Design and Development of Single Switch High Step-Up DC-DC Converter

S. Saravanan, and N. Ramesh Babu, Member, IEEE

Abstract—In this paper, a new single switch high step-up dc-dc converter with high voltage gain is proposed. The proposed topology is developed by combining boost and SEPIC converter with diode-capacitor circuit to reduce the stress across the semiconductor devices. The proposed converter produces low switching voltage and hence it improves its efficiency. The operating principle and the steady state performance analysis are discussed. The performance of the converter is validated by developing a prototype circuit with input voltage of 30 V, output voltage of 300 V and output power rating of 250 W. The theoretical analysis and experimental results concludes the proposed converter is suitable for high voltage applications.

Index Terms—DC-DC power conversion, high voltage gain, low voltage stress, single switch

I. INTRODUCTION

This non isolated dc-dc converter with high static gain has gained focus in research as there is a requirement of this technology for many applications which generates low dc voltage sources. The non conventional energy resources like Photovoltaic (PV) modules, small wind turbines and fuel cells [1],[2] generates low dc voltage and needs to be stepped up. Normally, low voltages are ranging from 12 V to 125 V and it must be boosted up to ac grid requirement voltage [3].

Renewable energy based distributed generation of power production got tremendous development as a most essential power producing sector due to its clean and environment friendly nature. And these power production results in low voltage profiles where there is a need for different converter topologies. High step-up converter design needs some key requirements such as high power density, reduced switching voltage stress, low weight, and low cost.

Manuscript received March 3, 2017; revised June 6, 2017 and July 26, 2017; accepted August 2, 2017. Date of publication January 19, 2018; date of current version July 31, 2017. This work was supported by School of Electrical Engineering, VIT University, Vellore, India. Recommended for publication by Editor Dragan Maksimovic.

S. Saravanan, and N. R. Babu, are with the School of Electrical Engineering (SELECT), VIT University, Vellore-632014, India. (e-mail: saravanansnjcf@gmail.com; nrameshbabu@vit.ac.in).

Digital Object Identifier
To overcome the disadvantages listed in the previous discussions, a non-isolated dc–dc converter with single switch is proposed in this paper. The proposed converter introduces a diode-capacitor circuit in series and also uses low voltage rating of MOSFET, low resistance \(R_{ON} \) due to which the voltage stress across MOSFET and diodes gets reduced. This increases the conversion efficiency of the proposed model.

The proposed converter is most suitable for the photovoltaic based power generation integrated with grid systems using inverter or ac module as shown in Fig. 1. The ratings of PV system with maximum output power \(P_{MP} = 250 \text{ W} \) and maximum output voltage \(V_{MP} = 30 \text{ V} \) has been considered for this study.

The further discussion of this paper is organized as follows: Section II presents the operational principles of the proposed converter. The performance analysis of the circuit is given in Section III. The design procedure of converter parameters is discussed in Section IV. The experimental results of 250 W prototype at full load condition are shown in Section V. Section VI, shows the conclusion of this study.

II. OPERATIONAL PRINCIPLE OF PROPOSED CONVERTER

The circuit topology of proposed converter is shown in Fig. 2. It consists of dc voltage source \(V_{in} \), main switch \(S \), three diodes \(D_1, D_2 \), and \(D_3 \), three capacitors \(C_1, C_2 \), and \(C_3 \), two inductors \(L_1 \) and \(L_2 \), output diode \(D_0 \), and capacitor output \(C_0 \). To increase the static voltage gain, diode-capacitor based SEPIC converter is proposed with the combination of boost converter. The diode-capacitor elements reduce stress on the switch. The capacitor \(C_2 \) is charged with the output voltage of conventional boost converter. The voltage from capacitor \(C_2 \) is applied to the inductor \(L_2 \) during conduction period of power switch \(S \) which increases the voltage static gain, when compare to conventional SEPIC. In order to simplify the circuit analysis, following assumptions were considered:

1) Semiconductor switch and diodes are ideal;
2) Switching frequency is constant;
3) All capacitors are designed for less voltage ripple at the switching frequency;

A. Continuous Conduction Mode Operation

The continuous conduction mode (CCM) operation is discussed for the proposed converter with its operating modes as shown in Fig. 3.

