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a b s t r a c t 

In recent years, the increasing demand for media-rich content has driven many effort s to redesign the

Internet architecture. As one of the main candidates, information-centric network (ICN) has attracted sig- 

nificant attention, where in-network cache is a key component in different ICN architectures. In this pa- 

per, we propose a novel framework for optimal cache management in ICNs that jointly considers caching

strategy and content routing. Specifically, our framework is based on software-defined networking (SDN)

where a controller is responsible for determining the optimal caching strategy and content routing via

linear network coding (LNC). For the proposed cache management framework, we first formulate an opti- 

mization problem to minimize the network bandwidth cost and cache cost by jointly considering caching

strategy and content routing with LNC. We then develop an efficient network coding based cache man- 

agement (NCCM) algorithm to obtain a near-optimal caching and routing solution for ICNs. We further

derive the upper and lower bounds of the problem and conduct extensive experiments to compare the

performance of the NCCM algorithm with these bounds. Simulation results validate the effectiveness of

the NCCM algorithm and the framework.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the past decade, multimedia content has become the dom- 

inating traffic over the Internet [2–4] . The increasing demand for 

media-rich content calls for more efficient methods for content re- 

trieval. To this end, Information-centric network (ICN) is a promis- 

ing design approach that fulfills such a demand by introducing 

content access by name and enabling in-network caching [5,6] . In 

ICNs, a content router (CR) with in-network caching capability can 

buffer some (usually popular) data chunks for future access [7] . In- 

network caching can greatly reduce the retrieval delay of content, 

the traffic in the network, and the service load on the servers [8,9] . 

To manage in-network caches in ICNs, two major issues need to 

be jointly considered. One is the caching strategy that determines 

� A conference version has been published in IEEE/IFIP Networking 2014 [1] . This

version contains at least 30% new materials.
∗ Corresponding author.

E-mail address: kejie.lu@upr.edu (K. Lu).

which data chunks shall be cached at each CR, and the other is 

content routing that determines where to route content requests 

and how to deliver content. 

In the literature, there are two types of caching strategies: non- 

cooperative and cooperative. In non-cooperative caching strategies, 

a CR opportunistically caches the received data, which may lead to 

frequent cache updates, sub-optimal cache allocation and caching 

duplication [8] . In cooperative caching strategies, a CR can col- 

laborate with its neighboring CRs to determine which set of data 

chunks to cache [9–12] . 

For content routing, there are two different ways to utilize the 

in-network caches. One is to only use caches along the path to the 

original content server for that request and the other is to utilize 

all nearby caches. The former does not require any cooperation 

among CRs but may exhibit potentially longer content retrieval 

delay. The latter requires cooperation among CRs to forward the 

request to the nearest off-path caches [13] . Either way is closely 

coupled with content caching. In this paper, we will focus on co- 

http://dx.doi.org/10.1016/j.comnet.2016.08.004
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(a) With no In-network Cache. (b) ICNs without LNC. (c) ICNs with LNC.

Fig. 1. An example of content request in different network scenarios. 

operative caching strategy and content routing to fully utilize all 

distributed in-network caches. 

To enable cooperation among distributed CRs, a cache manage- 

ment framework is needed to collect cooperation-related informa- 

tion (e.g., request rates and the current cache status) and make 

caching and routing decisions. Software defined networking (SDN), 

which physically decouples the control plane and data plane, can 

satisfy this requirement [14,15] . Typically, on the control plane, a 

controller is responsible for collecting network information and 

making routing decisions that will be configured at routers. On 

the data plane, routers forward packets according to the flow ta- 

bles configured by the controller. Over the past few years, many 

new controllers have been designed by using powerful multicore 

servers to handle a large number of data flows in big networks. 

For example, McNettle [16] can manage around 20 million requests 

per second for a network with 50 0 0 switches. 

Recently, preliminary studies have been conducted to enable 

cache management in ICNs based on SDN [17,18] . However, these 

studies mainly focused on how to incorporate cache related oper- 

ations into the existing SDN architecture and did not discuss the 

actual caching strategy. In this paper, we will go one step further 

to study caching strategy and content routing of ICNs based on 

SDN with the aim of minimizing both the network bandwidth and 

cache cost, which is the total cost of bandwidth and cache con- 

sumption in the whole network. 

Specifically, we will employ linear network coding (LNC) to 

jointly optimize caching strategy and content routing to minimize 

the network bandwidth and cache cost. We use an example shown 

in Fig. 1 to illustrate the benefits of using caching and LNC in ICNs. 

In this figure, a network consists of eight routers ( v 1 –v 8 ), and two 

servers ( s 1 and s 2 ). The users are all connected to routers v 1 , v 5 , 

and v 6 and request a piece of content, denoted as f 1 , that contains 

two equal-sized data chunks, A and B . We assume that each link 

has a unit cost to transmit one data chunk and a router has a unit 

cost to cache one data chunk. In terms of the total cost, i.e., the 

sum of bandwidth cost and cache cost, we have the following re- 

sults in three different content delivery scenarios: 

• In Fig. 1 (a), we consider a basic scenario with no in-network 

cache, so the best way to obtain the designated content is by 

utilizing multicast with which seven links are used in the rout- 

ing tree. In this case, there is non in-network cache used. For 

each data chunk, 7 links will be used and each link has unit 

capacity. Therefore, to transmit two data chunks, the cache cost 

is 0 and the bandwidth cost is 2 × 7 = 14 . The total cost is 

0 + 14 = 14 . 

• In Fig. 1 (b), we further assume that there are four CRs ( v 2 , v 4 , 

v 7 and v 8 ) and each of them can cache only one data chunk. 

In this scenario, we consider an ICN without LNC, so each CR 

can cache one original data chunk. Fig. 1 (b) shows the optimal 

caching strategy and content routing, in which the bold sym- 

bol shown on each CR denotes the data chunk cached at the 

CR. In this case, a total of 4 data chunks are cached in CRs, 

and transmitting the two data chunks requires 7 units of band- 

width consumption. Therefore, to transmit two data chunks, the 

cache cost is 4 and the bandwidth cost is 7 . The total cost is 

4 + 7 = 11 , representing a 21 . 42 % improvement. 

• Fig. 1 (c) shows the scenario with the optimal cache manage- 

ment in ICNs with LNC. In this case, the CRs can cache the 

linear combination of the original data chunks; and to recover 

the original data chunks A and B , a user only needs to obtain 

any two linearly independent coded data chunks. With the op- 

timal solution, each router (i.e., v 1 , v 5 and v 6 ) can download 

two coded data chunks from its two nearest CRs, thus CRs only 

need to cache 3 data chunks and the bandwidth cost is 6 units. 

Therefore, the total cost is 3 + 6 = 9 . Compared to the best solu- 

tion in Scenario 1, the optimal solution for scenario 3 achieves 

a 35 . 71 % improvement; and compared to the best solution in 

Scenario 2, it achieves 18 . 18 % improvement. 

The above example demonstrates the advantage of jointly con- 

sidering in-network caching strategy and content routing with LNC 

in ICNs, which motivates the work of this paper. The main contri- 

butions of this paper are summarized as follows. 

• We propose a novel SDN-based framework to facilitate the im- 

plementation of caching strategy and content routing in ICNs 

with LNC. The framework is based on the emerging concept of 

SDN, in which a controller is responsible for determining the 

optimal caching strategy as well as the optimal content routing 

via LNC. 

• We formulate an optimal cache management problem for ICNs 

with LNC under a given cache strategy as an integer linear pro- 

gramming (ILP) problem. Based on this basic ILP, we further de- 

velop the ILP formulation to minimize the total network band- 

width cost and cache cost by jointly considering caching strat- 

egy and content routing. 

• We develop an efficient network coding based cache manage- 

ment (NCCM) algorithm to obtain a near-optimal cache man- 

agement solution. Based on Lagrangian relaxation, the formu- 

lated problem can be relaxed and then decomposed into a lin- 

ear programming problem and several simple integer maximum 

weight placement problems, all of which can be solved opti- 

mally within polynomial time. 

• We conduct extensive experiments to compare the performance 

of the proposed NCCM algorithm with the lower bound of 

the ILP formulation. We also compare the performance of the 

proposed NCCM algorithm with three upper bounds of the 

problem, i.e., no cache (no-Cache), random cache (r-Cache) and 

greedy cache (g-Cache) strategies. Simulation results validate the 

effectiveness of the proposed NCCM algorithm and the frame- 

work. 
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The rest of the paper is organized as follows. We discuss related 

work in Section 2 . In Section 3 , we introduce a general cache man- 

agement framework for ICNs based on SDN. Next, we formulate 

the optimal cache management problem for ICNs with LNC, which 

aims to minimize the network bandwidth cost and cache cost by 

exploiting in-network caches and LNC in Section 4 . To solve the 

problem in practice, in Section 5 , we design an efficient algorithm 

based on Lagrangian relaxation. We then conduct extensive experi- 

ments to illustrate the performance of our framework in Section 6 . 

Finally, we discuss the applicability of the proposed scheme in Sec- 

tion 7, and we conclude the paper in Section 8 . 

