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To effectivelymeet growing food demands, the global agronomic community will require a better understanding
of factors that are currently limiting crop yields andwhere production can be viably expanded with minimal en-
vironmental consequences. Remote sensing can inform these analyses, providing valuable spatiotemporal infor-
mation about yield-limiting moisture conditions and crop response under current climate conditions. In this
paper we study correlations for the period 2003–2013 between yield estimates for major crops grown in Brazil
and the Evaporative Stress Index (ESI) – an indicator of agricultural drought that describes anomalies in the ac-
tual/reference evapotranspiration (ET) ratio, retrieved using remotely sensed inputs of land surface temperature
(LST) and leaf area index (LAI). The strength and timing of peak ESI-yield correlations are comparedwith results
using remotely sensed anomalies in water supply (rainfall from the Tropical Rainfall Mapping Mission; TRMM)
and biomass accumulation (LAI from the Moderate Resolution Imaging Spectroradiometer; MODIS). Correlation
patternswere generally similar between all indices, both spatially and temporally,with the strongest correlations
found in the south and northeast where severe flash droughts have occurred over the past decade, and where
yield variability was the highest. Peak correlations tended to occur during sensitive crop growth stages. At the
state scale, the ESI provided higher yield correlations for most crops and regions in comparison with TRMM
and LAI anomalies. Using finer scale yield estimates reported at the municipality level, ESI correlations with soy-
bean yields peaked higher and earlier by 10 to 25 days in comparison to TRMM and LAI, respectively. In most
states, TRMMpeak correlationswere marginally higher on average withmunicipality-level annual corn yield es-
timates, although these estimates do not distinguish between primary and late season harvests. A notable excep-
tion occurred in the northeastern state of Bahia, where the ESI better captured effects of rapid cycling ofmoisture
conditions on corn yields during a series of flash drought events. The results demonstrate that formonitoring ag-
ricultural drought in Brazil, value is added by combining LAI with LST indicators within a physically basedmodel
of crop water use.

Published by Elsevier Inc.
1. Introduction

To meet the food supply needs of the world's growing population,
global food production will need to roughly double by 2050 (e.g., Global
Harvest Initiative, 2014). This increased production must be accom-
plished within the constraints of a non-uniform distribution of
ille, MD 20705, USA.
Anderson).
freshwater resources, an amplifying climate cycle, and concern for the en-
vironmental impacts of agriculture (Foley et al., 2011). To make signifi-
cant strides in improving the production capacity and resiliency of
global agricultural systems, we must better understand the regional dis-
tribution of factors currently limiting production: where crops are most
vulnerable to climate extremes, where expansion and intensification
can occur with minimal environmental costs, and where infusions of
technology in water and land management are likely to significantly im-
prove yields (Lobell et al., 2008; van Ittersum & Cassman, 2013; Zaitchik
et al., 2012). Robust early warning indicators highlighting regions with
developing crop stress and degrading canopy conditions due to drought
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or other stressors are needed to improve within-season yield forecasts
and to more effectively mobilize humanitarian response to regional
crop failures (Brown, 2008). With an ever-expanding network of earth
observing satellites providing free and open data access, remote sensing
provides new potential to supply global geospatial information for effec-
tive assessments of yield and yield-limiting factors with serviceable spa-
tial and temporal detail.

Remote sensing indicators of agricultural drought convey spatially
explicit information regarding variability in water supply (primarily
precipitation for rainfed crops), plant available water (soil moisture),
crop water requirements and actual water use (evapotranspiration;
ET), light-harvesting capacity (green biomass), and crop progress and
vegetation health (Basso, Cammarano, & Carfagna, 2013; Rembold,
Atzberger, Savin, & Rojas, 2013; Wardlow, Anderson, & Verdin, 2012).
An effective large-scale crop monitoring program will require a suite
of indicators, because yield limiting factors vary spatially and from
year-to-year, and no single indicator will capture all factors. In addition,
routine access to multiple indicators facilitates actionable response to
drought detection – particularly at the global scale. A convergence of ev-
idence of crop stress emerging inmultiple independent yet related indi-
cators leads to greater confidence that the signals are real and that
action should be taken. In some cases, one might expect a staged pro-
gression of signals through different indicators; for example, a decrease
in rainfall leading to crop stress and reductions in ET, and finally mani-
festing in a degradation in green canopy cover.