1) Mode I \([t_4-t_5] \): In this mode, the switch \(S \) and diode \(D_3 \) is turned ON and diodes \(D_1, D_2 \), and \(D_0 \) are in reverse biased condition as in Fig. 3(a). The energy is being stored in both inductors \(L_1 \) and \(L_2 \). The generation of charging current from the input voltage \(V_{in} \) makes capacitor \(C_1 \) to charge the capacitor \(C_2 \) through diode \(D_3 \) current \((i_{C2}-i_3) \). The output load gets energy from the discharge of output capacitor \(C_0 \). This operation ends, when diode \(D_3 \) current becomes zero at \(t=t_1 \).

2) Mode II \([t_5-t_6] \): In this mode, the switch \(S \) is turned ON and diodes \(D_1, D_2, D_3 \), and \(D_0 \) are in reverse biased as shown in Fig. 3(b). The current from input supply \(V_{in} \) is used to charge the inductor \(L_1 \). As \(D_0 \) is reverse biased, the output load \(R \) gets current flow due to capacitor current \(i_0 \). This mode ends, when the diode \(D_2 \) starts conducting mode at \(t=t_2 \).

3) Mode III \([t_6-t_7] \): In this mode, the switch \(S \) and diode \(D_2 \) is turned ON and diodes \(D_1, D_3, \) and \(D_0 \) are in reverse biased condition as shown in Fig. 3(c). The charge is stored in both inductors \(L_1 \) and \(L_2 \). The capacitor \(C_1 \) is being charged by \(i_3 \) of capacitor \(C_2 \) through diode \(D_2 \). The output capacitor \(C_0 \) starts discharging and provides the energy to load \(R \). This mode of operation terminates, when the main switch \(S \) is turned OFF and diode \(D_2 \) current become zero at \(t=t_3 \).

4) Mode IV \([t_7-t_9] \): In this mode, the switch \(S \) and diode \(D_2 \) is turned OFF and diodes \(D_1, D_3, \) and \(D_0 \) are in forward bias condition as shown in Fig. 3(d). This mode starts discharging the energy from both the inductors \(L_1 \) and \(L_2 \) with reverse polarity. The capacitor \(C_2 \) is getting charged by the current \((i_{L_2}-i_3) \) which flows from the inductor \(L_1 \) and capacitor \(C_1 \). The output capacitor \(C_0 \) and load \(R \) are getting charged from the capacitor \(C_3 \) through diode \(D_0 \). This mode of operation is ended, when the main switch \(S \) is turned ON at the next period.

The main theoretical waveforms of proposed converter are shown in Fig. 4. The switching voltage and voltage across all the diodes are less than the output voltage. The voltage in power switch \(S \) and the diodes \(D_1, D_3, \) and \(D_0 \) are equal to the capacitor \(C_2 \) voltage. The voltage in diodes \(D_1 \) and \(D_3 \) is equal to the capacitor \(C_1 \) voltage. The output voltage is equal to the sum of the capacitors \(C_1 \) and \(C_2 \) voltage, when the switch is turned off and expressed as:

\[
V_{out} = V_{C1} + V_{C2}
\]

B. Discontinuous Conduction Mode Operation

The discontinuous conduction mode of the proposed converter is operated in three modes of operation, is shown in Fig. 5 and described as follows:

1) Mode I \([t_0-t_1] \): During this mode, the switch \(S \) and diode \(D_2 \) is turned ON and diodes \(D_1, D_3, \) and \(D_0 \) are in reverse biased condition as shown in Fig. 5(a). The input current is stored in inductors \(L_1 \) and \(L_2 \). The current through the inductor \(L_2 \) is less than the \(L_1 \), but the voltage applied for both inductors are equal to input voltage \(V_{in} \) as in (2).

The output capacitor \(C_0 \) discharges and transforms the energy to load \(R \). This mode of operation ends, when the main switch \(S \) is turned OFF and diode \(D_2 \) current becomes zero at \(t=t_1 \).

\[
V_{in} = V_{L1} = V_{L2}
\]
Fig. 3. Operational modes of the proposed converter during one switching period at CCM operation. (a) Mode I. (b) Mode II. (c) Mode III. (d) Mode IV.