2. Related work 

It has been shown recently that SDN can significantly improve 

the cache distribution performance and content management effi- 

ciency. In [14] and [15] , solutions are proposed and discussed to 

support ICN by using SDN concepts in wired and wireless net- 

works, respectively. However, there are no discussions on jointly 

considering the cache managements and routing decisions to fur- 

ther reduce the network cost. 

Several cache management systems have been proposed in ICNs 

[10,12,17,18] . In [17] , cache management is integrated with the con- 

troller, but the actual caching strategy is left unspecified. In [18] , 

APIs are defined to support cache-related operations, including 

caching decisions, cache notifications and proactive caching. How- 

ever, there is no discussion about how to use these APIs to manage 

caches, nor any concrete caching strategy algorithm is proposed. 

There have also been some interests in cooperative caching to 

improve the cache efficiency in ICNs [9–12] . In [9] , CRs on a path 

are coordinated in a distributed way. The data chunks cached in 

the downstream CRs are recommended by the upstream CRs. In 

[10] , a distributed cache management system is developed to ex- 

change cache information among all caches to get a global in- 

formation of the network. Then, cache decisions are made based 

on the global information of the network by each cache indepen- 

dently. In [11] , data chunks are cached based on the chunk number 

and CRs’ label. A complex algorithm is designed to assign CR la- 

bel for efficiently caching data chunks. These distributed methods 

may cause complexity and extra overhead to exchange information 

between CRs. Moreover, there exists a convergence delay for the 

distributed method. In [12] , several centralized off-line replication 

algorithms are used. Then, an advertisement and request/response 

mechanism is employed to discover the cached content. Unlike 

them, we jointly optimize caching strategy and content routing. 

Caching strategies can also be found in CDN and web caching 

[19] . Various models have been studied under different constraints 

such as link capacity, cache capacity and predicted request demand 

to minimize average traversed hops, bandwidth consumptions, etc. 

However, the caching strategy and content routing problems are 

not jointly optimized for an arbitrary network topology. Moreover, 

these works are file-based caching strategy and do not employ net- 

work coding. 

The feasibility and benefits of employing network coding in 

ICNs are introduced in [20] . It focuses on a distributed approach 

and some preliminary evaluation results are given. [21] proposes 

ICNs with built-in network coding, which focuses on signature 

scheme, communication scheme, forwarding plane and acknowl- 

edgement mechanism to optimize Interest forwarding. In [22] , we 

proposed a novel cache-aware K-anycast routing scheme, namely, 

CAKA, that can significantly improve the performance of con- 

tent delivery for publish/subscribe-based ICN. Compared to these 

works, the proposed SDN-based framework is flexible and can fa- 

cilitate collecting cooperation-related information. It also can en- 

able configuring caching and routing policy in CRs. Furthermore, 

we also theoretically model the cache management problem in 

ICNs with LNC, and develop an efficient NCCM algorithm based 

on Lagrangian relaxation to optimize caching strategy and content 

routing jointly. 

3. A novel cache management framework for ICNs with LNC 

In this section, we first introduce the main idea of the cache 

management framework, which is based on the concept of SDN. 

We then discuss several important operations to implement the 

proposed framework. 

3.1. The main idea of the framework 

In our framework, we consider an ICN that consists of CRs, a 

controller, and LNC-enabled servers, as shown in Fig. 2 . Note that 

any router can be considered as a CR even if it does not have cache 

capability. We will regard it as a CR with zero cache capacity. We 

assume that a content f n consists of m n data chunks. We intro- 

duce the major functionality related to cache management for ICNs 

based on SDN as follows. 

3.1.1. Functionality of a CR 

In our framework, a CR shall be responsible for the following 

functionality: 

• monitoring content requests received from its local end users 

at the content level (not at the chunk level). 

• sending content request statistics to the controller periodically. 

• returning data chunks to end users directly if the data chunks 

are available in its local cache. 

• delivering the received data chunks to end users. 

• forwarding requests for known content to other CRs according 

to the flow table. 

• forwarding requests for unknown content to the controller. 

• retrieving desired coded data chunks from designated servers if 

necessary. 

3.1.2. Functionality of the controller 

In our design, the controller shall be responsible for the follow- 

ing functionality: 

• gathering content request statistics at the content level (not at 

the chunk level) from each CR. 

• determining Q k , the local popular content request set 1 for each 

CR v k . The routes for content in Q k needs to be configured 

ahead of time. 

• predicting a popular content set, denoted as F , to be cached. 

• applying our optimal cache management scheme to optimize 

the caching strategy and content routing. 

• configuring CRs to cache popular content, route content re- 

quests and deliver content. 

• configuring CRs so that requests for non-popular content can be 

forwarded to servers. 

For a large-scale ICN, the functionality of the controller can also 

be performed by several cooperated controllers, each of which will 

be responsible for managing the CRs in its domain and will ex- 

change information with each other. 

3.2. Essential operations 

In this subsection, we will explain the main operations re- 

lated to cache management, including how to obtain content re- 

quest statistics, how to cooperatively cache content in different 

CRs, where to route content requests and how to deliver content 

to fully utilize all in-network caches. 

1 In this paper, to reduce the communication overhead, we consider that a local 

request of a CR is the request sent from the users directly connected with the CR. 
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Fig. 2. A cache management framework. 

3.2.1. Content request statistics collection 

To obtain optimal caching strategy and routing decisions, all 

CRs shall report content request statistics periodically with a fixed 

time period (Step 1 in Fig. 2 ). Here we note that, with the content 

request statistics, the controller can adopt any data analysis algo- 

rithm to understand the pattern of content request, such as the 

popularity and the locality over time [23] . Nevertheless, the details 

about the statistics analysis are out of the scope of this paper. 

3.2.2. Caching strategy 

Based upon the content request statistics, the controller can de- 

termine the local popular content request set ( Q k ) for each CR v k 
and the set of popular content ( F , F = 

⋃ 

v k 
Q k ). For each content 

in F , the controller will further determine the set of data chunks 

that each CR shall cache (Step 2 in Fig. 2 ). Without using network 

coding, such periodical and off-line cache placement schemes have 

been proposed in [12,24] . In practice, the time period can be se- 

lected to balance bandwidth cost reduction and the system com- 

putation/communication overheads. 

To apply LNC, the controller may choose deterministic LNC or 

random LNC. If deterministic LNC [25–28] is used, the controller 

shall send a set of global encoding vectors (GEVs) to each CR so 

that the CR can forward a request to LNC-enabled servers to obtain 

required coded data chunks. In this case, the controller can guar- 

antee that any set of coded data chunks of each content cached in 

ICNs with size no more than the size of the content is linearly in- 

dependent. On the other hand, if random LNC [26–29] is used, the 

controller can send the number of required coded data chunks to 

each CR, who will then forward the request to LNC-enabled servers 

that can generate coded data chunks with random GEVs. In such a 

case, coded data chunks of the same content may be linearly in- 

dependent to each other with a certain (high) probability. The ad- 

vantage of the latter scheme is that the computation overhead of 

the controller can be reduced at the risk of a possible compromise 

of the linear independence of coded data chunks. 

3.2.3. Content routing 

In our framework, we classify the content requested by the lo- 

cal end users at each CR into two types, popular and non-popular 

content. For each CR v k , the controller should find the optimal 

route for each popular content in Q k and configure flow tables 

in CRs on the route accordingly. The flow entry for a content f n 
will have a list of outgoing interfaces, each of which leads to a CR 

caching coded data chunks of f n . This step (Step 3 in Fig. 2 ) can 

be done after it achieves the optimal caching strategy described in 

the previous operation. 

In our framework, end users only need to obtain any m n data 

chunks for content f n . They can request data chunks one by one 

as normal. We slightly change the ICN forwarding strategy (e.g., 

Named Data Networking (NDN)) to make the router’s flow entry to 

record the number of data chunks that can be obtained and have 

been received from each outgoing interface. When CR v k receives a 

request from its local end users for a piece of content in Q k , it will 

first check whether it has forwarded another request for the same 

content with the same sequence number and has not received the 

returned data chunk. If so, it will not forward this request. If not, 

the CR will send the request through an outgoing interface if the 

number of data chunks obtained from this outgoing interface is 

less than the number of data chunks that can be obtained from 

this interface (Step 4 in Fig. 2 ). 

If the cache is hit at a CR, the CR will generate a new coded 

data chunk by randomly combining the cached data chunks of con- 

tent f n and send it back (Step 5 in Fig. 2 ). If the cache is missed at 

a CR, the CR shall fetch the required data chunks from one or more 

LNC-enabled servers (Step 6 in Fig. 2 ) according to the flow table. 

Once the CR receives the coded data chunks from servers, it will 

cache the coded data chunks (Step 7 in Fig. 2 ) and return them to 

the end users (Step 8 in Fig. 2 ). 

For the request to non-popular content which is not in Q k , 

Fig. 3 shows the operation procedure. In particular, when edge CR 

v 1 receives a request, it will first look up its flow table. If an en- 

try is found, the request will be forwarded accordingly. If an entry 

cannot be found for the particular content, the edge CR will for- 

ward the request to the controller, as shown in Step 2. The con- 

troller will then determine an optimal routing scheme and notify 

all corresponding CRs, which is Step 3. Next, the request may be 

multicasted to multiple LNC-enabled servers, as shown in Step 4, 

to obtain the content efficiently using LNC, which is Step 5. 
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Fig. 3. A example of requesting non-popular content. 

