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a b s t r a c t

Existing GPU antialiasing techniques, such as MSAA or MLAA, focus on reducing aliasing artifacts along
silhouette boundaries or edges in image space. However, they neglect aliasing from shading in case of
high-frequency geometric detail. This may lead to a shading aliasing artifact that resembles Bailey's Bead
Phenomenon—the degradation of continuous specular highlights to a string of pearls. These types of
artifacts are particularly striking for high-quality surfaces. So far, the only way of removing aliasing from
shading is by globally supersampling the entire image with a large number of samples. However, globally
supersampling the image is slow and significantly increases bandwidth consumption. We propose three
adaptive approaches that locally supersample triangles only where necessary on the GPU. Thereby,
we efficiently remove artifacts from shading while aliasing along silhouettes is reduced by efficient
hardware MSAA.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Nobody will ever solve the antialiasing problem. – Jim Blinn [1]

Aliasing artifacts appear as jagged lines in still images and as
flickering in animations. Given even the latest advances in com-
puter graphics, there is still no comprehensive solution to the
problemwithout significantly impacting performance, as observed
by [2,3,1]. While it is perfectly understood that these artifacts
occur due to violation of the Nyquist–Shannon sampling theorem
[4], there still is no straightforward solution without disregarding
performance.

The type of aliasing artifact we discuss in this work is
illustrated in Fig. 1: The rendering shows a sideways view on the
body of a BMW 3 series with specular highlights along sharp
features. While this specular highlight should appear as one long
continuous bright area, it degrades to a series of bright spots. This
artifact resembles Bailey's Bead Phenomenon, which is observable
during solar-eclipses: sun-rays that graze the moon occur as a
bead chain. The white pixels in Fig. 1 can be considered the pearls,
and the grey pixels the string of the bead.1 Since we were not able
to find an appropriate term for this mainly ignored kind of
aliasing, we will refer to it as “bead chains” in this paper. When
animating such a scene, the artifacts are amplified by an apparent

flickering, as the bright spots begin to move and jump. What
makes things even worse is that such fine highlights from folds are
usually an important design element, and their proper display is
particularly important.

Current antialiasing techniques are geared toward reducing
aliasing along silhouette boundaries and visible edges, but they fail
to antialias bead chains. The fundamental problem is that the
highlight is both very bright and very thin, and any anti-aliasing
method based on sampling in image space is likely to miss this
feature, even with high supersampling. However, the appearance
of the effect can be predicted well in object space, for instance by
analyzing surface-normal vector variation. The idea is to single out
those few triangles that are likely to generate artifacts and to
enforce very high sampling rates only for these.

In this paper, we describe and examine three different variants
to achieve this. We show that all these approaches remove aliasing
from bead chains, and generate high-quality renderings in real-
time. Our techniques focus on the bead chain artifacts, but the
basic idea applies to all types of aliasing that are predictable in
object space.

2. Previous work

Aliasing is well understood from a theoretical point of view.
The Nyquist–Shannon sampling theorem [4] is violated and there-
fore artifacts occur. To get rid of these artifacts, many different
methods have been developed, and there is a vast body of research
on antialiasing techniques. For more details, see [5] and references
therein.
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Super-Sample Antialiasing (SSAA) is the most straightforward
way of performing antialiasing. Spatial SSAA raises the image
resolution and subsequently downsamples the intermediate image
to the target image size. Temporal SSAA jitters the camera
positions across a series of frames and accumulates the results in
the target image [6]. These approaches, however, are costly with
respect to both memory usage and performance. Especially fill-
rate suffers, due to the high number of fragment shader evalua-
tions. From an image quality point of view, however, SSAA with an
arbitrarily high number of samples can be seen as the ground truth
regarding antialiasing. It would be possible to increase the
sampling rate to a point where the Nyquist–Shannon sampling
theorem is met at every point of the scene.