2) Mode II [t2-t3]: During this mode, the switch S and diode D2 is turned OFF and diodes D1, D3, and D0 are in forward bias condition as in Fig. 5(b). The current from input supply V_{in} is used to charge the inductor L_{i} and capacitor C_{2} in turn the current i_{C2} is used to charge the inductor L_{2}. The capacitor C_{2} is charged by the current flowing through the diode D_{1} and the switching voltage is equal to capacitor C_{2} voltage. In this mode, t_{d} is the conduction time of diodes during which the inductors L_{1} and L_{2} energy is transferred to C_{1} and C_{2} respectively. The output capacitor C_{O} and load R are getting charged from the capacitor C_{j} through diode D_{O}.

3) Mode III [t3-t4]: During this mode, the switch S is turned OFF and diodes D_{1}, D_{2}, D_{3}, and D_{O} are in reverse bias condition as shown in Fig. 5(c). The voltage across the inductors L_{1} and L_{2} become zero and current through the inductors remains same as given in (3), where the mode acts in freewheeling stage. The charge stored in capacitor C_{O} is discharged to load R. When switch S is turned ON condition, this mode ends at $t=t_{5}$.

$$V_{L1} = V_{L2} = \Delta i_{L1} = \Delta i_{L2} = 0$$ \hspace{1cm} (3)

The main theoretical DCM waveforms of proposed converter are presented in Fig. 6. The average current inductor L_{j} is equal to the input current ripple and average current of the inductor L_{2} is same as the output current of the converter.

III. PERFORMANCE ANALYSIS OF THE PROPOSED CONVERTER

Steady state analysis and their design equations of the proposed converter are presented in this section.

The static gain of the proposed converter is obtained by assuming average inductors voltage as zero at steady state condition. During CCM operation, the following relation (4) is formulated for the inductor L_{1}.

$$V_{in}D = (V_{C2} - V_{in})(1-D)$$ \hspace{1cm} (4)

where, V_{in} is the input voltage of proposed converter, D is the duty cycle, and V_{C2} is the capacitor voltage. The capacitor C_{2} and C_{j} voltages are obtained similar to conventional boost converter static gain as given below,

$$\frac{V_{C2}}{V_{in}} = \frac{1}{1-D}$$ \hspace{1cm} (5)

$$\frac{V_{C3}}{V_{in}} = \frac{1}{2(1-D)}$$ \hspace{1cm} (6)

The relation considered for the average inductor L_{2} voltage at steady state condition is given in (7),

$$(V_{C2} - V_{C1})D = (V_{out} - V_{C2} - V_{C3})(1-D)$$ \hspace{1cm} (7)

From equation (1),

$$V_{C1} = V_{out} - V_{C2}$$ \hspace{1cm} (8)

By substituting (5), (6) and (8) in (7), the voltage gain is computed as,

$$\frac{V_{out}}{V_{in}} = \frac{3 + D}{2(1-D)}$$ \hspace{1cm} (9)
Equation (9), is rearranged to find duty cycle as (10),

$$D = \frac{2V_{\text{out}} - 3V_{\text{in}}}{2V_{\text{out}} + V_{\text{in}}}$$ \hfill (10)$$

The capacitor C_1 voltage is formulated by substituting (5) and (9) in (8),

$$\frac{V_{C1}}{V_{\text{in}}} = \frac{1 + D}{2(1-D)}$$ \hfill (11)$$

The static gains of the classical boost, SEPIC, modified SEPIC [10], high step [23] along with proposed converter are illustrated in Fig. 7. From Fig. 7, it is observed that the voltage gain of the proposed converter reaches maximum of 10 with duty cycle of $D = 0.81$. Also, it is observed that the proposed converter gain is higher than other compared converters at any particular duty cycle. During the DCM operation, the proposed converter at steady state condition with voltage across the both inductors to be assumed as zero and the capacitor C_2 voltage is equal to sum of the input voltage V_{in} and capacitor C_1 voltage in equation (12). The operation mode in DCM of proposed converter is illustrated as follows:

$$V_{C2} = V_{\text{in}} + V_{C1}$$ \hfill (12)$$

The average voltage across both the inductors L_1 and L_2 are equal to null, during the steady state operation of the converter as given in (13). D_d is duty cycle during t_d and t_a is the conduction period of diodes D_1, D_3, and D_0.

