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Abstract: A large number of statistical measures have been presented in the literature for the 
statistical analysis of the agreement of the measured and predicted time-series. The goal of 
this study was to develop new indices that combine the information contained in several exist-
ing measures, making it possible to assess more effectively the quality of the forecasting. The 
capabilities and limitations of 24 measures that have previously been presented in the litera-
ture were studied. The upper and lower bounds of the Confidence Interval were used, in order 
to include forecasting penalties (relative weights). Results show that by using the proposed 
new forecasting performance indices we can be more confident in the estimation of the fore-
casting performance than using a single measure. The proposed new indices would be ideal 
for a forecasting automated system, because no human interaction is needed to combine the 
information of other measures.  
 
Keywords: forecasting performance index, environmental modeling, fuzzy interference sys-
tems 
 
 
1. INTRODUCTION 
 
The use of mathematical models is essential for understanding, simulating and forecasting the 
behavior of complex environmental phenomena and systems, like in the case of urban air 
quality. The evaluation of such forecasting results is necessary regardless of the application 
domain [1] [2]. In all evaluations, forecasts are compared to relevant observations with the aid 
of various statistical measures, commonly referred to as indices, which depict various aspects 
of the differences between forecasted and measured values of the parameters of interest [3] 
[4] [5] [6]. 

Jolliffe and Stephenson (2002) [7] define forecast quality as a multidimensional concept 
described by several different scalar attributes such as overall bias, reliability/calibration, un-
certainty, sharpness/refinement, accuracy, association, resolution, and discrimination. All of 
these attributes provide useful information about the performance of a forecasting system. 
Thus, no single index is sufficient for forecast evaluation, i.e. for judging and comparing fore-
cast quality [7] [8] [9] [10]. 
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In the current study we compile new indices that improve the evaluation of forecasting re-
sults. For this purpose we firstly analyze numerous existing forecasting evaluation indices 
(FEIs), and we then select the suitable ones to be used for the construction of new statistical 
forecasting indices. The outcome of this effort is tested in evaluating the forecasting perfor-
mance of a set of air quality models, and the evaluation results are compared to the ones ob-
tained by using existing evaluation indices. In the rest of the paper we firstly present the 
methods that we employ and the materials that we use in our study, we then present the results 
and discuss the performance of the new indices versus the standard indices, and we finalize by 
drawing our conclusions. 
 
 
2. MATERIALS AND METHODS 
 
This study was conducted in order to develop new indices that combine the characteristics of 
existing statistical measures to provide confidence in the forecasting performance estimation 
than using single existing indices. In order to evaluate the performance of the new indices, we 
employed artificial neural network models for air quality forecasting. 
 
2.1 STATISTICAL MEASURES SELECTION 
 
As we aimed at developing new indices by making use of existing ones, we selected twenty 
four (24) statistical measures, which have commonly been used to evaluate the performance 
of models that produce forecasts of continuous (numerical) variables. For this purpose a lit-
erature review was undertaken, resulting in Table 2 which summarizes the most frequently 
used indices and their basic disadvantages. The most common disadvantages (as reported in 
literature) were related to a) sensitivity to outliers or to large errors, and b) to a possible divi-
sion by zero that may occur. Taking these findings into account, we selected a number of ex-
isting FEIs to be used as the basis for the generation of the new indices that we wanted to 
compile, as follows: 1) Index of Agreement (dr), 2) Legates and McCabe’s (E1), 3) Theil’s 
Inequality Coefficient (U2), and 4) Berry and Mielke’s (ℜ ). The aforementioned indices are 
described in the following equations: 
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Berry and Mielke’s (ℜ)=1-
δ
μ

 

Where, 

 (4) 

𝐹𝑖 is the ith forecasted value  
𝐴𝑖 is the ith actual (observed) value  
𝐴̅ is the mean of the actual values  
𝑛 is the number of values (forecasted or observed)  
𝑐 = 2, as suggested by [11] because it balances the number of deviations evaluat-
ed within the numerator and within the denominator of the fractional part.  
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2.2 A METHOD FOR COMPILING NEW FORECASTING EVALUATION INDICES: 