One metric of performance for operational drought indicators is a
demonstrated linkage to observed impacts on the ground. For agricultural
drought, impactsmaybemost notablymanifested in termsof yield reduc-
tions. Studies conducted inmany countries have investigated correlations
between crop yields and spectral vegetation indices (VIs) such as theNor-
malized Difference Vegetation Index (NDVI; e.g., Becker-Reshef, Vermote,
Lindeman, & Justice, 2010; Esquerdo, Júnior, & Antunes, 2011; Fernandes,
Rocha, & Lamparelli, 2011; Kogan, Gitelson, Zakarin, Spivak, & Lebed,
2003; Mkhabela, Bullock, Raj, Wang, & Yang, 2011; Mkhabela,
Mkhabela, & Mahinini, 2005), the Enhanced Vegetation Index (EVI;
Gusso, Ducati, Veronez, Arvor, & da Silveira, 2013; Kouadio, Newlands,
Davidson, Zhang, & Chipanshi, 2014), or biophysical parameters like
Leaf Area index (LAI; Doraiswamy et al., 2005; Rizzi & Rudorff, 2007;
Zhang, Anderson, Tan, Huang, & Myneni, 2005), and fraction of absorbed
photosynthetically active radiation (fAPAR; Lobell, Ortiz-Monasterio, Ad-
dams, & Asner, 2002; López-Lozano et al., 2015) – all measures of vegeta-
tion amount. In addition, landsurface temperature (LST) retrieved from
thermal infrared (TIR) remote sensing provides information about tem-
perature extremes encountered during crop development (Gusso,
Ducati, Veronez, Sommer, & da Silveira, 2014), as well as stress-induced
stomatal closure resulting in elevated canopy temperatures (Jackson,
Idso, Reginato, & Pinter, 1981;Moran, 2003). VI- and LST-based indicators
have also been combined for yield estimation; with a weighting factor as
in the VegetationHealth Index (VHI; Kogan, 1995, 1997; Kogan, Salazar, &
Roytman, 2012; Liu & Kogan, 2002; Salazar, Kogan, & Roytman, 2007),
through multi-variable regression, decision tree analysis, or other merg-
ing criteria (Doraiswamy, Akhmedov, Beard, Stern, & Mueller, 2007;
Gusso et al., 2014; Johnson, 2014; Prasad, Chai, Singh, & Kafatos, 2005),
or through surface energy balance retrievals of evapotranspiration (ET)
– an indicator of vegetation health and soil moisture availability
(Bastiaanssen & Ali, 2003; Mishra, Cruise, Mecikalski, Hain, & Anderson,
2013; Tadesse, Senay, Berhan, Regassa, & Beyene, 2015; Teixeira,
Scherrer-Warren, Hernandez, Andrade, & Leivas, 2013; Zwart &
Bastiaanssen, 2007). Key findings from representative studies comparing
VI- and LST-based indicators to crop yields are summarized in Table 1.
Other remotely sensed indicators used for yield assessment include
solar-induced fluorescence measurements (Guan et al., in press) and mi-
crowave retrievals of surface soilmoisture (Bolten, Crow, Zhan, Jackson, &
Reynolds, 2010).

These studies have investigated both the strength and timingof peak
correlations between remote sensing time series and ground-based
yield estimates. Advance signals of anomalous production are beneficial
to agricultural producers and commoditymarkets, and globally for early
warning of food insecurity; therefore, earlier peak yield correlations
with satellite indicators are a desirable feature. In some climates, re-
sponsiveness to rapidly changing conditions is an advantage, such as
during rapid onset – or “flash” – drought events. Vegetation health
can deteriorate very quickly if moderate precipitation deficits are ac-
companied by intense heat, strong winds, and sunny skies, as the en-
hanced evaporative demand quickly depletes root zone moisture
(Mozny et al., 2012; Otkin et al., 2013). The ability to pinpoint periods
of stress in space and time hasmotivated assimilation of remote sensing
indicators into cropmodels, which are sensitive to timing of stresswith-
in the growing cycle (Ines, Das, Hansen, &Njoku, 2013; Launay &Guerif,
2005; Nearing et al., 2012).

This study assesses the remotely sensed Evaporative Stress Index
(ESI) as an indicator of agricultural drought in terms of the timing and
magnitude of peak correlationswith spatially distributed yield observa-
tions. The ESI depicts anomalies in the actual-to-reference ET ratio re-
trieved via energy balance using remote sensing inputs of LST and LAI
(Anderson et al., 2013; Anderson, Hain, Wardlow, Mecikalski, &
Kustas, 2011; Anderson, Norman, Mecikalski, Otkin, & Kustas, 2007b).
The energy balance scheme incorporates key meteorological variables
that drive flash drought, and in the U.S. the ESI has been shown to pro-
vide earlywarning of deteriorating cropmoisture conditions in compar-
isonwith precipitation or VI-based indices (Anderson et al., 2011, 2013;
Otkin et al., 2013; Otkin, Anderson, Hain, & Svoboda, 2014).

The study focuses on the utility of the ESI in explaining regional yield
variability in major crops grown in Brazil, which has been identified as
an area where significant gains in agricultural production can be
achieved, both in terms of expansion and intensification (FAO, 2003).
Brazil is a major exporter of several key agricultural products (including
soybean, corn, cotton, coffee, sugar and ethanol from sugarcane, and or-
ange juice), and fronts of land use conversion to agriculture continue to
expand in the northeast, the central savanna regions (Cerrado), and
rainforest transition zones. The north and northeastern states of
Maranhão, Tocantins, Piauí and Bahia (the so-called “MATOPIBA” re-
gion), for example, are considered amajor frontier for new agribusiness
investment. However, decisions regarding reasonable expansion are
complex and must be informed by analyses of regional climate vulner-
ability and sustainability of existing ecosystem services. Major droughts
in the past decades have severely impacted yields andwater availability
in some regions of Brazil, particularly in the northeast, pointing to the
need for improved drought preparedness in the most climatically vul-
nerable regions (Gutiérrez, Engle, De Nys, Molejón, & Martins, 2014).
This need has led to the recent development of a Northeast Brazil
Drought Monitor {http://monitordesecas.ana.gov.br/; \De Nys, 2015
#1142} following the convergence of evidence approach adopted by
the U.S. Drought Monitor (Svoboda et al., 2002).