$$V_{\text{in}}D = (V_{C2} - V_{\text{in}})D_d$$ \hfill (13)$$

$$\frac{V_{C2}}{V_{\text{in}}} = \frac{D_d + D}{D_d}$$ \hfill (14)$$
From the (1), the capacitor \(C_2\) voltage is considered as,

\[V_{C2} = V_{out} - V_{C1} \]
(15)

Substituting (12) in (15), the capacitor \(C_i\) voltage is obtained as follows:

\[V_{C1} = \frac{V_{out} - V_{in}}{2} \]
(16)

Substituting (16) in (15), the capacitor \(C_2\) voltage is obtained as follows:

\[V_{C2} = \frac{V_{out} + V_{in}}{2} \]
(17)

The static gain of proposed converter is obtained for DCM operation by substituting (17) in (14),

\[\frac{V_{out}}{V_{in}} = \frac{D_{id} + 2D}{D_{id}} \]
(18)

\[D_{id} = \frac{2V_{in}D}{V_{out} - V_{in}} \]
(19)

The average current through the diode \(D_o\) is equal to the output current \(I_{out}\),

\[\frac{1}{2} D_{id} i_{D0} = I_{out} \]
(20)

where,

\[i_{D0} = \frac{V_{in}}{L_{eq} f_S} \]
(21)

\[L_{eq} = \frac{L_2}{L_1 + L_2} \]
(22)

Combining (19), (20) and (21), the output voltage can be obtained and the voltage gain in DCM operation with inductor time constant, \(\tau\) is,

\[\frac{V_{out}}{V_{in}} = \left(1 + \frac{2D^2}{\tau} \right)^{1/2} \]
(23)

The capacitor \(C_i\) voltage is derived by substituting (16) in (18),

\[\frac{V_{C1}}{V_{in}} = \frac{D}{D_{id}} \]
(24)

The theoretical analysis, modes of operation and waveforms of proposed converter for both CCM and DCM operation is presented in this paper. The static gain, capacitors \(C_1\) and \(C_2\) voltages are derived for both CCM and DCM operations in proposed converter.

During boundary conduction mode, the voltage gain of CCM is equal to DCM. Combining (9) and (23), the normalized boundary inductor time constant can be calculated as follows,

\[\tau_B = \frac{2D(1-D)^2}{1+3D} \]
(25)

Fig. 8, plots the relation between \(\tau_B\) and \(D\). If, \(\tau > \tau_B\) the converter operates in CCM, else it will operate in DCM. Table I shows the comparison of components used in proposed converter with other converters. From [22], four types of converters are chosen for comparison which is designed with 50 kHz switching frequency. The SH-SLC (Symmetrical Hybrid – Switched Inductor Converters) and SC-boost (Switched capacitor - boost) has the average sum of input and output voltage as switching voltage. The AH-SLC (Asymmetrical Hybrid – Switched Inductor Converters) has the drawback of high switching voltage. The SL-boost (Switched Inductor - boost) and [23] has the similar static gain with switching voltage equal to the output voltage of the converter. The proposed converter operates with less switching frequency and reduced switching voltage for high voltage gain, when compared with other converters. The efficiency of the proposed converter is 92.2% which is better than the other converter topologies for full load condition and operates with low switching voltage.
TABLE I

COMPARISON OF CONVERTERS PARAMETERS

<table>
<thead>
<tr>
<th>Topology</th>
<th>SH-SLC</th>
<th>AH-SLC</th>
<th>SC-Boost</th>
<th>SL-Boost</th>
<th>Proposed Converter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Power, P</td>
<td>200 W</td>
<td>200 W</td>
<td>200 W</td>
<td>200 W</td>
<td>100 W</td>
</tr>
<tr>
<td>Output Voltage, V_out</td>
<td>200 V</td>
<td>200 V</td>
<td>200 V</td>
<td>200 V</td>
<td>380 V</td>
</tr>
<tr>
<td>Switching Frequency, f</td>
<td>50 kHz</td>
<td>50 kHz</td>
<td>50 kHz</td>
<td>50 kHz</td>
<td>100 kHz</td>
</tr>
<tr>
<td>(No. Of Switch, Diode, Inductor, Capacitor)</td>
<td>(2, 7, 4, 1)</td>
<td>(2, 4, 3, 1)</td>
<td>(1, 3, 2, 3)</td>
<td>(1, 4, 2, 1)</td>
<td>(1, 3, 1, 5)</td>
</tr>
<tr>
<td>Voltage Gain</td>
<td>(1 + \frac{3D}{1 - D})</td>
<td>(1 + \frac{2D}{1 - D})</td>
<td>(2)</td>
<td>(4)</td>
<td>(1 + D)</td>
</tr>
<tr>
<td>Switching Voltage Stress</td>
<td>(V_{out} + V_{in})</td>
<td>(1 + 2V_{out})</td>
<td>(V_{out} + V_{in})</td>
<td>(V_{out})</td>
<td>(V_{out})</td>
</tr>
<tr>
<td>Efficiency, (\eta)</td>
<td>91.5%</td>
<td>90.3%</td>
<td>90.1%</td>
<td>89%</td>
<td>90.6%</td>
</tr>
</tbody>
</table>