Hardware supported Multi-Sample Antialiasing (MSAA [7]) also
increases the sampling frequency, however, only one fragment
shader per primitive covering a pixel is evaluated at the pixel
center. MSAA currently is the most widespread technique for
antialiasing and works very well in a wide range of applications,
especially for geometrical edges. For better image quality, centroid
sampling can be enabled: Using regular MSAA, the position of the
fragment shader might be outside of the sampled primitive which
introduces artifacts. With centroid sampling, one of the covered
multi-samples is selected as position of the fragment shader
evaluation. More recent hardware techniques such as CSAA [8]
and EQAA [9] follow the same principle. To allow a finer assess-
ment of the pixel area a primitive covers, coverage samples are
introduced. These samples only determine pixel coverage and do
not issue fragment shader evaluations.

The increasing popularity of deferred shading rendering tech-
niques raises the necessity for screen-space antialiasing methods,
such as morphological antialiasing (MLAA) [10]. The basic idea
behind MLAA is to take the final image, detect edges, re-vectorize

these edges, and re-sample the image. Therefore, MLAA is a post-
processing step, and it easily integrates nearly in any rendering
pipeline. Techniques, such as FXAA [11], SRAA [12], and SMAA [13]
further improve MLAA. All these techniques exhibit good image
quality, while adding only little overhead. However, they only
perform antialiasing for visible edges and cannot improve on other
aliasing artifacts like bead chains.

A survey paper that discusses surface shading was published by
[14]. In this paper approaches toward pre-filtering the shading
information (normals, horizon maps,…) that is covered by one
pixel are discussed. The idea is to pre-filter for example the
normals that occur in the area of one pixel. Since averaging
normals linearly is not correct they rather pre-filter normal
distribution functions.

So far we have focused on real-time rendering techniques for
antialiasing. There are two nonreal-time approaches our work is
loosely based on that have to be mentioned. First the well known
Reyes rendering architecture [15]. The idea of subdividing an
object into micro-polygons until their size is approximately the
size of one pixel, comes very close to our approach of resampling
in object space. Second, in ray tracing adaptive supersampling is
very widespread. An early implementation was described by [16].
The idea is to adaptively refine the sampling at image positions
based on a criterion that includes information such as edges
between objects and contrast of the area. This comes close to
the adaptive supersampling algorithms we will describe later on.

In his work “Pyramidal Parametrics”, [17] is the first one to
describe the “bead chain” artifact with its annoying characteristics
while moving. His solution to the problem is a mip-mapped
(pyramidal) parametric illumination map that is able to antialias
the aliasing from shading. He also suggests a solution where the
local curvature of a model is limited. While both these solutions
sound interesting, the first one is geared toward environment
maps and the second one is prohibited in our case, as we do not
want to change the model.

Nankervis shows an interesting approach toward antialiasing
[18]. His idea is to separate shading from geometric sampling. To
achieve this he renders the scene at a lower resolution and adds
the geometry to per-pixel linked lists. In a second pass, the linked
lists are traversed and coverage is evaluated at a higher resolution.
We will use a similar approach later on, but while Nankervis
supersamples the coverage, we supersample the shading.

3. Problem analysis

In the section, we analyze the sample configurations depicted
in Fig. 2 and find that triangle size and normal variation are the two
causes for bead chain artifacts. This helps us understand, why
known antialiasing methods are incapable of removing bead chain
artifacts.

Fig. 1. Sideways view on the body of a BMW (500 k triangles) with specular
highlights along sharp features without any antialiasing. While this specular
highlight should appear in the form of one long continuous bright area, it degrades
to a series of bright spots.

Fig. 2. Three sample configurations showing the two problems leading to bead chains. Looking at the orange sampling location, (a) shows that the green triangle, containing
the specular highlight, is not sampled at all. Moving to (b) the specular highlight is sampled. In (c) the green triangle is sampled but the specular highlight is missed. For the
orange sample location this results in (a) dark, (b) bright, and (c) dark. (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this article.)
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3.1. Triangle size

The screen-space size of a triangle is one cause for aliasing
artifacts due to shading. Between the configurations in Fig. 2
(a) and (b), the sample scene is moved only slightly, resulting in a
vastly different outcome for the pixel containing the orange
sampling location. While the green triangle in Fig. 2(a) is not
sampled at all, it is sampled three times in Fig. 2(b). Only a slight
movement of the triangles, the orange sample point can either be
a dark pixel (Fig. 2(a)), or a bright pixel (Fig. 2(b)). This leads to
flickering artifacts during animations and bead chains for still
images.