This paper builds on a prior study (Anderson et al., 2015) which
compared cross-correlations in ESI with satellite-based precipitation
and LAI retrievals and anomalies over Brazil, and their relative behaviors
over rainforest vs. agricultural (farm and pasture) land cover classes.
Here, these same satellite indicators are compared with a decade of
yield data from Brazil, collected between 2003 and 2013. First, the indi-
ces are correlated with state-level data for corn, soybean and cotton
from the National Food Supply Agency (CONAB), which provides yield
estimates discriminated by cropping season (e.g., early vs. late season
corn crops). Next, we examine patterns in yield-index correlations at
higher spatial resolution using yield estimates at the municipality
level from the Brazilian Geographical and Statistical Institute (IBGE).
An overarching goal of this study was to evaluate the relative value of
different classes of satellite indicators for integration into ongoing
drought monitoring, crop modeling and yield estimation efforts in
Brazil. We also evaluate the value added by combining LAI – indicative
of the VI class of agricultural indicators – with LST in a physically
based model of ET, and in comparison with precipitation anomalies

http://monitordesecas.ana.gov.br/;%20/De%20Nys,%202015%20%231142
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Table 1
Representative studies examining yield correlationswith indicators based on remotely sensed LST andVIs combined using (Type 1)weighting factors, (2) regression or decision trees, and
(3) integration within a surface energy balance estimate of ET.

Study Type RS indicators Crop Region Key findings

Unganai & Kogan (1998) 1 NDVI, LST (AVHRR1) Maize Southern Africa Stronger index-yield correlations observed where maize is the
dominant crop
LST correlations peaked in Jan.-Feb. when maize is very
sensitive to thermal conditions; NDVI peaked later, attributed
to water stress
Multiple linear regression using both LST and NDVI indices at
their peak correlations were better predictor of yield than
either used in isolation

Liu & Kogan (2002) 1 NDVI, LST (AVHRR) Soybean 8 states in Brazil For central west and southeast states, LST correlations peaked
in Dec.- Jan. (flowering and grain filling); Paraná peaked earlier,
Rio Grande do Sul and Santa Catarina later
LST generally better predictor of yield than NDVI

Salazar et al. (2007) 1 NDVI, LST (AVHRR) Winter wheat Kansas, US NDVI correlations peak during April–June – critical
reproductive period.
Earlier correlations (Feb–Mar) with LST, but not as strong as
with NDVI

Kogan et al. (2012) 1 NDVI, LST (AVHRR) Winter wheat,
sorghum and maize

Kansas, US NDVI is a cumulative indicator of crop growth, whereas LST is a
state driven by thermal condition and moisture availability.
Therefore critical period characterized by LST starts earlier and
is shorter than that characterized by NDVI.
Sorghum index-yield correlations lower than for maize due to
higher drought resistance

Johnson (2014) 2 NDVI, Day/night LST
(MODIS), rain

Maize, soybean US Cornbelt NDVI and daytime LST were well correlated with yield
Nighttime LST and precipitation were not significantly
correlated with yield

Gusso et al. (2014) 2 LST, EVI (MODIS) Soybean Rio Grande do
Sul, Brazil

LST captured occurrences of summer heat stress
Optimal correlations (negative) were obtained during
grain-filling

Bastiaanssen & Ali (2003) 3 fAPAR (AVHRR), LUE
model with ET = f(LST)
stress factor

Wheat, rice, cotton,
sugarcane

Indus Basin,
Pakistan

Model performed satisfactorily for wheat, rice,
sugarcane – poorly for cotton
1.1 km resolution of AVHHR too coarse to discriminate
individual crops

Mishra et al. (2013) 3 Crop simulation with
ET = f(LST), RZ SM updates

Maize Alabama, US Remotely sensed actual/reference ET ratio served as reasonable
proxy for rootzone soil moisture (RZ SM) from local water
balance

Tadesse et al. (2015) 3 ET = f(LST), NDVI, rain Cereals Ethiopia Higher correlation with ET anomalies in northern mountainous
region, lower in southern lowlands

This study ET = f(LST, LAI), LAI, rain Soybean, corn, cotton 8 states in Brazil Anomalies in ET ratio (ESI) gave higher and earlier peak
correlations with soybean, cotton and first corn crop yields;
more uniform index performance for second corn crop
ESI outperformed LAI alone, indicating value in combining LAI
with LST via energy balance
ESI demonstrated fast response to sequence of flash droughts in
NE Brazil

1 Advanced Very High Resolution Radiometer.
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that instigate drought. Analyses include assessment of signal conver-
gence between indicators, identification of time windows of maximum
sensitivity for each index and crop, and investigation of areas where
yield anomalies are well and poorly correlated with ESI in relationship
to climatic moisture limitations.

2. Study area

Remotely sensed ET, precipitation and LAI datasets were assembled
over a gridwith 0.1×0.1° (nominally 10×10 km) spatial resolution cov-
ering the South American continent (see extent in Fig. 1a). In this study,
focus was given to eight major agricultural states in Brazil: Maranhão
(MA), Piauí (PI), Bahia (BA), Mato Grosso (MT), Mato Grosso do Sul
(MS), Goiás (GO), Paraná (PR), and Rio Grande do Sul (RS). These were
selected to represent generalized geographic regions of agricultural pro-
duction within the northeast, central west and southern parts of Brazil
(see Table 2), and were targets of study in Anderson et al. (2015).

A map of land use in Brazil, generated by IBGE based on data from
the last agricultural census (2006), is shown in Fig. 1b. The state of MT
in the central west represents a transition between tropical forest in
the Amazon to the north and a mosaic of agriculture (pasture and
crops) and natural savannah (Cerrado) to the south and east. Crops
grown in rotation (e.g., soybean, corn and wheat) are most prevalent
in the south and southeast, but are expanding northward as new land
is converted to agriculture where climate conditions allow.