FUZZY LOGIC 
 
In order to take into account the statistical measures identified as the basis for the construction 
of the new forecasting performance indices, we wanted to employ a method that imitates hu-
man reasoning while being able to map “logic” of the various statistical measures (input 
space) into the characteristics of the new indices (output space). For this reason we chose to 
use fuzzy logic [12], which provides a way of processing data by allowing partial set mem-
bership (the latter defined on the basis of individual statistical measures), for air quality fore-
casting. 

Fuzzy Logic was selected as a proper method to compile the new statistical indices be-
cause a) it allows rapid prototyping (thus appropriate as in our case no prior knowledge on the 
new indices was available), b) the rules applied can be easily modified (thus supporting the 
study of different approaches in the construction of the new indices, c) it can encompass great 
complexity, d) it relates input to output in linguistic terms (i.e. terms easily understood by 
humans) and e) it has already been used in the past to describe air pollution [13] [14] which is 
the application domain of our forecasting models. 

Fuzzy logic is based on fuzzy sets that form the building blocks for fuzzy conditional rules 
which have the general form “IF X is A THEN Y is B,” where A and B are fuzzy sets. Based 
upon these rules the decision of fuzzy membership is made. The basic FIS can receive either 
fuzzy inputs or crisp inputs, but the outputs it produces are commonly fuzzy sets [15]. In this 
study the Fuzzy Logic Toolbox of MATLAB was used in order to build our FISs. 

The most common types of FISs are Mamdani and Sugeno type fuzzy models [16] [17] 
[18] [19]. Mamdani’s FIS is the most commonly used fuzzy methodology and was among the 
first control systems built using fuzzy set theory. It was proposed in 1975 by Mamdani and 
Assilian [20]. In this type of FISs, the fuzzy sets that result as the consequent of each rule are 
combined through an aggregation operator and the resulting fuzzy set is defuzzified to yield 
the output of the system. 

The Sugeno or Takagi-Sugeno-Kang FIS was introduced by Sugeno (1985) [21] and is 
similar to the Mamdani method. The main difference between Mamdani and Sugeno is the 
way the crisp output is generated from the fuzzy inputs. While Mamdani uses the technique of 
defuzzification of a fuzzy output, Sugeno uses weighted average to compute the crisp output. 
 

106 



2.3 EVALUATING THE PERFORMANCE OF THE NEW FORECASTING EVALUATION 
INDICES: CONFIDENCE INTERVALS 

 
In the frame of our approach, the forecasting performance of a forecasting model is represent-
ed its FEIs. But these FEIs are not a set of fixed values but rather (population) parameters 
characterizing the actual population of forecasted values. This is due to the stochastic nature 
of model inputs and model parameters on the one hand, and on the inherent difference be-
tween real and forecasted values, within each model application. For this reason it is im-
portant to characterize not only the performance of a model but also its effectiveness. The 
latter may be defined as the range of values that contain the FEIs, thus introducing the notion 
of Confidence Intervals (CIs) in our approach. 

Confidence Intervals (CIs) provide a range within which the unknown value of a popula-
tion parameter is likely to fall. CIs are linked to confidence levels, i.e. the probability value 
for a population parameter to fall into the CI. The most commonly used confidence levels are 
90%, 95% and 99% depending on the application of use. While 95% confidence level is arbi-
trary, it is traditionally used in applied practice [22]. In this study a confidence level of 95% 
was used to calculate the CIs. 