IV. DESIGN STEPS OF THE PROPOSED CONVERTER

The equations used to design the proposed non-isolated dc-dc converter operating in continuous conduction mode (CCM), are presented in following specifications:

A. \(L_1\) and \(L_2\) Inductances

The value of inductance is designed by using the equation (26) and (27).

\[
L_1 = \frac{V_{in} D}{\Delta i_L f_s} \tag{26}
\]

\[
L_2 = \frac{V_{C2}(1 - D)}{f_s \Delta i_L} \tag{27}
\]

where, \(f_s\) is the switching frequency, \(\Delta i_L\) is ripple current \(V_{C2}\) is the capacitor voltage and \(V_{in}\) is the input voltage.

B. \(C_1, C_2\) and \(C_3\) Capacitors

The capacitors \(C_1, C_2\) and \(C_3\) are designed for proposed converter by assuming same voltage ripple. Usually, the small capacitance value is obtained with low series equivalent resistance. The value of capacitor is designed by using the capacitor voltage ripple \(\Delta V_C\) in the equation (30). A capacitor voltage ripple as 10% (0.1) of the nominal voltage of the capacitor \(C_2\) is assumed. The capacitor charge variation \(\Delta Q\) is given as,

\[
\Delta Q = \frac{I_{out} D}{f_s} \tag{28}
\]

\[
\Delta V_C = \frac{\Delta Q}{C} \tag{29}
\]

\[
C = C_1 = C_2 = C_3 = \frac{I_{out} D}{\Delta V_C f_s} \tag{30}
\]

where,

\[
\Delta V_C = \left(\frac{V_{in}}{1 - D}\right)(0.1) \tag{31}
\]

C. Power Switch Voltage

The switching voltage is an important parameter of a circuit in high voltage application which increases the converter cost and efficiency. The proposed converter in this paper drastically reduces the high switching voltage compared with conventional boost and SEPIC converter. The switching voltage of proposed converter is equal to the capacitor \(C_2\) voltage and is given in (32). From the analysis, the switching voltage of the proposed converter is less than the output voltage for all different input voltage.

\[
V_s = \frac{V_{in}}{1 - D} \tag{32}
\]

where, \(V_s\) is the switch voltage of the proposed converter.

D. Output capacitor \(C_O\)

The output capacitor is represented as the function of duty cycle \(D\), output current \(I_{out}\), switching frequency and output voltage ripple \(\Delta V_O\). The output capacitor is calculated using (33), by considering peak-peak output voltage ripple equal to 1% of the output voltage,

\[
C_O = \frac{I_{out} D}{f_s \Delta V_O} \tag{33}
\]

where,

\[
I_{out} = \frac{V_{out}}{R} \tag{34}
\]

V. EXPERIMENTAL RESULTS

To express the usefulness of the notional analysis in the proposed converter, a prototype circuit model is implemented and tested in the laboratory as shown in Fig. 9. The components used in the prototype model along with its ratings are tabulated in Table II.
Fig. 9. Experimental prototype of proposed converter.

Fig. 10. Experimental results of proposed converter. (a) I_{L1} and I_{L2} (b) V_{C1} and V_{C2} (c) V_{in} and V_{out} (d) V_{D1} and V_{D2} (e) V_{DO}.