3. Data

3.1. Yield data

State-level crop yield datasets were obtained from CONAB (http://
www.conab.gov.br/conteudos.php?a=1028), which provides official
data on planted area, production and yield back to 1976 for all regions
and states in Brazil. The data are collected through survey agents in
the agricultural sector, including farmers, cooperatives, secretaries of
agriculture, rural extension and financial agents. This work is carried
out monthly, with bimonthly field visits supplemented by contacts via
phone, electronic mail or other means available for updating the data.

Fig. 2 shows time trends in area planted with soybean, cotton, and
first and second season corn crops (denoted “Corn 1” and “Corn 2”,
with nominal harvest in March and June–July, respectively) over the
past decade, as reported by CONAB. State-level planted acreages aver-
aged over the period 2003–2013 are tabulated for each crop in
Table 2. Of particular interest is the growth in soybean acreage in MT,
in the transitional region from Cerrado to rainforest – nearly doubling
between 2002 and 2013 due to recent expansion in a new front of



Fig. 1. a) Study region, highlighting regions/states in Brazil used in correlation analyses. Also shown is b) amapof landuse over Brazil circa 2006 (IBGE). The red box indicates thenortheast
region highlighted in Fig. 8. State abbreviations are listed in Table 2.
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land occupation. Introduction of new, shorter season (90–100 days)
soybean cultivars with reasonable yields has encouraged corn/soybean
double-cropping in MT and other states, with soybean being planted
at the beginning of the rainy season and an off-season corn crop
(safrinha, “Corn 2”) at the end of summer. Recent increases in the sec-
ond corn crop in MT and PR are also due in part to establishment in
2007 of a soybean host-free period (“Vazio Sanitario”), restricting soy-
bean sowing to the first growing season to reduce the occurrence of
Asian soybean rust (Delgado & Zanchet, 2011).
Table 2
States and regions considered in time series and correlation analyses. Also given are state level
CORN1 and CORN2, respectively) for the period 2003–2013, as well as fraction of total annual

Acronym State/region Region
Average p

Soybean

MA Maranhão Northeast 430
PI Piauí 288
BA Bahia 961
MT Mato Grosso Central West 6001
MS Mato Grosso do Sul 1789
GO Goiás 2483
PR Paraná South 4183
RS Rio Grande do Sul 4004
To facilitate visualization of sub-state level yield correlations, better
approximating the scale of the remote sensing data used in this study,
yield estimateswere also obtained at themunicipality level from the ag-
gregate database from IBGE's Automatic Recovery System (SIDRA;
http://www.sidra.ibge.gov.br/), which provides time-series data from
1990 to present aggregated to the country and state level and also at
the municipality, district and neighborhood levels. Unlike CONAB, the
IBGE dataset does not distinguish yield obtained in different cropping
cycles but only provides a bulk annual yield estimate for each crop type.
estimates of average area planted in soybean, cotton, first and second corn crops (labeled
corn acreage planted in the second crop (data from CONAB).

lanted area (2003–2013) (1000 ha)

Cotton Corn 1 Corn 2 Fraction Corn 2

11 381 19 0.04
13 313 3 0.01

274 442 325 0.42
489 128 1607 0.91
47 82 822 0.90
86 476 384 0.42
16 1187 1465 0.55
0 1267 0 0.00

http://www.sidra.ibge.gov.br


Fig. 2. Time trends in planted crop acreage in target Brazilian agricultural states, as reported by CONAB.
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While these two yield surveys (IBGE andCONAB) are not completely
consistent, they are based on related data sources and exhibit similar
magnitudes and tendencies. Discrepancies are generally due to differ-
ences in sampling criteria, survey timing (calendar vs. cropping year),
andmethods for estimating yields at state and national levels (aggrega-
tion vs. extrapolation). It is important to note that “yield” is defined in
both the CONAB and IBGE datasets as the average ratio of production
(kg) per harvested area (ha) for each crop, rather than sowed area. In
some years, crops are so poor that they are not economically viable to
harvest, yet this loss of production is not reflected in the reported yields.

Neither IBGE nor CONAB report accuracies associated with their
yield estimates. At the country-level, annual production estimates
(2001–2014) for corn, soybean, and cotton from CONAB are highly cor-
related (r2 N 0.97) with World Agricultural Supply And Demand Esti-
mates (WASDE) from the U.S. Department of Agriculture's World
Agricultural Outlook Board. However, this does not necessarily consti-
tute an independent assessment due to cross-use of common datasets
by both organizations. While we cannot assign error bars to the yield
data, it is important to recognize that the observations themselves are
an additional source of noise in the correlation analyses.

3.2. Remote sensing data

Remote sensing datasets used in the analyses were described in de-
tail by Anderson et al. (2015), and are summarized briefly below.

3.2.1. Leaf Area Index (LAI)
Daily LAI maps over South America were produced from the 4-day

global 1-kmMODIS (Moderate Resolution Imaging Spectroradiometer)
LAI product (MCD15A3 Terra-Aqua combined, Collection 5). The prod-
uct was temporally smoothed and gap-filled following the procedures
described by Gao et al. (2008) based on the TIMESAT algorithm of
Jonsson and Eklundh (2004). The smoothing procedure assigns greater
weight to MODIS LAI retrievals with the highest quality, as recorded in
the product quality control bits. The final smoothed and gap-filled
time series was then resampled onto the 0.1° analysis grid. Further in-
formation is provided by Anderson et al. (2015).
3.2.2. Evapotranspiration (ET)
Maps of daily actual ET were retrieved over the 0.1° analysis grid

using a polar orbiter-based version (ALEXI_POLAR; Anderson et al.,
2015) of the Atmosphere-Land Exchange Inverse two-source surface
energy balance model (Anderson, Norman, Mecikalski, Otkin, &
Kustas, 2007a). In this study, ALEXI_POLAR was forced with measure-
ments of day–night LST difference generated using theMODIS-Aqua in-
stantaneous swath product (MYD11_L2), along with insolation and
meteorological data from NASA's Modern-Era Retrospective Analysis
for Research and Applications (MERRA; Rienecker et al., 2011). The fil-
tered MODIS LAI time series described in Section 3.2.1 is also used as
input to ALEXI_POLAR, governing partitioning of surface temperature
and fluxes between the soil and canopy components (“sources”) in
pixels with partial vegetation cover (Kustas & Anderson, 2009).