A resampling method like bootstrapping or cross-validation can be used to generate the 
sample used for computing the CIs. In the current study, cross-validation is used as a 
resampling method in order to compute CIs for the FEIs, as it is the one most commonly ap-
plied [23], and proved to provide better results than other similar techniques like bootstrap-
ping [23] [24]. In order to compute the CIs with 95% confidence level, we set the bounds 
(lower and upper) as the 2.5% and 97.5% percentiles, as described by [25]. Depending on the 
values of the upper and lower bounds of a CI applied in the evaluation procedure, a forecast-
ing model can be characterized as: 

 
(a) Having a relatively high effectiveness (i.e. smaller distance between the CI bounds) to 

detect the variation of a parameter (in our case the value of the FEIs and thus the fore-
casting performance), or  

(b) Having a relatively low effectiveness (i.e. larger distance between the CI bounds). In 
that case it can be considered as providing with less information (in terms of forecast-
ing ability). 

 
2.4 POPULATION OF FORECASTING MODELS 
 
A population of forecasting models (with varying forecasting performances-FEIs) was used 
for the evaluation purposes of our study. In all cases one model type (i.e. ANN-based models) 
was used, with a) different data sets for training and testing, b) different architectures (in 
number of neurons on the first hidden layer), and c) varying parameters of the model struc-
ture. The population of those models consists of a total of eight different models (Table 1) 
developed in [26]. Those models have different number of inputs (depending on the Dataset) 
and different number of neurons in the hidden layer (in all cases, only one hidden layer was 
used). 

Table 1: The eight different models that were used in the current study, in relation to 
the models of [26] 

ANN Model 
Number 

Dataset 
Number 

Basic Model 
Number in [26] 

Number 
of inputs 

Hidden Layer 
Neurons 

1 1 3 1 2 
2 1  3 1 3 
3 2 4 9 18 
4 2 4 9 23 
5 2 4 9 27 
6 3 5 10 20 
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7 3 5 10 25 
8 3 5 10 30 

 
2.5 CROSS-VALIDATION 
 
Cross validation (CV) is a popular method applied in order to evaluate the predictive perfor-
mance of a statistical model [27]. In CV, the available dataset is divided into two segments, 
one is used to teach or train a model and the other is used to validate the performance of the 
model. There are several types of CV methods like the Holdout method, k-fold CV, and 
leave-one-out CV [28]. In this study the 10-fold CV is used in order to 1) measure the predic-
tive performance of the models being developed and 2) compute the CIs of the selected 
measures to be studied. The next figure shows how the data was divided and used by the fore-
casting models. 

 
Figure 1: How the data was divided and used by the forecasting models 

 
2.6 PENALIZE FORECASTING PERFORMANCE 
 
The overall forecasting performance (FEIs) is the average of the forecasting performances 
that were calculated for each CV subset. In order to increase our confidence in the estimation 
of the forecasting performance relative weights were assigned for each FEI. Those weights 
aimed at “penalizing” models with relatively low effectiveness, and thus their calculation in 
based on the bounds of the CIs. 
 

 
Figure 2: Forecasting Performance Calculation 
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Table 2: Basic information for the FEIs used in the frame of the current paper 

Measure (abbreviation) Disadvantage(s)  
Bias It provides no measure of the error variance. [29] 
Normalized Bias (NB) 1) Possible division by zero. 2) Positive and negative errors cancel each other out.  
Mean Fractional Bias (MBF) 1) Possible division by zero. 2) Positive and negative errors cancel each other out. 3) The predicted concentration is found in 

both the numerator and denominator 
[30] 

Mean Percentage Error (MPE) 1) Possible division by zero. 2) Positive and negative errors cancel each other out.  
Mean Absolute Error (MAE) Sensitive to outlier errors  
Mean Absolute Percentage Error 
(MAPE) 

Possible division by zero.  

Symmetric Mean Absolute Per-
centage Error (sMAPE) 

Involve division by a number close to zero [29] [31] 
[32] 

Mean Squared Error (MSE) Sensitivity to large errors, to large variance of errors and to errors due to outliers [7] 
Normalized Mean Squared Error 
(NMSE) 

Sensitive to extreme values.  