4. An optimal cache management formulation for ICNs with 

LNC 

In this section, we first state the system model and important 

assumptions. We then elaborate on the formulation of an optimal 

problem for cache management in ICNs with LNC. 

4.1. The system model 

In this paper, we denote an ICN as a directed graph G = < V, E > , 

where V is the set of CRs and E is the set of links between CRs. 

4.1.1. Notations 

To facilitate further discussions, we summarize the main nota- 

tions to be used in the paper as follows. 

• V : The set of CRs. V = { v 1 , . . . , v | V | } . 
• E : The set of links between CRs. Both e i, j and e j, i are in E, iff

there is a link between CR v i and CR v j . 

• c k : The cache capacity of CR v k in terms of data chunks. c k ≥ 0, 

∀ v k ∈ V . 

• C i, j : The link cost of link e i, j ∈ E in terms of data chunks. C i, j ≥
0 , ∀ e i, j ∈ E. 

• C ′ 
k,n 

: The cache cost when CR v k caches a data chunk of content 

f n . 

• F : The set of popular content needed to be cached, F = 

{ f 1 , . . . , f | F | } . 
• m n : The size of content f n in terms of data chunks, ∀ f n ∈ F . 

• S n : The set of servers for content f n , ∀ f n ∈ F . 

• Q k : The set of local popular content requests of CR v k , Q k ⊆F , 

∀ v k ∈ V . 

4.1.2. Assumptions 

In our design, we consider that each CR is associated with (1) a 

cache with a certain capacity, and (2) a set of requests (generated 

by local end users). As we have explained before, such a general 

setting can also represent a router with no cache, whose cache ca- 

pacity is zero. Moreover, we can also use it to represent a server, 

which not only always stores content it serves but also may have 

a certain level of cache capacity to cache the content it does not 

serve. 

To facilitate the prediction of the popular content set F , as 

shown in the existing work [30] , each CR (which is an open flow 

switch) can maintain a counter for retrieving the request statis- 

tics and the content popularity can thus be inferred directly from 

these statistics using the measurement module on the controller. 

The controller can predict the popular content set as follows: 

• Each CR v k periodically counts the number of historical requests 

for content f n received from its local end users, which is de- 

noted as N k,n . 

• Each CR v k periodically sends the values of N k,n to the con- 

troller. 

• The controller calculates the requesting popularity of a content 

f n at each CR v k as p k,n = 

N k,n ∑ 

v k ∈ V, f n ∈ ̄F N k,n 
, in which N k,n denotes 

the number of requests for content f n received by CR v k from its 

local end users and F̄ denotes the set composed by all contents 

requested from users. Therefore, we have 
∑ 

v k ∈ V, f n ∈ ̄F p k,n = 1 . 

• The local popular content request set of each CR v k is Q k = 

{ f n | p k,n ≥ p } , in which p is a threshold for content popularity 2 . 

• The controller predicts the popular content set , denoted as F = ⋃ 

v k ∈ V 
Q k . Only the contents in F will be cached in ICN. 

Since both the request statistics on each CR and popular content 

set calculation on the controller are at the content level (not at 

the chunk level), the above process can be efficiently implemented 

in the network. Moreover, we note that the controller can adopt 

any data analysis algorithm to understand the pattern of content 

request and decide the set of contents which are to be cached in 

the ICN. 

In our design, SDN is used to facilitate cache management and 

content routing. In SDN, the control plane can be physically de- 

coupled from the data plane, which can be used to obtain con- 

tent caching and routing decisions by using high level information 

such as traffic and request statistics. In the literature, many exist- 

ing studies have implemented ICN based on SDN to provide the 

ICN functionality using the current Open Flow switches [15,30,31] . 

2 The value of p determines the number of popular contents which will be cached 

in CRs. 
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Fig. 4. Network flows and cache policy in problem P . 

In the controller, two modules can be executed for the proposed 

NCCM scheme. The first one is to calculate the popular content set 

F . The other is to decide the caching strategy and content routing 

based on the network status according to the NCCM algorithm. For 

each CR, it needs to report historical request counts and other sta- 

tus such as available cache capacity to the controller. 

When using LNC in ICNs, we assume that each content is firstly 

divided into data chunks of fixed size 3 . Next, coded data chunks of 

each content will be generated by the LNC-enabled servers. Conse- 

quently, the data chunks cached in the CRs and transmitted in the 

network are linear combinations of the original data chunks. Since 

different coded data chunks are linearly independent or indepen- 

dent with high probability, the user only needs to acquire a suffi- 

cient number of coded data chunks from any set of CRs to recover 

the original content. To facilitate further formulation, we assume 

that each CR requesting content f n on behalf of its local end users 

can decode and recover the original data chunks iff it receives no 

less than m n coded data chunks of content f n . 

Finally, since most traffic in the network belongs to popular 

contents downloading, in this paper, we try to optimally cache the 

coded data chunks of popular contents in the ICN to minimize both 

the network bandwidth cost and cache cost by jointly optimizing 

caching strategy and content routing. For the unpopular contents, 

the controller or edge CRs will route the requests to the original 

servers according to our framework. 

3 If the available cache capacity of a CR is less than the size of data chunk, it 

cannot cache any data chunk. 

4.2. Problem formulation 

Based on the framework and system model we proposed previ- 

ously, we present an integer linear programming (ILP) formulation 

for the optimal cache management problem. In particular, the ob- 

jective of the ILP is to minimize the network bandwidth cost and 

cache cost. 

In our framework, CR v k can download content f n from multi- 

ple CRs. Such a scenario is a typical many-to-one communication 

for the CR. To formulate the problem, we can add a virtual node 

v 0 that has all the original data chunks for all pieces of content in 

F . Moreover, we can add a virtual link with limited capacity from 

v 0 to each CR v d ∈ V . We set the traffic load limitation of this vir- 

tual link equal to βd, n , i.e., the amount of coded data chunks of 

content f n cached at CR v d . We denote the graph as G = < V , E > 

after transformation, in which V = V ∪ { v 0 } and E = 

⋃ 

v i ∈ V { e 0 ,i } ∪ E. 

For the case that CR v k downloads data chunks of content f n from 

multiple CRs in G , it equals to downloading from v 0 in G . After 

such transformation, the scenario for many-to-one communication 

is equivalent to a unicast from v 0 to CR v k in G . 

Fig. 4 (a) and (b) show the original graph G for the example 

shown in Fig. 1 and the graph G generated by transforming graph 

G . Specifically, the values shown on the links from the virtual node 

v 0 to other CRs are the traffic load limitation on the links. Since 

CRs v 2 , v 4 , v 7 and v 8 have unit cache capacity, the traffic load lim- 

itations on these links are one. On the other hand, since we treat 

server nodes v 9 and v 10 as CRs which always have all data chunks 

of the content it serves, the traffic load limitations on these links 

are two. For CRs v 1 , v 3 , v 5 and v 6 with no available cache capacity, 

the traffic load limitations on these links are zero and such links 

are not shown in Fig. 4 (b). 
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4.2.1. Problem formulation for minimizing network bandwidth cost 

under a given caching strategy 

We first give the problem formulation for a simpler case that 

the caching strategy is given. Suppose that the values of βd, n have 

been decided by a given caching policy. We aim to find the content 

routing to minimize the cost of network bandwidth while satisfy- 

ing the content download requirements of end users. To formulate 

the problem, we give the following definitions: 

• θ k, n : amount of coded data chunks of content f n downloaded 

by CR v k . 

• βd, n : amount of coded data chunks of content f n cached at CR 

v d . βd, n is a nonnegative integer. 

• l 
i, j 

k,n 
: traffic load on link e i, j for CR v k downloading content f n . 

Specifically, l 
0 , j 

k,n 
denotes traffic load from CR v 0 to CR v j , i.e., the 

amount of coded data chunks of content f n downloaded by CR 

v k from CR v j in practice. 

• � i, j 
n : bandwidth consumption of traffic on link e i, j for download- 

ing content f n . 

Note that a network flow for content f n means a traffic flow for 

downloading the coded data chunks of content f n from different 

CRs (i.e., downloading from virtual node v 0 ) to the destination. To 

transmit content f n in G , with the network flow constraints (shown 

in Eqs. (2) –(4) below) on the unicast for downloading content f n 
between v 0 and v k , the traffic load transmitting on link e 0, j from 

v 0 to v j in G , i.e., l 
0 , j 

k,n 
, is equivalent to the amount of coded data 

chunks of content f n downloaded from CR v j by CR v k in G . 