The Evaporative Stress Index (ESI) is computed from clear-sky esti-
mates of the relative ET fraction, fRET = ETa/ETref, where ETa is actual
ET retrieved using ALEXI and ETref is the Penman-Monteith (FAO-56
PM) reference ET for grass as described by Allen, Pereira, Raes, and
Smith (1998). Normalizing by reference ET serves to reduce impact of
drivers of the evaporative flux that are less directly related to soil mois-
ture limitations (e.g., insolation load and atmospheric demand). To
identify areas where fRET is higher or lower than normal for a given
time intervalwithin the growing season, ESI is expressed as a seasonally
varying standardized anomaly in fRETwith respect to long-term baseline
conditions. The ESI time-compositing and anomaly computations are
described in Section 4.

One limitation of TIR remote sensing is the inability to retrieve LST
through cloud cover. This impacts ESI coverage over Brazil during the
rainy season, particularly over the Amazon and adjacent states
(e.g., MT). Ongoing research is investigating the use of microwave (Ka
band) LST retrievals at coarser spatial resolution to supplement TIR re-
trievals during periods of persistent cloudiness (Holmes, Crow, Hain,
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Anderson, & Kustas, 2014); however, in this study TIR-only LST data are
used in the ALEXI algorithm.

3.2.3. Precipitation
Daily precipitation grids at 0.25° spatial resolution are routinely

available from the Tropical Rainfall Mapping Mission (TRMM) 3B42 v7
precipitation product (Huffman et al., 2007). These rainfall estimates
are generated by merging observations acquired at microwave and IR
wavelengths. For this study, daily TRMM precipitation estimates were
mapped to the 0.1° ALEXI grid using the nearest neighbor resampling.

4. Methods

4.1. Index anomalies

Comparisons between crop yields and satellite indicators were con-
ducted in anomaly space to better focus on changes in yield due to inter-
seasonal climate variability. Standardized anomalies in LAI, TRMM rain-
fall and clear-sky fRET (i.e., ESI) were computed over relatively short (4
and 12-week, or approximately 1 and 3-month) moving windows, ad-
vancing at 7-day timesteps, to identify seasonal/phenological periods
where index anomalies are most strongly correlated with harvested
yields.

Composites were computed as an unweighted average of all index
values over the interval in question:

v w; y; i; jð Þh i ¼ 1
nc

Xnc

n¼1

v n; y; i; jð Þ; ð1Þ

where v represents LAI, rainfall or fRET, 〈v(w,y, i, j)〉 is the composite for
week w, year y, and i,j grid location, v(n,y, i, j) is the value on day n, and
nc is the number of days with good data during the compositing
interval. Cloudy-day fRET values from ALEXI_POLAR were flagged and
excluded from the composites. This leads to missing data in ESI over
the Amazon and surrounding states during the rainy season, particular-
ly between December and February when few clear-sky retrievals are
possible. The TRMM and MODIS LAI datasets were completely filled
and therefore exhibit no data gaps.

The composited indices were then transformed into a standardized
anomaly or “z-score”, normalized to a mean of zero and a standard
deviation of one. Fields describing “normal” (mean) conditions and
temporal standard deviations at each pixel were generated for each
compositing interval over the baseline period 2003–2013. Then
standardized anomalies at pixel i,j for weekw and year ywere comput-
ed as

v w; y; i; jð Þ0 ¼
v w; y; i; jð Þh i− 1

ny

Xny

y¼1

v w; y; i; jð Þh i

σ w; i; jð Þ ; ð2Þ

where the second term in the numerator defines the normal field, aver-
aged over all years ny, and the denominator is the standard deviation. In
this notation, fRET’ computed for anX-month composite is referred to as
ESI-X, where X is 1 or 3 in this study. Anomalies in X-month composites
ofMODIS LAI and TRMMprecipitation are denoted LAI’-X and TRMM’-X,
respectively.

4.2. Yield correlations

To assess correlations with state- and municipality-based crop yield
estimates, spatially aggregated satellite index anomalies were comput-
ed from fRET, LAI and TRMMdata averaged over polygons outlining each
yield measurement unit, excluding pixels that were not identified as
majority agricultural land use as defined in the land cover classification
shown in Fig. 1b.
Yield anomalies at both state andmunicipal levelswere computed as
departures from a linear regression in time over the 2003–2013 period
to remove trends in increasing yield that may result from technological
advances or genetic improvements in cultivars:

yield u; yð Þ0 ¼ yield u; yð Þ−yieldlin u; yð Þ ð3Þ

where u is the political unit in question (state, region ormunicipality), y
is the year, and yieldlin is given by a linear temporalfit to all yield data for
that unit over the period of record. Linear detrending of yields may not
be appropriate for all states, but in general served to increase correla-
tions with all drought indicators examined.