Root Mean Squared Error (RMSE) Sensitive to large errors, to large variance of errors and on outlier errors [33] 
Linear Correlation Coefficient (r) Measures only the linear relationships; for instance, a correlation of 0 does not mean zero relationship between two variables.  
Coefficient of Determination (r2) 1) Based on the linear fit. 2) Sensitive to extreme values.  
Spearman’s rank correlation coef-
ficient (rs) 

Simply places the values in numerical order; it pays no regard to the magnitude of the differences between the values. [34] 

Coefficient of Efficiency (E) Sensitive to extreme values. [35] 
Index of Agreement (d) Large errors are squared, and thus the influence on the sum-of-squared errors is over-weighted. [33] 
Index of Agreement (d1) The overall range of d1 remained somewhat narrow to resolve adequately the great variety of ways that F can differ from A. [36] 
Index of Agreement (dr)  [11] 
Legates and McCabe’s (E1)  [37] 
Legates and McCabe’s (E’1) Can be used for special cases when season or another time period is available to provide a more appropriate baseline [37] 
Berry and Mielke’s (ℜ )  [38] 
Watterson’s (M) The upper and lower bounds it is not well defined. [39] 
Factor of Exceedance (FOEX) Cannot distinguish an under-prediction than a perfect fit [40] 
Theil’s Inequality Coefficient (U1) It has a little or no value as a forecasting accuracy index. [41] 
Theil’s Inequality Coefficient (U2)  [42] 
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We refer those relative weights as "penalties", because they are calculated so as to decrease 
the forecasting performance of a model, but to not affect (reward) the forecasting models with 
relatively high effectiveness. The penalties are defined in Eq. 7 where the "Penalty Cancel 
Level" defines the decrement size of the penalty effect. A small value of Penalty Cancel Level 
(PCL) will provide a large penalty effect and a large value of the PCL will provide small pen-
alty effect. We applied three different PCLs, equal to 0.5, 1 and 1.5respectivelly. 

)DistanceNormalized(1 celLevelPenaltyCanpenalty −=  (7) 

Where, 
distance = (CI upper bound – CI lower bound) 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = � 1,𝑤ℎ𝑒𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 > 1
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒,𝑤ℎ𝑒𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≤ 1 

 

In Eq. 7 the distance was normalized to a maximum value of 1. The reason we used a value 
range between 0 and 1 was because, a) some of the selected FEIs converge to infinite values, 
and b) this value range is more appropriate for comparing performances and drawing conclu-
sions. 

Equations 8 and 9 show how the penalty was assigned in the forecasting performance de-
pending on the FEI’s nature. Equation 8 is used in (dr, E1 and ℜ ) measures, in which a low 
value indicates low forecasting performance and a high value indicates high forecasting per-
formance. On the other hand, Equation 9 is used in (U2) measure, in which a low value indi-
cates high forecasting performance and a high value indicates low forecasting performance. 

penaltyiableariablePenalizedV *var1 =  (8) 

penaltyiableariablePenalizedV /var2 =  (9) 

 
 
3. THE NEW FORECASTING PERFORMANCE INDICES 
 
The performance of any forecasting model (like the ones used for air quality) is commonly 
evaluated with the aid of several forecasting evaluation measures (statistical indices). On this 
basis, models can be compared and thus the best model can be selected. As there is no formal 
procedure to follow, this means that for the same model results, different researchers may 
select different model(s) as the best in terms of forecasting, depending on (a) the employed 
statistical indices and (b) the criteria used for interpreting the values of these indices. In an 
effort to overcome this problem we developed two new forecasting evaluation indices, denot-
ed as FPIm and FPIs for Mamdani-type and Sugeno-type FIS respectively. For this reason, we 
firstly present the way in which the FISs were build and we present the evaluation process 
that was used to evaluate the Forecasting Performance Indices (FPI). 
 