For a given caching strategy, we can formulate the linear pro- 

gramming (LP) as follows: 

Minimize: 
∑ 

e i, j ∈ E 

∑ 

f n ∈ F 
C i, j � 

i, j 
n (1) 

Subject to: ∑ 

v j ∈ V 
l 0 , j 

k,n 
= θk,n , ∀ v k ∈ V, ∀ f n ∈ Q k (2) 

∑ 

j: e i, j ∈ E 
l i, j 

k,n 
= 

∑ 

j: e j,i ∈ E 
l j,i 
k,n 

, ∀ v k ∈ V, v i ∈ V − { v k , v 0 } , ∀ f n ∈ Q k (3) 

∑ 

j: e j,k ∈ E 
l j,k 
k,n 

= θk,n , ∀ v k ∈ V, ∀ f n ∈ Q k (4) 

l i, j 

k,n 
≤ � 

i, j 
n , ∀ v k ∈ V, ∀ e i, j ∈ E, ∀ f n ∈ Q k (5) 

θk,n ≥ m n , ∀ v k ∈ V, ∀ f n ∈ Q k (6) 

l 0 ,d 
k,n 

≤ βd,n , ∀ v k , v d ∈ V, ∀ f n ∈ F (7) 

0 ≤ l i, j 

k,n 
, ∀ v k ∈ V, ∀ e i, j ∈ E , ∀ f n ∈ F (8) 

In the above formulation, the objective is to minimize the band- 

width cost. Constraints Eqs. (2) –(4) show the network flow con- 

straints on each CR for each content downloading session. 

With LNC, if different CRs download different coded data 

chunks of the same content f n and the downloaded data chunks 

should be passing through the same link e i, j , then the traffic load 

can be shared by generating and transmitting the random linear 

combination of the downloaded data chunks. What is more, the 

new generated coded data chunks passing through link e i, j are 

useful to add new degrees of freedom with high probability to re- 

cover all the data chunks of content f n at each CR requesting it. 

Thus, only max 
v k ∈ V 

l 
i, j 

k,n 
data chunks need to be transmitted through 

link e i, j , i.e., the total network bandwidth consumption of traffic 

on link e i, j for downloading f n is max 
v k ∈ V 

l 
i, j 

k,n 
. On the other hand, con- 

straint in Eq. (5) equals to: 

max 
v k ∈ V 

l i, j 

k,n 
≤ � 

i, j 
n , ∀ e i, j ∈ E, ∀ f n ∈ Q k . 

Since our objective is to minimize: 
∑ 

e i, j ∈ E 
∑ 

f n ∈ F C i, j � 
i, j 
n , we have 

� 
i, j 
n = max 

v k ∈ V 
l 
i, j 

k,n 
. Therefore, the objective 

∑ 

e i, j ∈ E 
∑ 

f n ∈ F C i, j � 
i, j 
n means 

the total network bandwidth cost. 

Constraints in Eqs. (6) and (7) give the content downloading 

constraints. Specifically, constraint in Eq. (6) means that each CR 

needs to download sufficient number of coded data chunks to de- 

code and recover the original data chunks for each requested con- 

tent. Constraint in Eq. (7) shows that the amount of coded data 

chunks for each content downloaded from a CR is no more than 

the amount of data chunks of the content cached in the CR. Con- 

straint in Eq. (8) enforce the variables’ value range. 

After solving the above problem, for each content f n and each 

CR v k ∈ V requesting f n , f n ∈ F , we obtain a unicast network flow 

with flow capacity no less than m n between node v 0 and CR v k . 

Therefore, a multicast with LNC can be obtained to make sure that 

each CR requesting content f n can decode and recover the m n orig- 

inal data chunks [32] . 

4.2.2. An ILP formulation for minimize bandwidth cost and cache 

cost in ICN with NC 

When jointly consider the caching strategy and content routing 

to minimize both the bandwidth cost and cache cost, the param- 

eter βd, n , ∀ v d ∈ V, f n ∈ F , which denotes amount of coded data 

chunks of content f n cached at CR v d is a nonnegative integer vari- 

able. 

In the following, we can formulate the problem as an integer 

linear programming (ILP): 

P : Minimize: 
∑ 

e i, j ∈ E 

∑ 

f n ∈ F 
C i, j � 

i, j 
n + 

∑ 

v d ∈ V 

∑ 

f n ∈ F 
C ′ d,n βd,n 

Subject to: 

Eq. (2) − Ineq. (8) 

βd,n ≤ m n , ∀ v d ∈ V − S n , ∀ f n ∈ F (9) 

βd,n = m n , ∀ v d ∈ S n , ∀ f n ∈ F (10) 

∑ 

f n ∈ F 
βd,n ≤ c d , ∀ v d ∈ V (11) 

βd,n ∈ N , ∀ v d ∈ V, ∀ f n ∈ F (12) 

The first part of the objective denotes the bandwidth cost and 

the second part is the cache cost. Constraint in Eq. (9) is the cache 

capacity constraint for each content at each CR, which denotes the 

number of data chunks cached by each CR is at most the size 

of the file. Constraint in Eq. (10) shows that the servers for each 

content always have all the original data chunks for this content. 

Constraint in Eq. (11) gives the constraint that the amount of data 

chunks cached at each CR does not exceed its cache capacity. Con- 

straints in Eq. (12) enforce the variables’ value range. 

In the obtained LNC scheme, the number of coded data chunks 

transmitted on link e 0, j , ∀ v j ∈ V in G are the number of coded 

data chunks to be cached at CR v j in G . In our architecture, if the 

controller chooses deterministic LNC to implement cache policy, it 
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shall send a set of global encoding vectors (GEVs) [25] to each CR, 

which indicates the coded data chunks the CR should cache. On 

the other hand, if the controller chooses random LNC, it only sends 

the number of required coded data chunks to each CR. For each 

CR v i ∈ V , the amount of data chunks of content f n transmitted 

to its neighboring CR v j is � 
i, j 
n . If � 

i, j 
n is less than the amount of 

received data chunks of content f n , then it generates � 
i, j 
n coded data 

chunks by randomly linearly combining the received data chunks 

of content f n and transmits them to v j . Otherwise 4 , it can simply 

forwards � 
i, j 
n coded data chunks it receives to CR v j . 

Fig. 4 (c) shows the unicast network flows between v 0 to each 

CR v 1 , v 5 and v 6 for content f 1 . Specifically, the traffic on link e 0, 2 

targeted to CRs v 1 and v 5 is shared; the traffic on link e 0, 4 tar- 

geted to CRs v 1 and v 6 is shared, and the traffic on link e 0, 7 tar- 

geted to CRs v 5 and v 6 is shared. According to Fig. 4 (c), for the 

three nodes with available capacity, we have β2 , 1 = 1 , β4 , 1 = 1 and 

β7 , 1 = 1 , which means that each of CRs v 2 , v 4 and v 7 caches one 

coded data chunk for content f 1 . Based on the LNC scheme shown 

in Fig. 4 (d), we can obtain the optimal cache policy that data chunk 

A + B should be cached at CR v 7 , data chunk A should be cached at 

CR v 4 , and data chunk B should be cached at CR v 2 , which is shown 

in Fig. 4 (e). Moreover, the routing topology shown in Fig. 4 (f) can 

also be acquired according to Fig. 4 (c) by removing virtual node v 0 
and the links from v 0 to other CRs. 

5. An efficient network coding based cache management 

algorithm 

In this section, we design an efficient network coding based 

cache management (NCCM) algorithm to obtain a near-optimal so- 

lution of ILP P within polynomial computational complexity. Based 

on Lagrangian relaxation and subgradient algorithm, the NCCM al- 

gorithm can be efficiently implemented. 

5.1. Lagrangian dual problem 

We relax the constraint in Eq. (7) to obtain the Lagrangian dual 

problem as the resulting problem can be further decomposed into 

two sub-problems, each of which can be solved within polynomial 

computational complexity. 

Specifically, we first relax the constraint in Eq. (7) by moving 

it to the objective function with associated Lagrangian multipliers 

λk, d, n ≥ 0, ∀ v k , v d ∈ V, f n ∈ F . We reformulate the objective func- 

tion of ILP P as follows: ∑ 

e i, j ∈ E 

∑ 

f n ∈ F 
C i, j � 

i, j 
n + 

∑ 

v d ∈ V 

∑ 

f n ∈ F 
C ′ d,n βd,n + 

∑ 

v k , v d ∈ V 

∑ 

f n ∈ F 
λk,d,n (l 0 ,d 

k,n 
− βd,n ) 

= 

∑ 

f n ∈ F 

( ∑ 

e i, j ∈ E 
C i, j � 

i, j 
n + 

∑ 

v k , v d ∈ V 
λk,d,n l 

0 ,d 
k,n 

) 

−
∑ 

v d ∈ V 

∑ 

f n ∈ F 

( ∑ 

v k ∈ V 
λk,d,n −C ′ d,n 

) 

βd,n . 

Let λ denote the vector composed by elements λk, d, n , ∀ v k , v d 
∈ V, f n ∈ F . Then, the Lagrangian dual problem of ILP P is: 

max 
λ> 0 

L (λ) , (13) 

in which 

P 

λ : L (λ) = min 

∑ 

f n ∈ F 

( ∑ 

e i, j ∈ E 
C i, j � 

i, j 
n + 

∑ 

v k , v d ∈ V 
λk,d,n l 

0 ,d 
k,n 

) 

−
∑ 

v d ∈ V 

∑ 

f n ∈ F 

( ∑ 

v k ∈ V 
λk,d,n − C ′ d,n 

) 

βd,n 

under constraint in Eqs. (2) –(6) and Eqs. (8) –(12) . 

4 In multicast with LNC, the traffic load on each outgoing link of a node is no 

more than the summation of all the traffic load on its incoming links [32] . 