3.2. Normal variation

The second cause of aliasing artifacts due to shading is the
triangle's per-vertex normal variation. In Fig. 2(b) and (c) the
sampling location, represented by an orange circle, covers the
green triangle. Even though the triangle is sampled in both cases,
we obtain bead chains, as the pixel is bright in Fig. 2(b) and dark in
Fig. 2(c). This is because the shading highlight is sampled in Fig. 2
(b) but it is missed in Fig. 2(c). Therefore, the bead chains are due
to the size of the specular highlight (and not due the size of the
triangle). The size of specular highlights computed with per-pixel
lighting can be predicted by analyzing how much the three per-
vertex normals of a triangle vary amongst each other: the higher
the variation the smaller the highlight. In the example Fig. 2, the
variation is high.

These two properties, which can be summed up as follows:

will lead to the effects we described as bead chains.

3.3. Using known methods

Existing methods (see Section 2) are not able to effectively
antialias the described shading artifacts with acceptable perfor-
mance. Hardware techniques, such as MSAA, CSAA, or EQAA, are
geared toward antialiasing silhouette boundaries and the number
of multi-samples is limited on current GPUs. Thus, triangles
smaller than the sample spacing are not necessarily rasterized,
as they might not be covered by any sample at all. MSAA improves
upon bead chain type artifacts, as a pixel may contain information
from multiple triangles. Due to the small size of triangles, it is
important to enable centroid sampling to prevent fragment shader
evaluation outside of the triangle. However, only one fragment
shader evaluation per-pixel and primitive is carried out. Therefore,
MSAA-type methods fail to account for aliasing inside a primitive.

SSAA yields better results from a quality point of view, as every
supersample is associated with one fragment shader evaluation.
With SSAA, we could increase the sampling frequency to a point at
which no more aliasing is visible. However, SSAA globally super-
samples the image, also in locations, where fewer samples would
suffice. In order to deal with aliasing from shading, high super-
sampling rates are necessary. For real-time scenarios, this is
prohibitive regarding performance and memory consumption.
Yet, we use SSAA as a “ground truth” in terms of image quality.

MLAA based techniques fail to antialias bead chains, as they
only work for visible edges in image space. Adapting MLAA to
handle aliasing from shading requires detecting and resolving the
artifacts in image space. Detecting the given type of artifacts is
difficult, as they occur in a variety of different patterns. Correctly

removing them is even more difficult, as too much information is
already lost in image space.

4. Adaptive supersampling

Based on the analysis of Section 3, we propose approaches
tailored to deal with the special properties of bead-chain type
artifacts. To handle other types of aliasing, MSAA proved to be a
very good choice. Therefore, we render the entire scene using
MSAA with centroid sampling into an off-screen render target,
first. Taking this initial image and depth buffer, we make use of the
fact that we know exactly which parts of the geometry lead to
aliasing from shading. By placing additional samples on these
critical triangles and blending them with the initial image, we can
antialias bead chains.

The implementation of sorting out critical parts of geometry is
also shared among all our implementations and performed in a
preprocessing step. We categorize triangles based on their per-
vertex normal variation, which is independent of the viewing
transformation. Implemented using geometry shaders, triangles
can be re-categorized quickly upon changes in geometry. The
categorization works as follows: If one of the three mutual angles
between the per-vertex normals of a triangle is above a user-
specified threshold, we mark the triangle as critical. Depending on
the lighting model and its parameters, we found that normals
varying more than 2–12 degrees are prone to show bead chain
artifacts. Note that we used Phong lighting and this rather simple
criterion is sufficient. The decision if a triangle is critical may
become more complex for more sophisticated lighting models.

In the following three sections, we will present algorithms for
generating and blending additional samples. Following the basic
idea of alleviating aliasing from shading by selectively forcing
additional shader evaluations, we call our approach SSS.