Index-yield correlations were quantified using the Pearson correla-
tion coefficient (r), typically computed from ny × ns samples, where
ny = 11 is the number of years of yield data included in the analysis
(2003–2013), and ns is the number of states/municipalities included
in a regional evaluation. A Spearman rank correlation provided qualita-
tively similar results (not shown).

For state-level yield analyses, correlations were computed at 7-day
intervals between the 1-month composited index standardized anoma-
lies (Eq. (2)) and yield anomalies (Eq. (3)). To identify optimalwindows
during the growing season where an index is most predictive of at-
harvest yield, a two-dimensional correlation space was computed for
each index, crop and region. The 1-month index composites were fur-
ther averaged over a variable window prior to correlation with yield
anomalies. In 2-D plots of these analyses, the x-axis represents the
end-date of the index averaging window, and the y-axis represents
the length of the window.

Yield correlations at themunicipal level were computed at 7-day in-
tervals using 3-month composite drought indices to investigate how
date and magnitude of maximum correlation strength vary spatially
across the country.

5. Results

5.1. State-level yield correlations

5.1.1. Satellite index and yield time-series
Time-series of ESI, TRMMand LAI anomalies averaged over the eight

Brazilian agricultural states listed in Table 2 are shown in Fig. 3 for the
period 2003–2013 (upper plots in each panel), along with annual
state-level yield estimates from CONAB for corn (1st and 2nd growing
seasons), soybean and cotton (lower plots). The dashed lines in the
lower plots represent the linear trend for crop yields during the ana-
lyzed period. These plots are organized geographically, according to
the regions described in Table 2. In this figure, anomalies in 3-month
index composites have been further smoothed over a 6-week moving
window to suppress noise and more clearly convey co-evolution of
yields and indices.

Over these agricultural regions, ESI, TRMM and LAI anomalies show
general temporal agreement, capturing major drought and pluvial
events (see also the time-series of monthly ESI maps over this period
in Fig. 5 of Anderson et al., 2015). A widespread drought afflicted
much of central eastern Brazil in 2007. In addition, the northeast expe-
rienced an extended drought from 2012 and continuing through 2013
despite heavy rainfall in June, with generally negative impact on
detrended yields in PI and BA. The southern region of Brazil has also
faced extreme “flash” drought events during 2009 and 2012, causing
great losses for the agricultural sector.

Crop yield behavior depicted in Fig. 3 is highly variable between
states and years, with some states exhibiting relatively stable yields
(e.g., MA) through time and others with strong fluctuations (e.g., PR
and RS) – in many cases in synchrony with variations expressed in the
remote sensing anomalies, indicating sensitivity to climate drivers.
Year-to-year yield fluctuations and trends may also be related to the
technological “package” that some states have developed for these



Fig. 3. Annual soybean, cotton and corn yields (two plantings) and trend lines (dashed lines), compared with ESI and anomalies in LAI and TRMM precipitation (3-month composites,
smoothed with a 6-week averaging window) for the eight target states.
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crops (for exampleMT, PR and RS). A technological package includes se-
lection of cultivars, tillage practices, sowing and harvesting schedule
and technique, fertilizer applications, irrigation, andweed, pest and dis-
ease control. Furthermore, market price also plays an important role in
the decision making process regarding which crop will be planted and
which technological package will be adopted. These technological and
cultural factors may in some places override yield response to weather
and soilmoisture patterns, and decrease the ability of climatic indicators
to accurately predict yield in isolation. In general, thiswill bemore prev-
alent in the central west, where corporate farms are typically larger and



Fig. 4. Correlations between ESI-1 (4-week averagingwindow) and state-level yield estimates for 2003–2013 as a function of date (week of year) of averagingwindow end-date, based on
11 samples. Gray shaded area indicates nominal harvest window for each crop.
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more highly mechanized. Farms in the northeast and southern states
tend to be smaller and more manually operated.

5.1.2. State-level yield correlations with ESI
Fig. 4 shows plots of correlation coefficient (r) computed between

state-level yield anomalies and ESI-1 (with additional 4-week averaging
for noise suppression) as a function of week of year at the end of the av-
eraging window (see Section 4.2). Approximate windows of harvesting
date are also indicated for each crop (soybean: Feb.–Apr.; 1st corn crop:
Feb.–Mar.; 2nd corn crop: Jun.–Aug.; cotton: Jun.–Aug.), although har-
vest can vary widely with region and year. Each correlation consists of
11 points, one for each year during the baseline period 2003–2013; cor-
relations of |r| N 0.6 are significant at p b 0.05.

5.1.2.1. Soybean. For soybean, the primary crop in Brazil, yield anomaly
correlations with ESI are maximized in a window between January
and April, particularly in the southern states of PR and RS, and in BA
and MS in the central latitudes – all with peak correlations around 0.8.
This coincideswith themainflowering andpod-filling stages of soybean
growth in Brazil, when yield production is highly sensitive to moisture
deficiencies. The states of MT, GO, MA and PI did not exhibit significant
correlations with ESI for any week of the year. Yield correlations with
LAI and TRMM anomalies were also not statistically significant for
these four states (not shown). Looking at Fig. 3, it is evident that
detrended yields in MT, GO andMA showed little interannual variabili-
ty, contributing to the low correlations for these states. For MT and GO,
this soybean yield stability is largely due to better climate – with more
reliable rainfall during the soybean growing season. The northeastern
states of MA and PI had the lowest acreage planted with soybean of all
the states considered (Fig. 2), which may also serve to degrade correla-
tions with coarse-scale drought indicators.
Simple correlation analyses with moisture-related indices can be
confounded by the fact that low soybean yields can result from both
dry and wet conditions. For example soybean yields in MT in 2006
were reduced not due to drought, but due to the increase in the inci-
dence and severity of Asian rust and other problems with pests due to
excessive rain and elevated in-canopy wetness duration. The cost of
soybean production increased by 600% in 2006 due to intensive fungi-
cide spraying to control rust (Soares, 2007). The following year, a
host-free period was introduced in MT to help control future rust out-
breaks. Furthermore, the shift toward shorter season cultivars reduces
the overlap between the soybean growing season and prominent pe-
riods of rust outbreak, lessening damage to yield. Such management
changes can lead to a different moisture-yield behavior in subsequent
years, further disrupting correlationswith satellite-derivedmoisture in-
dicators such as ESI and TRMM’. In this case additional informationwill
be required to accurately interpret impacts resulting from moisture
anomalies, for example from pest or disease models.