Obviously, constraints in Eqs. (2) –(6) and Eq. (8) are only re- 

lated with the group of variables { l i, j 

k,n 
, � 

i, j 
n , θk,n } and Eqs. (9) –(12) 

are only related with the group of variables { βd, n }. Therefore, 

problem P 

λ can be decomposed into two sub-problems, P 

λ
1 and P 

λ
2 

as follows, 

P 

λ
1 : Minimize : 

∑ 

f n ∈ F 

( ∑ 

e i, j ∈ E 
C i, j � 

i, j 
n + 

∑ 

v k , v d ∈ V 
λk,d,n l 

0 ,d 
k,n 

) 

under constraints in Eqs. (2) –(6) and Eq. (8) . And 

P 

λ
2 : Minimize : −

∑ 

v d ∈ V 

∑ 

f n ∈ F 

( ∑ 

v k ∈ V 
λk,d,n − C ′ d,n 

) 

βd,n 

under constraints in Eqs. (9) –(12) . 

Firstly, problem P 

λ
1 is a linear programming (LP) problem, which 

can be efficiently solved. For problem P 

λ
2 , we can also design a 

simple greedy algorithm to obtain its optimal solution, which is 

shown in Section 5.2 . 

Given λ, B λ denotes the value of the objective for problem P 

λ

and it is a lower bound for problem P [33] . B λ can be obtained 

using the values of the objectives for problem P 

λ
1 and P 

λ
2 , denoted 

as B λ
1 

and B λ
2 
, respectively. Thus, B λ = B λ

1 
+ B λ

2 
. 

5.2. Optimal algorithm for problem P λ
2 

For given λ, problem P 

λ
2 can be optimally solved as follows. We 

denote λ∗
d,n 

= 

∑ 

v k ∈ V λk,d,n . We have: 

−P 

λ
2 : Maximize : 

∑ 

v d ∈ V 

∑ 

f n ∈ F 

(
λ∗

d,n − C ′ d,n 

)
βd,n (14) 

Subject to: Constraints in Eqs. (9) –(12) . 

Note that the solution of problem −P 

λ
2 is equivalent to the solu- 

tion of problem P 

λ
2 . However, the value of objective of −P 

λ
2 is −B λ

2 
. 

Problem −P 

λ
2 can be further decomposed into | V | sub-problems. 

For each CR v d ∈ V , we only need to solve the following problem. 

−P 

λ
2 ,d : Maximize : 

∑ 

f n ∈ F 
(λ∗

d,n − C ′ d,n ) βd,n (15) 

Subject to: 

βd,n ≤ m n , ∀ f n ∈ F , if v d ∈ V − S n 

βd,n = m n , ∀ f n ∈ F , if v d ∈ S n ∑ 

f n ∈ F 
βd,n ≤ c d 

βd,n ∈ N , ∀ f n ∈ F 

The above problem is a maximum weight placement problem 

with capacity constraints. The optimal algorithm to solve the prob- 

lem is shown in Algorithm 1 . The main idea is that we first sort 

the set of popular content in decreasing order of their weight 

λ∗
d,n 

− C ′ 
d,n 

. Then, CR v d caches as many data chunks as possible 

for each piece of content in the sorted set consecutively. Suppose 

B λ
2 ,d 

denotes the value of the objective for problem −P 

λ
2 ,d . Then, 

B λ
2 

= −∑ 

v d ∈ V B 
λ
2 ,d 

. 

5.3. Selection of multipliers 

To find a good lower bound, the selection of multiplier vec- 

tor λ is important. We use the subgradient optimization to iter- 

atively select λ. At iteration t , subgradient vector γ t is computed 

by γ t 
k,d,n 

= l 0 ,d,t 
k,n 

− βt 
d,n 

, ∀ v k , v d ∈ V, ∀ f n ∈ F , in which l 0 ,d,t 
k,n 

and βt 
d,n 

denote the values of variables l 0 ,d 
k,n 

and βd, n in the optimal solu- 

tion of problem P 

λ obtained at iteration t . γ t denotes the vector 

composed by elements γ t 
k,d,n 

, ∀ v k , v d ∈ V, f n ∈ F . 
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Algorithm 1 The greedy algorithm for optimally solving problem 

P 

λ
2 ,d . 

1: For a given node v d ∈ V and multiplier vector λ, compute 

λ∗
d,n 

= 

∑ 

v k ∈ V λk,d,n ; 

2: Sort λ∗
d,n 

− C ′ 
d,n 

in decreasing order. Suppose that the i th largest 

value is λ∗
d,n i 

− C ′ 
d,n i 

; 

3: Let βd,n = 0 , ∀ f n ∈ F and C = c d ; 

4: if λ∗
d,n 1 

− C ′ 
d,n 1 

< 0 then 

5: for i = 1 to | F | do 

6: if v d ∈ S i then 

7: βd,i = m i ; 

8: C = C − m i ; 

9: end if 

10: end for 

11: else 

12: for i = 1 to | F | do 

13: if v d ∈ S i then 

14: βd,i = m i ; 

15: C = C − m i ; 

16: end if 

17: end for 

18: j = 1 ; 

19: while j ≤ | F | and C ≥ 1 and λ∗
d,n j 

− C ′ 
d,n j 

≥ 0 do 

20: if v d / ∈ S n j then 

21: Cache βd,n j 
= min (C, m n j ) data chunks of content f n j ; 

22: C = C − βd,n j 
; 

23: end if 

24: j = j + 1 ; 

25: end while 

26: end if 

27: return B λ
2 ,d 

and βd,n , ∀ f n ∈ F ; 

Multiplier vector λt+1 used in the (t + 1) th iteration can be ob- 

tained by λt+1 = max { λt + s t γ t , 0 } , in which λt is the multiplier 

vector used in the t- th iteration and s t is a positive step size. s t can 

be acquired by a common method [33] as follows: s t = 

ηt (z t 
UP 

−z t 
LB 

) 

‖ γt ‖ 2 , 

in which 0 ≤ ηt ≤ 2 and z UP 
t (resp. z LB 

t ) denotes an upper (resp. 

lower) bound on the optimal objective of problem P in the t -th 

iteration. Specifically, 

ηt = 

{ 

2 , if t = 1 

ηt−1 , if z t LB ≥ z t−1 
LB 

ηt−1 / 2 , if z t LB = z t−1 
LB 

= z t−2 
LB 

. (16) 

Let βt be the vector composed by elements βt 
d,n 

, ∀ v d ∈ V, ∀ f n ∈ 

F . To obtain a feasible solution for problem P at the t th iteration, 

we let βt be known parameters and solve problem P with con- 

straints in Eqs. (2) –(7) and Eq. (8) . Since the values of βt have al- 

ready satisfied constraints in Eqs. (9) –(12) , the obtained value of 

the objective for problem P denoted as B λ
t 
(βt ) is an upper bound 

of the original problem P obtained at iteration t . Moreover, the ob- 

tained solution is obviously a feasible solution of problem P . 

5.4. NCCM algorithm based on lagrangian relaxation 

We now describe the NCCM algorithm which is designed based 

on Lagrangian relaxation to solve problem P . Specifically, sub- 

problems P 

λ
1 and P 

λ
2 are solved with multiplier vector λt at iter- 

ation t . At each iteration t , we can obtain a feasible solution for 

problem P based on βt and an upper bound of the original prob- 

lem P . We maintain an upper bound z t 
UP 

as the smallest upper 

bound we have obtained within t iterations. On the other hand, z t 
LB 

denotes the maximum value of the objective of problem P 

λ after t 

iterations, which is a lower bound of problem P . 

Algorithm 2 Network coding based cache management (NCCM) 

algorithm. 

1: t = 1 and t ′ = 0 ; z 0 
UP 

= + ∞ and z 0 
LB 

= −∞ ; η1 = 2 ; 

2: Let λ1 
k,d,n 

= 10 −5 , ∀ v k , v d ∈ V, f n ∈ F and ε1 = + ∞ ; 

3: while t < T and εt > ε∗ and t ′ < T ′ do 

4: Solve problem P 

λ
1 ; Obtain B λ

t 

1 
and l 0 ,d,t 

k,n 
, ∀ v k , v d ∈ V, ∀ f n ∈ F ; 

5: Solve problem P 

λ
2 ; Obtain B λ

t 

2 
and βt 

d,n 
, ∀ v d ∈ V, ∀ f n ∈ F ; 

6: B λ
t = B λ

t 

1 
+ B λ

t 

2 
; 

7: Let z t 
UP 

= min (B λ
t 
(βt ) , z t−1 

UP 
) ; 

8: if z t 
UP 

< z t−1 
UP 

then 

9: Let π ∗ be the feasible solution of problem P obtained at 

the t th iteration in which we let βt be given parameters 

and solve problem P with constraints Eq. (2)– Ineq. (7) and 

Ineq. (8); 

10: end if 

11: Let z t 
LB 

= max (B λ
t 
, z t−1 

LB 
) ; 

12: if z t 
LB 

> z t−1 
LB 

then 

13: t ′ = 0 ; 

14: else 

15: t ′ = t ′ + 1 ; 

16: end if 

17: if t ′ ≥ 3 then 

18: ηt+1 = ηt / 2 ; 

19: end if 

20: εt+1 = z t 
UP 

− z t 
LB 

; 

21: Update Lagrangian multiplier vector λt+1 according to 

λt+1 
k,d,n 

= max { λt 
k,d,n + s t γ

t 
k,d,n , 0 } , ∀ v k , v d ∈ V, 

∀ f n ∈ F , where 

γ t 
k,d,n = l 0 ,d,t 

k,n 
− βt 

d,n and s t = 

ηt (z t UP − z t LB ) 

‖ γ t ‖ 

2 
;22: t = t + 1 ; 

23: end while 

24: return z t−1 
UP 

and π ∗; 

The NCCM algorithm shown in Algorithm 2 is stopped when 

one of the conditions is satisfied: (1) the number of iteration t 

reaches the iteration limit T ; (2) the difference between z t 
LB 

and 

z t 
UP 

is less than a threshold ε∗; (3) the lower bound does not in- 

crease for more than a number of iterations T ′ . After the algorithm 

is terminated, it returns the feasible solution π ∗ which reaches to 

the minimum upper bound during the iterations. 