3.1 BUILDING OF THE FUZZY INFERENCE SYSTEM 
 
3.1.1 SPECIFY THE INPUTS AND OUTPUTS 
 
The four measures selected as inputs (input space) for the FIS are the ones indicated in chap-
ter 2.1, i.e. the Index of Agreement (dr), the Legates and McCabe’s (E1), the Theil’s Inequali-
ty Coefficient (U2) and Berry and Mielke’s (ℜ ). The output of the FIS will be the Forecasting 
Performance scaled in five levels, as suggested by the Altman method). The Altman’s Kappa 
benchmark uses the following five scales: a. Poor (< 0.20), b. Fair (0.21 to 0.40), c. Moderate 
(0.41 to 0.60), d. Good (0.61 to 0.80), and e. Very Good (0.81 to 1.00). Although this bench-
mark is developed to be used with the Kappa coefficient, it is often used in practice with other 
statistical indices as well [43]. 
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3.1.2 DETERMINE THE MEMBERSHIP FUNCTION FOR EACH INPUT AND OUTPUT 
 
As a next step we define the membership functions associated with each of the inputs and 
variables (scale of the output). Figure 3 shows the membership function for the inputs dr, E1 
and ℜ , in which the Gaussian curve membership function was used with the five Altman’s 
Kappa levels ranges from 0 (as Poor) to 1 (Very Good). In addition, Figure 4 shows the mem-
bership function for the input U2 in which the same function was used but with level ranges 
from 0 (as Very Good) to 1 (Poor). The selected statistical indices can receive values outside 
the range [0, 1], that were mapped to the minimum (zero) and the maximum (one) values in 
an appropriate way. Figure 5 and Figure 6 shows the Mamdani and Sugeno FIS that were 
developed in this study. 
 
3.1.3 FIS RULES 
 
In the last step we constructed the rules of the FIS (presented hereafter). The basic idea be-
hind these rules is to support the mapping process between the input and the output space. 
Thus, the FIS rules were defined to relate each input (forecasting evaluation index) with the 
output (forecasting performance). One of the reasons that led us to this solution was that there 
are no generally accepted rules to relate the selected measures, a) with each other, and b) with 
the forecasting performance. An additional reason that led us to the aforementioned solution 
was that it was not possible to create a rule for each combination of input-output. In that case 
a very large number of rules would be created (a total of 
𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑙𝑒𝑣𝑒𝑙𝑠𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 = 54 = 625), and also it would be difficult to select 
the appropriate output for each input. The FIS rules are the result of the 4 indices compared 
with the 5 levels of performance (a total of 20 rules), as detailed below (x receives the value 
poor, fair, moderate, good or very good). 

• If (ℜ  is x) then (Forecasting Performance is x) (1) 
• If (U2 is x) then (Forecasting Performance is x) (1) 
• If (E1 is x) then (Forecasting Performance is x) (1) 
• If (dr is x) then (Forecasting Performance is x) (1)  

 
The numbers in the parentheses represent weights that are applier to each rule. Every rule has 
a weight (a number between 0 and 1), which is applied to the number given by the antecedent. 
In all our rules the weight has a value of one (has no effect at all on the mapping process). 
 

 
Figure 3: The membership function for the inputs (dr, E1 and ℜ  ), as also of the output. 
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Figure 4: The membership function for the input U2. 

 
Figure 5: The Mamdani FIS 

 
Figure 6: The Sugeno FIS 

 
 
4. RESULTS AND DISCUSSION 
 
To evaluate the new FEIs (FPIm and FPIs), we use them for a population of models with vary-
ing forecasting performances. In these models, our aim was to forecast the Common Air 
Quality Index (CAQI) numerical values (dependent variable). For the sake of our study, we 
generated a population of model results by initiating and running eight ANN-based forecast-
ing models 1000 times each. We have then computed the output values of the four selected 
FEIs as well as the output values of the two new indices being introduced, in order to study 
the consistency of their behaviors. This computation is repeated for each one of the PCL used 
(0.5, 1 and 1.5) in order to also study its influence in the evaluation of the forecasting perfor-
mance. 