4.1. Geometry shader SSS

The first implementation, that follows the previously described
idea, mainly uses the geometry shader stage of the graphics
pipeline. Inside the geometry shader, the screen-space size and
the per-vertex normal variation of a triangle is computed. Based
on these two factors, the triangle is either discarded because of not
being critical in the current view, or marked to trigger additional
fragment shader evaluations.

We can further reduce the number of triangles processed with
any of our three algorithms using an early-exit heuristic: In the
geometry shader, we evaluate the per-vertex normals of the
triangle and compute how far it is away from a specular highlight
(considering Phong lighting in our case). If this value is below a
threshold, we assume that the triangle can be considered as no
longer critical regarding aliasing from shading. Therefore, this
triangle is not further processed. Fig. 3 and Table 1 show that
our heuristic significantly reduces the amount of triangles pro-
cessed and therefore improves rendering times by a large amount.

To trigger additional fragment shader evaluations inside the
current triangle, point primitives are generated and passed down
the rendering pipeline. Points are generated pseudo randomly on
the inside of the triangle with additional samples along the border.
The depth buffer is locked during this rendering pass and the
points are drawn with a depth offset to ensure rasterization.
The depth offset is required, because we use the depth buffer of
the offscreen rendered complete scene at this point to prevent
points from hidden geometry to become visible. For correct
blending of the points the color value resulting from lighting
computations inside the fragment shader stage is weighted with
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the size of the point. The size of the point is determined by the size
of the source triangle and the number of generated points.

To get the final image, the additional samples are written to an
offscreen render target and are blended with the previously
rendered MSAA antialiased image. This is achieved in an additional
rendering pass.

The hardware tessellation in DirectX 11 is unsuitable for our
purposes because the tessellator stage cannot output point primi-
tives. We could configure the tessellator to generate a large
amount of triangles to simulate point rendering, however, this is
very costly from a performance point of view.

4.2. Compute shader SSS

Starting from the point based implementation using the
geometry shader, we implemented a second version that uses
compute shaders. Using compute shaders, we aimed at achieving a
better occupancy of the graphics card by having more control over
how the processing takes place.

Each compute shader processes one triangle. The vertices have
to be transformed into screen space and samples are generated
like described in Section 4.1. Taking these sample positions the
lighting computations are performed right inside the compute
shader and therefore the rest of the rendering pipeline is cut out.
This improves performance. The resulting color values have to be
written into an off-screen render-target using a scattered write.

DirectX 11 currently does not offer the required synchronized
add operation for floating point values. There is a workaround
using InterlockedCompareExchange that includes a busy wait which
introduces a massive performance hit. Considering that we only
have to deal with values between 0 and 1, we decided on

converting the floating point values to scaled integer values. For
integer values, a synchronized add operation is available.

Similar to Geometry Shader SSS, the final image again has to be
composited in an additional rendering pass.

4.3. Per-Pixel linked list SSS

The last and maybe most advanced approach we took, is
utilizing per-pixel linked lists.

With the introduction of atomic memory access operations,
atomic counters, and random memory access in DirectX 11 and
OpenGL 4.2, it is possible to maintain one linked lists per pixel on
the GPU in real-time [19].

To achieve this, we require a node-buffer and a head-buffer
stored in GPU memory. The node-buffer contains the data of the
list elements and an offset to the previous entry of the list. For
every pixel of the render target, the head-buffer stores an offset to
the last list element in the node-buffer. The head-buffer therefore
has the same size as the render target.

When adding an element to a per-pixel linked list, a global
counter that points to the first free element of the node-buffer is
incremented. The payload is written to the node-buffer. Using
atomic operations to avoid race conditions, the pixel's head-buffer
entry is exchanged with the value of the global counter. The
previous entry of the head-buffer serves as an offset to the
previous list element.

The core of the algorithm consists of two passes: In the first
pass, we create per-pixel linked lists, containing all the information
required for antialiasing (Section 4.3.1). A second pass resolves the
per-pixel linked lists, and creates antialiased pixels (Section 4.3.2)
that are blended with the previously rendered complete scene.