6. Numerical results 

In this section, we conduct simulation experiments to evaluate 

the performance of the NCCM algorithm. Specifically, we compare 

the performance of the NCCM algorithm with a lower bound and 

three upper bounds. The lower bound, denoted as LB, represents 

the optimal solution that can be simply obtained by relaxing the 

integer constraint in Eq. (12) in ILP P . For the first upper bound, 

we consider a traditional network without using cache and net- 

work coding, where data chunks are only available at their orig- 

inal servers. We consider the performance in this case as an up- 

per bound, denoted as no-Cache . The other two upper bounds are 

obtained by (1) randomly caching chunks on all the CRs and (2) 

greedily caching the contents locally requested for each CR (like 

LFU cache replacement policy in traditional ICNs without LNC). In 

these cases, although all the in-network caches are utilized, the po- 

tentials of cache management and network coding on the band- 

width cost and cache cost are not fully considered. We denote 

them as r-Cache and g-Cache , respectively. 
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Fig. 5. Cost versus data chunk size. 

In our experiments, network G is randomly generated by using 

a widely used method developed by the Waxman [34] . The method 

emphasizes the locality of links, which is an important property of 

many physically deployed network and overlay networks, such as 

peer-to-peer networks. 

Specifically, positions of the nodes, i.e., CRs, in G are a Poisson 

process in the plane with scaled Lebesgue mean measure, in which 

η denotes the intensity of the Poisson process. Two CRs v i and v j 

are connected with probability P (v i , v j ) = αe −d(v i , v j ) / (μ∗L ) 
, where α

> 0, μ ≤ 1, d ( v i , v j ) is Euclidean distance between v i and v j and L is 

the maximum distance between any two CRs. Let the region of the 

random network graph G be 20 × 20. In the experiments shown 

in Figs. 5 –13 , we set the network parameters for Waxman network 

model as follows: the intensity of the Poisson process η ∈ [0.01, 

0.125], α ∈ [0.5, 1.5] and μ = 0 . 7 . 

In addition to the network parameters, we have six other pa- 

rameters in our simulations. 

• ch size : the data chunk size, ch size ∈ [5 Mb , 30 Mb ] . 

• ca size : the cache capacity, ca size ∈ [50 Mb , 300 Mb ] . 

• co size : the content size, co size ∈ [200 Mb , 450 Mb ] . 

• | F |: the size of the popular content set, | F | ∈ [10, 35]. 

• q : the size of the local popular content request set, q ∈ [2, 12]. 

• c : cache cost per Mb, c ∈ [0.01, 5]. 

The bandwidth cost on each link is randomly selected from [0, 

1] (per Mb ). The value of parameter C i, j (per data chunk) can be 

calculated by multiplying the link cost (per Mb ) by the data chunk 

size. Compared with the network bandwidth cost, the cache cost 

is lower. The cost for caching each file on each CR is randomly se- 

lected from [0, c ] (per Mb ), and the value of parameter C ′ 
d,n 

(per 

data chunk) can be calculated by multiplying the cache cost (per 

Mb ) and the data chunk size. Since different contents have differ- 

ent sizes and usually only a few nodes in the network are original 

servers, we set the size of each content in F from [1, co size ] and 

randomly select one CR from the first 10% nodes as its server. For 

each CR, the cache capacity is set from [0, ca size ]. The content re- 

quest set of each CR is composed by randomly selecting q pieces 

of content from F . 

For each simulation instance, we not only compare the total 

cost, i.e, the sum of the network bandwidth cost and the cache 

cost, obtained by the NCCM algorithm with the lower bound LB 

and upper bounds but also show their normalized maximal extra 

costs (NMEC). Specifically, let S h denote the total cost of NCCM 

(or no-Cache or r-Cache or g-Cache ) and S l denote that of LB . The 

NMEC of NCCM (or no-Cache or r-Cache or g-Cache ) is defined as 
S h −S l 

S l 
. Unless otherwise specified, we set the number of iterations 

in NCCM T = 30 . The default values of parameters are: ch size = 10 , 

ca size = 200 , co size = 300 , | F | = 20 , q = 4 , c = 0 . 05 , η = 0 . 025 , α = 

0 . 7 and μ = 0 . 7 . In the following discussions, each experiment has 

one parameter changed from its default value. This helps us to un- 

derstand how the performance of each strategy is affected by a 

specific parameter. 

In Fig. 5 , the total costs of NCCM and all bounds increase slowly 

with the increase of ch size and the performance of NCCM is very 

close to the lower bound. The results can be explained as the fol- 

lows. Firstly, since a data chunk is the data unit transmitted in the 

network and cached in each CR, the larger the data chunk is, the 

lower the utilization rate of in-network cache is 5 , because the CR 

cannot cache part of a data chunk. Therefore, utilization rate of 

in-network cache decreases in this case. Secondly, for each con- 

tent, it should be divided into a number of data chunks with fixed 

size. If the size of content cannot be divisible by the size of data 

chunk, one data chunk should be padded to utilize the network 

coding. Therefore, the total bandwidth cost to fetch a content for 

each CR increases in this case. Due to these two reasons, both the 

cache cost and the bandwidth cost increase with the increase of 

ch size . For NCCM , since the size of each file is fixed, the larger the 

data chunk is, the fewer data chunks belong to a piece of content, 

which further reduces the performance of the LNC. Therefore, the 

decreases of both utilization rate of in-network cache and LNC per- 

formance increase the total cost of NCCM . In Fig. 5 , the total cost 

of no-Cache is the largest, which confirms our expectation that, the 

utilization of in-network cache reduces the total cost. The total cost 

of r-Cache is higher than the total cost of g-Cache which is much 

higher than the total cost of NCCM , which indicates that it is bene- 

ficial to jointly consider caching strategy, content routing and net- 

work coding to further reduce the total cost. Fig. 5 (b) shows the 

NMEC of upper bounds and NCCM . We can clearly observe that the 

NMEC of NCCM is always below 10%. 

Fig. 6 (a) shows that, the total costs of r-Cache, g-Cache, NCCM 

and LB decrease with the increase of ca size . Clearly, when cache ca- 

pacity of each CR grows larger, more data chunks can be fetched 

from nearby CRs. Therefore, the network bandwidth cost can be 

reduced. The total cost no-Cache is stable because it does not uti- 

lize the in-network cache. Fig. 6 (b) shows that the NMEC of NCCM 

first increases and then tends to be stable. On the other hand, the 

NMECs of three upper bounds keep increasing when ca size grows 

larger. 

In Fig. 7 (a), the total costs of the three upper bounds, NCCM and 

LB increase linearly with the increase of co size . Since the number of 

contents requested by each CR is fixed, the larger the content size 

5 The number of data chunks cached in each CR is an integer. If the available 

cache capacity on a CR is less than a data chunk, the CR cannot cache the chunk. 
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Fig. 6. Cost versus data cache capacity. 
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Fig. 8. Cost versus number of popular contents. 

is, the more bandwidth and cache capacity are consumed. On the 

other hand, since the cache capacity of each CR is also fixed, when 

co size increases, the impact of the in-network cache on bandwidth 

cost reduction becomes smaller. Therefore, as shown in Fig. 7 (b), 

the NMECs of the three upper bounds tend to the same when co size 

becomes sufficiently large. For NCCM , when the co size grows to suf- 

ficiently large, each content can be divided into more data chunks, 

which increases the benefits of the LNC. Therefore, the NMEC of 

NCCM is much smaller than those of the upper bounds. 

In Fig. 8 (a), when q is fixed, the more popular contents are 

in F , the fewer CRs request the same content. For each content, 

the number of chunks cached in all in-network caches decrease. 

Therefore, the three upper bounds increase slowly. Moreover, the 

increase of | F | also leads to less coded data chunks transmitted 

in ICNs with LNC that can be shared between different requesting 

CRs. Therefore, the total costs of NCCM and LB increase with the 

increase of | F |. Fig. 8 (b) shows that the NMECs of upper bounds 

are much larger than the NMEC of NCCM , and they decrease with 

increase of | F |, because the benefits of the LNC in NCCM and LB de- 

crease. Nevertheless, the NMEC of NCCM is always below 10% and, 

compared with the upper bounds, it can always save at least 15% 

total cost. 