Firstly, the forecasting performance was calculated based on each one of the indices under 
study. Subsequently, we have calculated the percentage where each one of the eight forecast-
ing models has been identified as a) best forecasting model, or b) best or second best forecast-
ing model. The "best" forecasting model is the one with the highest value for each one of the 
FEIs. The "second best forecasting model" is the one with the next higher performance for 
each one of the studied indices. 
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Figure 7 presents the percentages of the cases, in which each model has been evaluated to 
be the best, by using different PCLs. These percentages are different, depending on which FEI 
(dr, E1, U2 etc.) was used for selecting the best model. Figure 8 presents the mean values of 
each index in the cases where each forecasting model was identified as best, when no PCLs 
were applied. In Figure 7.a, Figure 7.d and Figure 8, the models 6-8 have zero values be-
cause they were not identified as best in any of the cases. From Figure 7.a and Figure 8 it is 
clear that dr and E1 FEIs lead to the same models being identified as best, even when their 
mean performance values are different. This does not come as a surprise as, according to [11], 
these two measures are related. From Figure 7.a it is evident that Model 3 is identified as the 
best forecasting model on the basis of all FEIs under study. 

From Figure 7 we observe that, if we do not use “penalties”, Model 3 is identified as the 
best model by all FEIs, whereas, when penalties are employed (with PCL of 0.5), the U2 and 
dr measures lead to a different model being identified as best. This suggests that CI’s distance 
is not only influenced by the forecasting model but also by the FEI that was selected. Thus, it 
is crucial to select a reliable forecasting performance measure. It should be mentioned that 
measures E1, ℜ  and our new FPIs (FPIm and FPIs) identified Model 3 as the best model in all 
cases (with different PCLs). This demonstrates that those measures are more stable (in terms 
of consistency in the results when using penalties) in comparison with measures U2 and dr. 

It is clear that when penalties are employed, the high performance of some models deterio-
rates, because of their CI’s in comparison to the other models. This suggests that we cannot 
be confident for the evaluation of the forecasting performance of a model, even when it is 
accompanied by high FEIs. Thus, we can identify the necessity to use a CI in order to penal-
ize the forecasting performance measures and increase our confidence in the estimation of the 
forecasting performance. By observing Figure 7.a and Figure 7.b, we can indicate whether a 
FEI is stable, if the percentages of the cases, in which each model has been evaluated to be 
the best (by not using a PCL), are the same as in the case where a PCL is used. In this manner 
we can use the following equation to calculate the stable percentage of a FEI. 
 

𝑆𝑡𝑎𝑏𝑙𝑒 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
∑ (100 − |𝑚𝑖(0) −𝑚𝑖(0.5)|)𝑁
𝑖=1

𝑁
  (10) 

Where, 
𝑚𝑖(𝑥) is the percentage of the cases in which each model has been evaluated to 
be the best, by using a FEI (m) for model i, with PCL equal to x. 
N is the total number of models (in our case N = 8) 

 

 
It is useful to identify also the second best model, so we can recommend an alternative solu-
tion and in general not be strict with the best model. For that purpose, Figure 9 was created in 
order to present the percentages of the cases, in which each model has been evaluated to be 
the best or the second best, by using different PCLs. The stable percentages of each FEI are: 
ℜ=98%, E1=93.7%, FPIs=91%, FPIm=90%, dr=87.7% and U2=80.6%. From Figure 9 and 
from the aforementioned stable percentages we can see that measure ℜ  is the most stable FEI 
(98%) in terms of varying penalty in comparison to the other FEIs, because its results are not 
affected by the increase of the penalty in comparison with the other indices. 