4.3.1. Create per-pixel linked lists
To resolve the problem of triangles not covering sampling

locations, we decided on performing conservative rasterization
[20]. Using this technique, a triangle is enlarged such that for every
pixel the triangle intersects, a fragment shader evaluation is
ensured. This is depicted in Fig. 4. The screen-space bounding
box for the green triangle is computed and enlarged by half a pixel
in every direction. The enlarged bounding box covers all pixel
centers of pixels the triangle intersects. These computations are
carried out in a geometry shader, and the enlarged bounding box
is passed down the rendering pipeline alongside all information

Fig. 3. Effect of using a heuristic based on the vicinity to a specular highlight for discarding critical geometry. Notice the massive drop in the number of triangles processed.

Table 1
Rendering times in ms of our three approaches without (w/o) and with (w) the
early-exit heuristic. For an explanation of “Close up” and “Distant”. Refer to Section 5.

Method Close up Distant

w/o w w/o w

Geometry shader 46.0 17.2 8.4 4.6
Compute shader 20.4 8.3 16.3 4.9
PPLL 69.0 10.9 29.1 5.7
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about the original triangle for correct sampling in the fragment
shader. To improve performance, an early exit like described in
Section 4.1 is added to discard triangles that are not critical in the
current view.

The second problem that has to be addressed is the small size
of specular highlights (high per-vertex normal variation). To
correctly determine the final pixel color, supersampling the pixel
area is required, as shown in Fig. 5. Each fragment shader thread
supersamples its pixel area. By adapting the supersampling rate to
the per-vertex normal variation, the specular highlight is no longer
missed.

In Fig. 5, for the pixel showing the colored supersampling
locations, three fragment shaders are evaluated. One for every
triangle that intersects the pixel. Every fragment shader samples
all supersampling locations and computes a color value. The
number of samples that cover the sampled triangle (six in case
of the green triangle) divided by the total number of samples (16
in this case) embody the coverage of the triangle on the pixel. The
color value, the coverage value, and the depth value are appended
to the per-pixel linked list.

Hardware depth test has to be disabled while creating per-pixel
linked lists to ensure that every possible fragment shader is
evaluated. However, some fragments are too far behind the visible
surface and therefore do not contribute to the final image. To
further accelerate per-pixel linked list SSS, we manually discard
these fragments by testing every fragment's depth against the
depth buffer from the previously rendered full scene.

4.3.2. Resolve
In a second pass, we resolve the per-pixel linked lists to

determine the final color of the pixel. A screen-aligned quadrilat-
eral is rendered to issue one fragment shader evaluation per pixel
of the final image. We process the per-pixel linked list entries front
to back. The colors are multiplied with their coverage value and
added up. The unaltered coverage values are also added up. We
can stop processing the list when the added coverage values reach
1.0, resulting in full coverage of the pixel. If the coverage value
does not reach 1.0 after processing the entire list, the color value
has to be blended with the previously rendered image of the scene
(see Section 4). Because we perform blending with the previously

rendered offscreen render target at this point, no additional pass
for compositing is required.

The described two rendering passes are embedded into the
rendering pipeline depicted in Fig. 6.

4.4. Visibility

One last aspect that we want to elaborate on is visibility. The
presented algorithms perform antialiasing of bead chains with an
important presumption: We assume to deal with a closed surface
of a solid material (no transparency) and only consider the front-
most parts. This assumption is critical for the presented kind of
algorithms, as we depend on the possibility to independently
process triangles. Considering that bead chains mainly occur on
solid shiny surfaces like car paint, the presumption is very close to
the circumstances we are confronted with. Merely under some
extreme viewing angles, it becomes possible to see artifacts that
originate from this presumption. For the general case these artifact
do not occur, the depth testing performed against the depth buffer
of the MSAA-rendered off-screen render-target.

5. Results and discussion

Fig. 7 shows the results of our implemented algorithms
compared to other previously mentioned antialiasing techniques
on an Intel Core i7-2600 at 2.8 GHz, 4 GB of RAM and an Nvidia
GeForce GTX 470. The model shows a BMW E46 consisting of
500 k triangles rendered at a resolution of 1280�720. We decided
on using MSAA with centroid sampling as the most widely used
antialiasing technique. For quality comparison, we use SSAA.