Fig. 9 (a) shows that the total costs of the three upper bounds, 

NCCM and LB increase with the increase of q . When | F | is fixed, 

as the number of requested contents increases at each CR, more 

bandwidth is consumed. On the other hand, since more coded data 

chunks transmitted in ICNs with LNC can be shared between dif- 

ferent requesting CRs, network bandwidth can be reduced by uti- 

lizing LNC. The growth rates of NCCM and LB are lower than those 

of the upper bounds. Therefore, Fig. 9 (b) shows that the NMECs of 
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Fig. 9. Cost versus the size of the local popular content request set. 
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Fig. 11. Cost versus network parameter: η. 

the three upper bounds increase with the increase of q . Moreover, 

we can observe that the NMEC of NCCM is decreasing with the in- 

crease of q , which demonstrates the advantages of NCCM . 

Fig. 10 (a) shows that the total costs of r-Cache, g-Cache, NCCM 

and LB increase with the increase of c . This is reasonable because, 

when the cache cost per Mb grows larger, the total costs increase. 

The total cost of no-Cache keeps stable because it does not utilize 

the in-network cache. Since r-Cache and g-Cache always cache data 

chunks in each CR, the total costs increase with the increase of c 

and the costs can be larger than that of no-Cache . By comparison, 

since NCCM and LB jointly consider caching strategy and content 

routing to minimize the total cost, they cache less data chunks in 

CRs when c grows larger. Fig. 10 (b) shows that the NMEC of NCCM 

is always below 15%. 

Fig. 11 (a) shows that the total costs of the three upper bounds, 

NCCM and LB increase with the increase of η. According to the 

Waxman model, when η grows larger, there are more CRs in the 

network. More CRs have more cache capacities. On the other hand, 

more CRs request more contents, which increases the bandwidth 

cost. Therefore, in this case, the total cost of the three upper 

bounds increase. For NCCM and LB , when the number of CRs in- 

creases, more coded data chunks can be shared between different 

requesting CRs, so network bandwidth can be reduced by utilizing 

LNC. Therefore, the total costs of NCCM and LB firstly increase and 

then tend to be stable. Fig. 11 (b) shows that the NMEC of NCCM 

is always below 10% and it can always save at least 30% total cost 

compared with the upper bounds. 

Fig. 12 (a) shows that the total costs of the three upper bounds, 

NCCM and LB decrease with the increase of α. According to the 
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Fig. 12. Cost versus network parameter: α. 

Waxman model, when α or μ grows larger, since η is fixed, the 

number of CRs in the network is fixed and the connecting proba- 

bility of every two CRs increases, which means that the ICN topol- 

ogy is more dense. In this case, the path between a requesting CR 

and a serving CR will be shorter and more data chunks can be 

fetched from nearby CRs. Therefore, the network bandwidth cost of 

NCCM or each bound can be reduced. Fig. 12 (b) clearly shows that 

the NMEC of NCCM is always below 10% and it can always save 

at least 20% total cost compared with the upper bounds. Since μ
grows larger will also increase more links in the network, simula- 

tion results for the cost versus μ have similar trends as those of 

α. 

To summarize, Figs. 5 –12 show that the NCCM algorithm gets 

within 10% of a lower bound of the optimal solution under most 

simulation scenarios. 

In our experiments, we also investigate the NMECs and run 

time of the proposed NCCM algorithm vs the number of iterations 

in Fig. 13 . Specifically, when the number of popular contents, | F |, 

and the size of the local popular content request set, q , are small, 

moderate and large, the results are shown in Fig. 13 (a)–(b), (c)–(d) 

and (e)–(f) respectively. In all these figures, we fix other param- 

eters and vary the values of | F | and q only. In particular, we run 

the NCCM algorithm on a MacBook Pro- 2.8GHz with Intel Core 

i7. As shown in Fig. 13 , the NMEC decreases with the increases 

of the iteration times and the run time in all the cases. Since the 

NCCM algorithm is designed based on Lagrangian relaxation, the 

result becomes closer to the optimal solution when the iteration 

times are set to a larger number. Although the NCCM algorithm 

needs to run iteratively and finally obtain the suboptimal solution, 

in most cases, the NMEC of a suboptimal solution can converge 

within four iterations. Fig. 13 also shows that the run time per it- 

eration step becomes larger when the values of | F | and q become 

larger. However, to achieve a sufficient low NMEC (e.g., less than 

3%), the NCCM algorithm only needs 2.37 s even if the number of 

popular contents, | F | is sufficiently large (e.g., | F | = 10 0 0 and q = 20 ). 

Therefore, the proposed NCCM algorithm can be efficiently imple- 

mented. 

7. Discussions 

In this section, we will have discussions on the popularity 

threshold, the computational overhead of controller, multi-homed 

devices, failure recovery and mobility of devices. 

The threshold determines the number of contents which can 

be cached in CRs of ICN, i.e., the threshold determines the val- 

ues of | F |. The proposed NCCM algorithm can be used in the gen- 

eral case that the threshold is greater than or equal to zero. If the 

threshold is zero, then all the contents can be cached in the ICN 

so the network performance can be optimized but the computa- 

tional complexity is high. In the case that the threshold is greater 

than zero, the values of | F | decreases and the number of variables 

in the proposed NCCM algorithm decreases, which leads to a sub- 

optimal network performance with lower computational complex- 

ity. Here we would like to note that, there always exists a trade- 

off between the network performance and computational complex- 

ity of the proposed NCCM algorithm. Nevertheless, usually, a small 

number of popular contents ( 14% − 30% ) consume a large propor- 

tion (90%) of bandwidth in traditional networks [35] . Therefore, it 

is reasonable that we only cache the popular contents in ICN. In 

practice, the threshold can be determined by considering the net- 

work performance and computational complexity of the proposed 

scheme. 

In our design, the main computational complexity is caused 

by executing the NCCM algorithm. We also believe that the pro- 

posed design can be realized in real SDN controller(s) because of 

the following reasons. Firstly, we note that, in the proposed NCCM 

scheme, the content caching and content routing for the next time 

period are pre-calculated based on the historical requests in the 

current time period. Therefore, the NCCM algorithm is executed 

off-line, which reduces the requirement of computation capacity 

of the controller. Secondly, for a large-scale ICN, the functionality 

of the controller can also be performed by several cooperated con- 

trollers, each of which will be responsible for managing the CRs in 

its domain and will exchange information with each other [36,37] . 

Thirdly, the computational complexity of the proposed NCCM al- 

gorithm is proportional to the number of contents that should be 

cached in the ICN, i.e., the size of the popular content set F . Since 

the value of | F | is determined by a threshold for local content pop- 

ularity, the threshold can be selected to balance the network per- 

formance and the computation complexity of the NCCM algorithm. 

Finally, over the past few years, many new controllers have been 

designed by using powerful multicore servers to handle a large 

number of data flows in big networks. For example, McNettle can 

manage around 20 million requests per second for a network with 

50 0 0 switches [16] . 

To handle the multi-homed devices, firstly, we can introduce 

a virtual CR with zero cache capacity for each multi-homed de- 

vice. We assume that the multi-homed device is only connected 

with the virtual CR and the virtual CR is connected with multi- 

ple CRs. All the requests from the multi-homed device can then 

be treated as the requests of the corresponding virtual CR. The 

links between each virtual CR and other CRs has zero bandwidth 

cost. With such a transformation, each multi-homed device can 

be treated as a single-homed device and we can further obtain 

a graph G for the input of NCCM algorithm. After we obtain the 

solution, data chunks transmitted from multiple CRs to a virtual 

CR means these data chunks are directly transmitted to the multi- 
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homed device corresponding to virtual CR. An example is shown in 

Fig. 14 : As shown in Fig. 14 , there are ten devices, which are shown 

in gray squares, and seven CRs, which are shown in white circles. 

For the multi-homed device u 1 , we add a virtual CR v 8 with zero 

cache capacity. Then the original network topology can be trans- 

formed to a network topology without multi-homed devices. After 

that we can obtain graph G based on it. We let the bandwidth cost 

of the links between v 1 and v 8 , v 3 and v 8 are zero. 

Failure recovery of hardware or protocols is an important is- 

sue and has been well studied for SDN [38,39] , ICN [40] and SDN 

based ICN [41] , respectively. For instance, [20] shows that, for the 

data chunk loss due to some failures (such as node failure, link 

failure, interface lockout, transmission error) and packet drop due 

to congestion etc., network coding can achieve better performance 

than the ICN without NC because the coded data chunks retrans- 

mitted by CRs are useful for all the devices which still need chunks 

of the same content. Moreover, the implementation of the ICN with 

NC has been proposed in [21] , in which the failure recovery issue 

has been handled by using retransmission on packets and retry on 

alternative paths. Since such hardware or protocols are the basis of 

SDN and ICN, the proposed NCCM algorithm can be well combined 

with these existing failure recovery techniques. 

In the proposed NCCM scheme, requests are sent from the de- 

vices. When a user moves to another place and connects to a new 

CR, it can simply re-request a number of coded data chunks of a 

content which have not been decoded and obtained yet. In this 

case, the user can be treated as a new user and the request only 

needs to specify the number of coded data chunks, because in ICN 

with NC, the user can decode and obtain the original content if 

it can obtain a sufficient number of coded data packets. Therefore, 
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(a) Original Network Topology. (b) Network Topology Transformation. (c) Graph G.