The new FPIs (both FPIm and FPIs) were designed in such a way that they take into ac-
count all selected measures in a balanced way (by using the same weight value in the fuzzy 
rules). These indices are better compared to single measures, in respect of confidence in the 
estimation of the forecasting performance, because they: 

1. Use a combination of measures (while we have shown that we cannot be confident in 
any single measure's estimation) 

2. Use the CI in order to penalize the forecasting performance (and thus increase the con-
fidence in the obtained results) 
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3. Are stable to an acceptable level 90% - 91%, which is better than: dr (87.7%) and U2 
(80.6), but worse than: ℜ (98%) and E1 (93.7). 

4. Can potentially make the evaluation process of forecasting models more straightfor-
ward and robust 

5. Can be used in a forecasting system, for automatically selecting and switching to a dif-
ferent operational forecasting model. 

By comparing the results obtained for the two new FPIs, Mamdani-type (FPIm) and Sugeno-
type (FPIs), it is evident that both demonstrate similar behavior, with Sugeno-type FIS being 
slightly more stable (by 1%). This is because, Sugeno-type FIS is not affected by the increase 
of the penalty in comparison with the Mamdani-type FIS. 
 

  
Figure 7.a: No penalty cancel level was 

used 
Figure 7.b: A penalty cancel level of 0.5 

was used 

  
Figure 7.c: A penalty cancel level of 1 was 

used 
Figure 7.d: A penalty cancel level of 1.5 

was used 

Figure 7: The percentages of the cases, in which each model has been evaluated to be the 
best, by using different penalty cancel levels. 

 
Figure 8: The mean values of each measure in the cases, for which each forecasting 
model was identified as best, when no penalty cancel levels were applied. 
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Figure 9.a: No penalty cancel level was used Figure 9.b:penalty cancel level of 0.5 

  
Figure 9.c: penalty cancel level of 1 Figure 9.d: penalty cancel level of 1.5 

 
Figure 9: The percentages of the cases, in which each model has been evaluated to be the 
best or the second best, by using different penalty cancel levels. 
 
 
5. CONCLUSION 
 
The paper introduces two new forecasting performance indices, which combine the character-
istics of several statistical evaluation measures. The relative difference between the construc-
tion of the new indices (FPIm and FPIs) is the type of fuzzy inference system employed for 
the construction of each index (Mamdani and Sugeno, respectively). In addition, in order to 
increase our confidence in the estimation of the forecasting performance of each forecasting 
model, relative weights (referred to as penalties), based on the bounds of the confidence in-
tervals were assigned on the forecasting performance of each model. 

In order to evaluate the new forecasting performance indices, numerical simulations have 
been performed by using artificial neural network models for air quality forecasting. Results 
show that we cannot be confident in any single measure's estimation, even when a model is 
estimated of having a high forecasting performance. Thus, it is important to make use of a 
confidence interval in order to penalize the forecasting performance measures and thus in-
crease our confidence in the estimation of the forecasting performance. 

Results demonstrate that the ℜ  measure was more stable (98%) in terms of varying the 
penalty than the other selected measures, because it was not affected by the increase of the 
penalty in comparison with the other measures. Our new forecasting performance indices 
(FPIm and FPIs) were not the most stable measures. This may be related to the fact that simple 
FISs (with one antecedent per rule) were used. The increase of the stability of the proposed 
indices will be investigated in future work. 

The new proposed indices a) are stable to an acceptable level (90% - 91%), b) provide a 
combination of several measures, that increases our confidence in the estimation of the fore-
casting performance and standardize the interpretation, c) the forecasting performance be-
comes comparable with the results of other studies (because it is a percentage value), and d) 
the forecasting performance is scaled in five levels, so that the results can be easier interpret-
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ed. Thus, by using the proposed new forecasting performance indices (both FPIm and FPIs) in 
combination with the use of confidence intervals for penalizing the forecasting performance, 
we can be more confident for the estimation of the forecasting performance of a model than 
by using any single measure. Consequently, it can be considered that the new forecasting per-
formance indices are appropriate for automated operational forecasting systems. 
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