Going from no AA to MSAA (Count: 8, Quality: 32) shows little
improvement in quality. The results of MSAA vary depending on
the current view configuration and the aliasing along the specular
highlight is still very obvious, especially while moving. Review the
accompanying video for a better understanding of the aliasing on a
moving object.

Going to 16� SSAA, the gaps between the bright spots begin to
close and quality improves noticeably. The step to 64� SSAA again
shows an apparent improvement. Looking at the selected specular
highlight, bead chains are no longer visible.

Fig. 4. Conservative rasterization. The screen-space bounding box is computed and
enlarged by half a pixel in every direction. Therefore, the pixel center of every pixel
the triangle intersects is covered and a fragment shader is evaluated.

Fig. 5. Supersampling inside the fragment shader. The sampling frequency is
adapted to the per-vertex normal variation to register all specular highlights. The
resulting color is written into the per-pixel linked lists alongside the coverage and
depth value. Per-pixel linked lists are blended based on coverage and depth values
in a separate rendering pass.

Fragment Shader:

— Super sampling
— DepthTest

Create Per-Pixel Linked Lists

Geometry Shader:
— Early-Exit Heuristic
— EnlargeTriangles for

Conservative Rasterization

Critical Triangles All Triangles

Per-Pixel Linked Lists
(Color, Depth, Coverage)

Resolve and Composite

Regular Rendering

MSAA Image

DepthTexture

Fig. 6. Overview over the complete rendering pipeline of the per-pixel linked list
approach.
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All our algorithms show a perceived quality that is well above
no antialiasing, MSAA and 16� SSAA. Quality is on par or even
above 64� SSAA. The differences in the appearance between our
algorithms are mainly due to differences in the sampling process
and the number of samples required to achieve the presented
image quality. We aimed at an image quality similar to 64� SSAA.

Note that the geometry and compute shader based approaches
are even able to antialias the staircase artifacts that still show in
64� SSAA and are also visible in per-pixel linked list SSS.

Fig. 8 shows the radiator grill of a truck. On this high-frequency
detail, aliasing from shading appears on every cylindrical surface
along the grill. Again, MSAA shows only very little improvement.
Going to 64� SSAA or our per-pixel linked list SSS shows very
good quality. The chain like structure of the specular highlights is
no longer visible.

In Table 2, we provide performance numbers for two viewing
configurations. The first view (“close up”) shows the BMW filling
the full screen, in the second configuration (“distant”) the BMW
only covers about 10% of the screen. Aliasing from shading
becomes especially problematic for distant views as more critical
triangles will fall onto the area of one pixel. However on a smaller
object details are harder to see. The resulting performance
numbers vary between these two configurations as the number
of fragment shader evaluations changes. For the geometry- and
compute-shader-based algorithms, the two different configura-
tions result in a change in the size of the affected triangles and

therefore a change in the number of generated point samples. For
Per Pixel Linked List SSS more pixels are covered resulting in more
fragment shader evaluations (similar to SSAA)

Considering performance, we first have to compare our algo-
rithms to MSAA which is the most common technique for antialias-
ing. Point-based rendering using geometry shaders comes closest to
the time of MSAA for the distant view configuration but can not keep
up for the close up view. Overall, our fastest implementation is the
compute shader based approach. Given that all our implementations
are based on MSAA and perform additional sampling on top, this is
not unexpected. Considering that MSAA can not provide acceptable
results in terms of quality, we also have to compare our algorithms to
SSAA. Only 64� SSAA shows the quality we want to achieve. All our
algorithms are able to outperform 64� SSAA under all viewing
conditions. Thereby, our compute-shader-based implementation is
three times faster than 64� SSAA.

Table 3 shows a decomposition of our three algorithms into
their parts. A render pass with MSAA is the first step in all three
cases. The next step in all cases is the generation of additional
samples which takes up most of the time. Note, that this part
is also the one that dominates the scaling behavior of the
overall algorithms. Finally the resolve pass combining the gath-
ered information takes a similar amount of time than the initial
rendering pass.

