002) 1.876(0.030) 2.224(0.013) 1.645(0.049)

ENT y
50 does not Granger cause DJIA 0.157(0.437) −0.038(0.515) −0.772(0.780) −0.490(0.687)

ENT hy
−50 does not Granger cause DJIA 2.254(0.012) 2.254(0.017) 2.342(0.009) 3.036(0.001)

ENT hy
50 does not Granger cause DJIA −1.207(0.886) 01.519(0.908) −1.109(0.866) −0.974(0.835)

ENT q
−50 does not Granger cause DJIA 2.928(0.001) 2.986(0.001) 3.148(0.000) 3.592(0.001)

ENT q
50 does not Granger cause DJIA −0.927(0.823) −0.217(0.586) −0.217(0.645) −0.218(0.586)

ENTm
−50 does not Granger cause DJIA 2.143(0.016) 2.769(0.002) 1.873(0.030) 2.532(0.005)

ENTm
50 does not Granger cause DJIA 1.598(0.054) 1.247(0.106) 1.335(0.090) 1.686(0.045)

be rejected at 5% level for some lags. These unstable results are due to the linear relation contained in residuals series.
Furthermore, we use VAR(k), where k is the optimal lag order, to filter linear relation between ENTw

s and DJIA, then the D–P
Granger causality test is applied on the residuals of VAR(k), The results are presented in Table 10.

According to the Table 10, we find that the test for scale s = 50 also shows that the noise only has predictive power on
the DJIA index in the short-term (about one month). The null hypothesis that ENTw

−50 does not nonlinear Granger cause DJIA
is significantly rejected at 5% level for lag from 1 to 4, suggesting that the useful information has the predictive power on
the DJIA index in the long-term (at least one year).

5. Conclusion

Caraiani [4] previously investigated in the predictive power of singular value decomposition entropy on stock market.
He found that the entropy has predictive power on the Dow Jones Industrial Average Index (DJIA), employing linear Granger
causality test. Gu et al. [5] found that the predictive power of the entropy for the Shenzhen component index is affected
by the structural breaks in the market when employing linear Granger causality test to the Chinese stock market, and the
entropy has predictive power on the Shenzhen component index after the reform of non-tradable shares. On the one hand,
Caraiani’s singular value decomposition entropy is calculated by the Pearson correlation coefficient matrix which can only
reflect simple (linear) correlation information between the price of stocks. On the other hand, stock markets always display
some nonlinear characteristics. Therefore, some significant deviations could appear in the results obtained by linear Granger
causality test [18,20,21].

We introduce a new concept of singular value decompositionmulti-scale entropy.Wemakemulti-scale entropy analysis
for theDJIA index, and find that this index hasmulti-scale entropy characteristic, which ismainly caused by the transmission
of the noise in the stock market.

Employing linear and nonlinear Granger causality analysis, we study the predictive power of the singular value
decomposition multi-scale entropy on the DJIA index. From the perspective of linearity, useful information and noise do
not have the predictive power on the DJIA index. However, from the perspective of nonlinearity, the useful information
has the predictive power on the index in the long-term (at least one year), and noise only has the predictive power on the
index in the short-term (about one month). This means that both useful information and noise have predictive power on
stock index, but their capacity of predicting (predictive term) is different, and these predictive power are presented through
nonlinear mechanism rather than the simple linear mechanism.
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The notion of singular value decomposition multi-scale entropy proposed in this paper creatively describes the multi-
scale characteristic of complex system from the perspective of informatics. Through the multi-scale entropy analysis on the
DJIA index,wenot only learn about themulti-scale characteristic but also find that the predictive power of useful information
and noise for index have obvious differences. Our results not only verify the noise trading theory that noise exists in the
market and can affect stock price, but also have reference value for investors of stock market, especially for noise traders.

Higher entropy implies the higher degree of market uncertainty. The existence of nonlinear Granger causality from
entropy to stock return has some important implications for asset pricing. First, it suggests that the market uncertainty may
be taken as the predictor of stock return. Forecasting stock return is notoriously difficult. It has been well documented that
economic models perform worse in forecasting stock return. This finding indicates that the entropy measure may provide
a potential way to resolve the problem of forecasting stock returns. Second, the predictability from entropy to stock return
also implies the market inefficiency. Third, the existence of nonlinear causality signals that the relationship between risk
and return is not linear, challenging the overwhelming idea of linear risk–return relationship in the area of modern finance.
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