Table II

<table>
<thead>
<tr>
<th>Components and Parameters of Proposed Converter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Components</td>
</tr>
<tr>
<td>Maximum Output Power, P</td>
</tr>
<tr>
<td>Input Voltage, V_{in}</td>
</tr>
<tr>
<td>Output Voltage, V_{out}</td>
</tr>
<tr>
<td>Switching frequency, f_s</td>
</tr>
<tr>
<td>Power MOSFET, S</td>
</tr>
<tr>
<td>Diodes, D_1, D_2, D_3, and D_0</td>
</tr>
<tr>
<td>Inductance, L_1 and L_2</td>
</tr>
<tr>
<td>Capacitors, C_1, C_2, and C_3</td>
</tr>
<tr>
<td>Output Capacitor, C_D</td>
</tr>
</tbody>
</table>
The efficiency of the proposed converter achieves 92.2% high voltage gain with low conduction loss can be achieved. The proposed converter for 250 W power rating is tested in laboratory setup and validated the results. All the results obtained from the proposed converter are measured using Mixed Signal Oscilloscope (MSO). The switching pulse required for MOSFET is generated using dSPACE 1104 controller. The results taken from the proposed high step-up dc-dc converter operated under CCM at full load (250 W) is shown in Fig. 10. Fig. 10(a) shows the L_1 and L_2 inductor current waveforms. The input current is equal to the average of L_1 current and the output current is equal to the average of L_2 current.

In Fig. 10(b) capacitors C_1 and C_2 voltage waveforms are shown. From the Fig. 10(b) it is observed that, the value of capacitor is 161 V and the C_1 voltage is around to 142 V. The sum of capacitors C_1 and C_2 voltages is equal to the output voltage of the proposed converter. The input and output voltage waveforms for the proposed converter clearly shows that the voltage is stepped up ten times than the input voltage given to the converter and they are shown in Fig. 10(c). The input voltage given to the converter is 30 V and it provides output voltage of 297 V which is approximately near to the designed voltage level.

The switching voltage of power MOSFET is verified and found that in proposed converter it is 162 V. Fig. 10(d) and (e), shows the diodes D_1, D_2, D_3, and D_0 voltage waveforms. The voltage waveforms of diodes D_1 and D_0 is 163 V and 158 V which is close to the capacitor C_2 voltage (~161 V) and diodes D_2 and D_3 is 78 V and 82 V which is nearly the capacitor C_3 voltage (~78.5V). Fig. 11 shows the experimental results of the converter efficiency under various loading conditions. The proposed converter efficiency is equal to 92.2% at the full load power. Table III shows the cost analysis of the proposed converter for two different rating like 250 W and 250 kW. It clearly shows that the proposed converter is more cost effective when the power rating is increased. The proposed converter for 250 W power rating is designed and tested in laboratory setup and validated the results.

VI. CONCLUSION

A new single switch high static gain non-isolated dc-dc converter is presented in this paper. The proposed converter topology is suitable for renewable energy based applications having low input dc voltage. The proposed converter provides high voltage conversion without using transformer and coupled inductor. The semiconductor power devices used in this topology having reduced voltage stress with low ON-resistance in switch. The steady state analysis based CCM and DCM operations are performed with static gain and presented in this paper. The experimental prototype of the proposed converter is implemented and verified its operation in laboratory. The prototype results ensure high efficiency and high voltage gain with low conduction loss can be achieved. The efficiency of proposed converter achieves 92.2% operating with input voltage equal to 30 V and output voltage around 300 V.

REFERENCES

S Saravanan received the B.E. degree in Electrical and Electronics Engineering in 2012 from Karpagam College of Engineering, Coimbatore, India. and M.E. degree in Power Electronics and Drives in 2014 respectively from Sri Krishna College of Engineering and Technology, Coimbatore, India. He is currently working towards his Ph.D. degree at VIT University, Vellore, India. His areas of interest include Power Electronics and its Applications in renewable energy systems.

N Ramesh Babu received his B.E. degree in Electrical and Electronics Engineering in 2012 from Karpagam College of Engineering, Coimbatore, India, and received his M.E. degree in Applied Electronics from Anna University, India. Also, he obtained his Ph.D. degree from VIT University, India. Currently, he is a Associate Professor and Head of Department of Instrumentation, School of Electrical Engineering (SELECT), VIT University, Vellore, India. He is currently serving as an Associate Editor in IEEE Access journal. His current research includes Wind Speed Forecast, Optimal Control of Wind Energy Conversion System, Solar Energy and Soft Computing techniques applied to Electrical Engineering. He published more than 50 journal articles and many conference papers.