Note, that the performance of our algorithms highly depends
on the number of processed triangles. Only visible critical triangles

No AA

MSAA

Per-Pixel Linked List SSS

Geometry Shader SSS

Compute Shader SSS

16  SSAA

64 SSAA

Fig. 7. Results of geometry shader SSS, compute shader SSS and per-pixel linked list SSS compared to SSAA, MSAA, and no AA. Review the accompanying video to get a better
impression.
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that are close to a specular highlight are treated with our
algorithm. In configurations where such triangles are not present,
the overhead for performing one of our pipelines is minimal. By
classifying less triangles as critical and adjusting the early-exit
heuristic, the number of processed triangles can easily be influ-
enced to trade-off rendering time versus image quality. Also the
number of generated samples resulting from a triangle's screen-
space size and per-vertex normal variation can be adapted to
either favor performance or quality.

Regarding performance, there is another factor that has to be
taken into account. While SSAA supersamples the entire scene, our
approaches are highly adaptive. Consider an entire scene with
more objects. Using SSAA the entire scene has to be supersampled.
Using one of our algorithms the overhead is strictly confined to the
objects that can show bead chains and even only to the triangles
within these objects that are critical.

The last advantage of the presented algorithms is their memory
consumption. Using 64� SSAA on an image of size 1280�720
takes up 225 MB of memory to store the supersampled image.
With our algorithms, this amount of memory can be reduced
significantly. Regarding the point-based approaches, no additional
memory is required as the samples are generated on-the-fly.
Regarding per-pixel linked list SSS, we need some memory to
store the per-pixel linked lists. In the presented example, we
accounted for an average number of per-pixel linked list entries of
four. This results in 27 MB of memory consumption. By introdu-
cing a mechanism for recognizing buffer overflows, this amount of
memory could be reduced even further.

Given all these advantages, there is one possible drawback we
want to comment on: In our examples, we use the rather simple
Phong lighting model. In case of compute shader SSS and per-pixel
linked list SSS, the lighting has to be evaluated inside a loop in the
shader. This means that for very complex shaders, the perfor-
mance might suffer.

6. Conclusion

Aliasing from shading is a subject that is mostly ignored by
current techniques for antialiasing. The most prevalent solution
regarding this topic often is to adapt shading or the model itself.
While this is possible in certain applications, it is not feasible for
others. This is especially true for the highly detailed car models we
work with.

In this work, we have presented three novel methods for
performing antialiasing of bead chains. It became obvious that
the artifacts occur due to small triangle size and high per-vertex
normal variation resulting in small specular highlights. Taking
these insights, we presented three algorithms that are capable of
resolving the problem while performing better than SSAA and for
certain configurations even close to MSAA. At the same time all
implementations offer the flexibility to be adjusted on the fly to
meet runtime limits while preserving optimal image quality.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in
the online version of http://dx.doi.org/10.1016/j.cag.2013.08.002.

No AA MSAA

Per-Pixel Linked List SSS64  SSAA

Fig. 8. Results of per-pixel linked list SSS compared to the standard antialiasing algorithms on the high-frequency detail of a radiator grill.

Table 2
Rendering times and frame rates of geometry shader SSS, compute shader SSS and
per-pixel linked list SSS compared to SSAA, MSAA, and no AA.

Method Close up Distant

Time (ms) Rate (fps) Time (ms) Rate (fps)

No AA 1.6 520 1.6 520
MSAA 1.9 340 1.9 340

16� SSAA 4.8 175 3.6 240
64� SSAA 25.1 38.7 13.1 73

Geometry shader 17.2 56 4.6 175
Compute shader 8.3 113 4.9 189
PPLL 10.9 89 5.7 152

Table 3
The three antialiasing techniques decomposed into their parts. In all cases the
generation and evaluation of additional samples takes up the biggest amount of
time.

Renderpass Geometry shader Compute shader PPLL

Close up
(ms)

Distance
(ms)

Close up
(ms)

Distance
(ms)

Close up
(ms)

Distance
(ms)

Render 1.4 1.2 1.4 1.2 1.4 1.2
Sample 14.0 2.3 5.5 2.3 8.4 3.9
Resolve 1.8 1.1 1.4 1.4 1.1 0.7
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