Fig. 14. An example of network topology transformation for the ICN with multi-homed devices. 

this is simpler than that in ICN without NC, such as CCNx. In CCNx, 

when a user moves to another location, it will re-request all the 

data chunks that have not been received. It has been shown that 

CCNx can still handle up to 97% of requests during high mobility 

[42,43] . 

8. Conclusion 

In this paper, we have systematically explored the power of 

LNC to reduce the network bandwidth cost and cache cost in ICNs. 

Specifically, we first proposed a novel SDN based framework for 

cache management in ICNs with LNC. We then formulated an op- 

timal cache management problem for ICNs with LNC to minimize 

the network bandwidth cost and cache cost by jointly consider- 

ing caching strategy and content routing. We also developed an 

efficient Lagrangian relaxation based algorithm namely, NCCM , to 

obtain near-optimal cache management solution. To evaluate the 

performance of the framework and the NCCM algorithm, we fur- 

ther derived the upper and lower bounds of the problem and con- 

ducted extensive experiments to compare the performance of the 

proposed NCCM algorithm with these bounds. Simulation results 

validate the effectiveness of the proposed NCCM algorithm and 

framework. Specifically, extensive numerical results show that the 

proposed NCCM algorithm gets within 10% of a lower bound of the 

optimal solution under most simulation scenarios. In addition to 

minimizing the network bandwidth cost, network security is an- 

other key challenge for communication networks. Search schemes 

over encrypted data have been studied in cloud environment 

[44–47] . In the future, we will explore the search schemes over 

encrypted data cached on CRs. 

Acknowledgement 

This work was supported in part by Collaborative Innovation 

Center of Novel Software Technology and Industrialization, the 

Natural Science Foundation of China (No. 61202378 , No. 61272462, 

No. 61271165, No. 61301153, No. 61572310 ), China’s 973 Program 

(2013CB329103), the Shanghai Oriental Scholar Program, Natural 

Science Foundation of the Higher Education Institutions of Jiangsu 

Province No. 16KJB520040, Application Foundation Research of 

Suzhou No. SYG201401, Hong Kong Research Grant Council under 

CRF C7036-15G, and Tianjin Key Laboratory of Advanced Network- 

ing (TANK), School of Computer Science and Technology, Tianjin 

University , Tianjin China, 300350 . 

Supplementary material 

Supplementary material associated with this article can be 

found, in the online version, at 10.1016/j.comnet.2016.08.004 . 

References 

[1] J. Wang, J. Ren, K. Lu, J. Wang, S. Liu, C. Westphal, An optimal Cache manage- 

ment framework for information-centric networks with network coding, in: 
IEEE/IFIP Networking Conference, 2014, pp. 1–9, doi: 10.1109/IFIPNetworking. 

2014.6857127 . 
[2] Cisco Visual Networking Index: Forecast and Methodology, 2014–2019, 2015, 

Technical Report, http://www.cisco.com/c/en/us/solutions/collateral/service- 

provider/ip- ngn- ip- next- generation- network/white _ paper _ c11-481360.html . 
[3] J. Li , X. Li , B. Yang , X. Sun , Segmentation-based image copy-move forgery de- 

tection scheme, IEEE Trans. Inf. Forensics Security 10 (2015) 507–518 . 
[4] Z. Pan , Y. Zhang , S. Kwong , Efficient motion and disparity estimation optimiza- 

tion for low complexity multiview video coding, IEEE Trans. Broadcasting 61 
(2015) 166–176 . 

[5] B. Ahlgren , C. Dannewitz , C. Imbrenda , D. Kutscher , B. Ohlman , A survey of 

information-centric networking, IEEE Commun. Mag. 50 (2012) 26–36 . 
[6] G. Zhang , Y. Li , T. Lin , Caching in information centric networking: A survey, 

Comput. Netw. 57 (2013) 3128–3141 . 
[7] V. Jacobson , D.K. Smetters , J.D. Thornton , M.F. Plass , N.H. Briggs , R.L. Braynard , 

Networking named content, in: ACMNEXT, December 2009, pp. 1–12 . 
[8] C. Fricker , P. Robert , J. Roberts , N. Sbihi , Impact of traffic mix on caching perfor- 

mance in a content-centric network, in: IEEE INFOCOM workshop NOMEN’12, 

March 2012, pp. 310–315 . 
[9] K. Cho , M. Lee , K. Park , T. Kwon , Y. Choi , S. Pack , WAVE: popularity-based and 

collaborative in-network caching for content-oriented networks, in: IEEE INFO- 
COM workshop NOMEN’12, March 2012, pp. 316–321 . 

[10] V. Sourlas , L. Gkatzikis , P. Flegkas , L. Tassiulas , Distributed cache management 
in information-centric networks, IEEE Trans. Netw. Service Manage. Early Ac- 

cess Online (2013) . 

[11] Z. Li , G. Simon , Time-shifted TV in content centric networks: The case for co- 
operative in-network caching, IEEE ICC, June 2011 . 

[12] V. Sourlas , P. Flegkas , G.S. Paschos , D. Katsaros , L. Tassiulas , Storage planning 
and replica assignment in content-centric publish/subscribe networks, Com- 

put. Netw. 55 (2011) 4021–4032 . 
[13] M. Draxler , H. Karl , Efficiency of on-path and off-path caching strategies in in- 

formation centric networks, in: IEEE GreenCom, November 2012, pp. 581–587 . 

[14] W.-S. Kim , S.-H. Chung , J.-W. Moon , Improved content management for in- 
formation-centric networking in SDN-based wireless mesh network, Comput. 

Netw. Available online (2015) . 
[15] S. Salsano , N. Blefari-Melazzi , A. Detti , G. Morabito , L. Veltri , Information cen- 

tric networking over SDN and OpenFlow: Architectural aspects and experi- 
ments on the OFELIA testbed, Comput. Netw. 57 (2013) 3207–3221 . 

[16] A. Voellmy , J. Wang , Scalable software defined network controllers, SIG- 
COMM’12 42 (2012) 289–290 . 

[17] A. Chanda , C. Westphal , Contentflow: mapping content to flows in software 

defined networks, IEEE Globecom, 2013 . 
[18] L. Veltri , G. Morabito , S. Salsano , N. Blefari-Melazzi , A. Detti , Supporting infor- 

mation-centric functionality in software defined networks, in: IEEE ICC, June 
2012, pp. 6645–6650 . 

[19] J. Kangasharju , J. Roberts , K.W. Ross , Object replication strategies in content 
distribution networks, Comput. Commun. 25 (2002) 376–383 . 

[20] M.-J. Montpetit , C. Westphal , D. Trossen , Network coding meets informa- 

tion-centric networking, in: ACM MobiHoc workshop NOM’12, June 2012, 
pp. 31–36 . 

[21] W.-X. Liu , S.-Z. Yu , G. Tan , J. Cai , Information-centric networking with built-in 
network coding to achieve multisource transmission at network-layer, Comput. 

Netw. Available online (2015) . 
[22] J. Ren , K. Lu , F. Tang , J. Wang , J. Wang , S. Wang , S. Liu , CAKA: a novel 

cache-aware K-anycast routing scheme for publish/subscribe-based informa- 

tion-centric network, Int. J. Commun. Syst. 28 (2015) 2167–2179 . 
[23] G. Szabo , B.A. Huberman , Predicting the popularity of online content, Com- 

mun. ACM 53 (2010) 80–88 . 

http://dx.doi.org/10.13039/501100001809
http://dx.doi.org/10.13039/501100004712
http://dx.doi.org/10.1016/j.comnet.2016.08.004
http://dx.doi.org/10.1109/IFIPNetworking.2014.6857127
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.html
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30244-4/sbref0022


 

 

  

  

� مقا�، از �ی  �ه مقا�ت ا �� ن سايت شده �� ��ه فاراي �� در  PDFكه #� فرمت  ميباشد ��

ان قرار � ايل ميتوانيد #� 6يک �� روی د3ه های ز��  گرفته است. اختيار -, عز�� از در صورت :�

اييد:سا�� مقا�ت  � استفاده :�   ن<�

  

  

  

  

  

  

  
  

  

  

ه شده از  �� � مقا�ت �� � ه فا ؛ مرجع جديد�� �� ت معت<� خار�B سايت �� �# ,Dن  

http://tarjomefa.com/
http://tarjomefa.com/%D8%AF%D8%A7%D9%86%D9%84%D9%88%D8%AF+%D9%85%D9%82%D8%A7%D9%84%D9%87+isi+%D8%A8%D8%A7+%D8%AA%D8%B1%D8%AC%D9%85%D9%87+%D8%B1%D8%A7%DB%8C%DA%AF%D8%A7%D9%86
http://tarjomefa.com/%D8%AC%D8%B3%D8%AA%D8%AC%D9%88-%D8%A8%D9%87-%D8%B1%D9%88%D8%B4-%D8%AA%D8%B1%D8%AC%D9%85%D9%87-%D9%81%D8%A7
http://isidl.com/