Because the strength of correlation depends strongly on the time pe-
riod of analyses and the degree of yield variability over that period, it is
difficult to directly compare the yield correlations reported here with
those found in prior studies (e.g., Esquerdo et al., 2011; Liu & Kogan,
2002). For example, Liu andKogan (2002) correlated AVHRRVegetation
Condition Index and Temperature Condition Index data with CONAB
state-level soybean yield anomalies for 1986 to 1995 and obtained dif-
ferent levels of peak correlation. However, the timing of peak sensitivi-
ties was similar to those in Fig. 4, with MT, GO and MS peaking during
the month of January, when the flowering and grain-filling stages
occur, and PR peaking a few weeks earlier and RS a few weeks later.
5.1.2.2. Corn. Two annual corn plantings are common in many parts of
Brazil, with the second season (safrinha) becoming increasingly popular
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particularly in MT, MS and GO in recent years due to the release of new
hybrids and adoption of new cropping cycles.

For the first planting, corn yields in the southern states of PR and RS
have the strongest correlations with ESI, peaking above 0.8 between
January and February during the grain-filling stage. In both of these
states, the first season corn yields were significantly impacted by the
flash droughts in 2009 and 2012, as well as a severe drought event dur-
ing the 2004/2005 growing season. These severe events serve to in-
crease correlations in the southern states. In addition to the south,
correlations in the northeast state of BA approach 0.8, and in MA r
peaks around 0.6. Correlations with first corn crop yields in the central
west states (MT, GO, MS) as well as PI are not statistically significant
over this period of record.

For the second corn growing season, only the states of MT and BA
have significant correlation with yields. In this study, the peak correla-
tion for BA is observed very late in the season, driven by specific drought
events in 2011 and 2012,which are discussed further in Section 5.1.4. Of
the states with high safrinha corn acreage (MT, MS and PR; Table 1),
corn crops in MT are most vulnerable to climate variability during criti-
cal growth stages. This is because this state experiences higher interan-
nual rainfall variability fromMay to July, with higher temperatures and
water loss through ET, further exacerbating soil moisture conditions
when there is a precipitation shortfall. This leads to stronger yield vari-
ations and improved correlations with moisture-related indicators.

5.1.2.3. Cotton. Cotton has a longer growing cycle than corn and soybean,
and so has a greater potential to be influenced by climatic conditions.
Correlations between cotton yields and ESI are statistically significant
in the states of PR,MS, BA,MT and PI (Fig. 4). Among these states, timing
of the peak correlation is generally related to latitude, with the southern
PR andMS states, peaking aroundweek 10, BA aroundweek 15 and the
northernmost PI andMTwith broad peaks fromweeks 16–24. Note that
planted cotton acreage in PR dropped to near zero starting in 2006with
a shift in production from the south to the central west (Fig. 2).

5.1.3. Regional yield correlations with ESI, TRMM’and LAI’
The relative performance of ESI compared to LAI and TRMM anoma-

lies as an early indicator of expected yield was evaluated using the 11-
year state-level yield dataset from CONAB. Results from the two-
dimensional correlation analyses described in Section 4.2 are shown in
Fig. 5, with averaging window end date on the x-axis and length of av-
eraging window on the y-axis. In these analyses, the state-level data
were combined regionally to improve statistical sampling and signifi-
cance. Fig. 5a combines all states and years (All), while panels b–d
show regional combinations for the northeast (NE), central west (CW)
and southern (S) states, respectively.

The plotting strategy used in Fig. 5 visually summarizes information
about relative yield correlation strength (color) for different indices
and different regions within Brazil, as well as the relative timing of the
peak signal (horizontal position). These plots indicate that in some re-
gions, some degree of additional time-averaging (moving upwards in
the plots) helps to improve correlations with yields. For example,
Esquerdo et al. (2011) found that a full-season averaging window was
optimal for estimating soybean yields in PR using NDVI. However, longer
averaging windows are accompanied by a delay in the peak correlation
signal – this causes a positive slope in the areas of maximum correlation
in Fig. 5. In general, there will be a tradeoff between early notification
and confidence in yield forecasts – another argument for looking at mul-
tiple agricultural drought indicators.

Overall, the performance of all drought indicators for estimating
yields are the highest for Brazilian soybean crops, with ESI yielding the
earliest significant correlations several weeks before the harvesting pe-
riod. Regionally, the southern states collectively show the strongest cor-
relations due in part to several severe drought events that have affected
that part of Brazil over the past decade, as noted above. In the northeast,
ESI shows the highest correlations with yield for all crops – response to
flash droughts in this region is discussed in Section 5.1.4. The ESI shows
superior correlations in the central west states for soybean and cotton,
while LAI’ outperforms ESI for the second corn planting and none of
the indicators provide useful information regarding yields from the
first planting in this region. In this case, other factors are likely limiting
yield and yield correlations; for example, cloudiness (impacting solar
radiation), high nighttime temperatures, and the dominance of the
more profitable soybean production in this area.

The summary plots in Fig. 6 show time series extracted from Fig. 5a
(combined region “All”) for a 4-week averaging window, identifying
windows of maximum index sensitivity for each crop on average over
the eight agricultural states targeted in this study and demonstrating
reasonable agreement in timing between indices at the national scale.
These correlations were computed by combining all state-level yield-
index sample pairs, decreasing the threshold of significant correlation
at p b 0.05 to approximately 0.2 depending on number of years with
yield data reported in the CONAB dataset. In general, soybean correla-
tions peak between February and April, the first corn planting between
January and February, the second betweenMay and July, and cotton be-
tween March and May. In each case, there is a statistically significant
correlation several weeks prior to the nominal harvest date. For soy-
bean, cotton and the first corn season, peak correlations are higher for
ESI than for LAI anomalies, indicating that value is accrued by combining
LST and VI inputs to ALEXI. For these crops, ESI is also better correlated
with state-scale yield anomalies than is precipitation. Peak correlations
are more similar between all indices for the second corn crop, which
may relate to high variability in safrinha crop yields due to less reliable
climate conditions in the second season.
5.1.4. Case study: flash droughts in Bahia
To study index responsiveness in more detail, we focus here on

the rapid onset drought events that occurred during the safrinha
growing season in the state of Bahia in northeast Brazil between
2010 and 2013 (Fig. 7). Most corn production in BA occurs in the
western part of the state (part of the fertile “MATOPIBA” agricultural
region) during the main cropping season. Safrinha crops are grown
primarily in semi-arid northeastern BA, largely for subsistence
purposes.

Corn yields in BA for both the 2010/2011 and 2011/2012 growing
seasons were elevated for the first crop and depressed in the second
crop due to mid-year rainfall deficits (see Fig. 7a). In some regions of
BA, farmers did not harvest the second corn crop in 2012 because the
yield was too low and it wasn't economically worthwhile. This addi-
tional loss of production due to unharvested acreage is not reflected
in the CONAB yield data which are reported on harvested area basis.
Cotton yields were also negatively impacted in 2011/2012, because
the drought that year started earlier and lasted longer than in
2010/2011.

Monthly maps of ESI, LAI’ and TRMM’ showing the evolution of
moisture and crop conditions over northeastern Brazil during these
two growing seasons are provided in Fig.8. The three indicators capture
the cycle of early-season (November to January) moisture availability,
aiding the primary corn crop grown in western BA, and mid-year
drought in both years in northeastern BAwhere the bulk of the safrinha
corn crops are grown. As indicated in Fig. 7a, ESI indicated a larger am-
plitude in favorable (positive anomalies, peaking around week 8) and
stressed (negative anomalies, week 32–40) conditions during these
two years, resulting in higher correlations for ESIwith bothfirst and sec-
ond corn crop yields (Fig. 7b). The oscillating moisture conditions in
these two growing seasons led to a strong early season anticorrelation
(red tones)with safrinha corn yields in BA and theNE region, particular-
ly for ESI. This anticorrelation feature is to some extent an artifact of the
precise sequence of moisture events that occurred in this region over
the period of record, but does indicate that this region is highly suscep-
tible to rapid changes in water availability.



Fig. 5. Correlation of crop yield anomalies with ESI, LAI’ and TRMM’ plotted as a function of index averaging interval and end date for a) all 8 states combined, and the b) northeast (NE),
c) central west (CW), and d) southern (S) states. (Note that the plots for S are printedwith an expanded color bar due to significantly higher correlations. In addition, the x-axis is shifted to
the left for the second corn crop in all regions to capture high correlation periods occurring later in the season.)
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5.2. Municipal level yield correlations

To examine regional variability in yield correlation with drought in-
dicators in finer spatial detail, we also used yield data reported at the
municipality level by IBGE. The spatial resolution of this data set varies
across the country, with smaller municipality units in the south and
larger units to the north. Yield anomalies for soybean, corn, cotton and
wheat were computed for each municipality using Eq. (3) over the pe-
riod 2003–2013. Sample maps for 2003–2012 (corn and soybean) are
provided in Fig. 9 in comparison with annual ESI patterns for the
January–February–March (JFM) composite interval – a period of peak
sensitivity identified in Figs. 4–6 for soybean and the first corn planting.
In general, there is good spatial correspondence between ESI and yield
anomalies in corn and soybean, particularly in the southern states. Sim-
ilar spatiotemporal patternswere evident in the cotton andwheat yield
anomalies (not shown), although the spatial coverage for these two
crops is not as extensive as for corn and soybean.

Less correspondence is observed between the drought indicators
and corn yield anomalies in the northeast. This is due in part to the
fact that IBGE does not distinguish between cropping cycles – optimal



Fig. 6.Correlations between 1-month ESI composites, TRMMprecipitation anomalies andMODIS LAI anomalies and state-level yield estimates for 2003–2013 as a function of date (week of
year) of composite end-date. Correlations are computed for all states combined. Gray shaded indicates nominal harvest date for each crop,while horizontal line indicates level of significant
correlation at p b 0.05 (n is variable, depending on number of years of yield data available in CONAB dataset).
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correlations with the safrinha corn crop occur later in the season. The
rapid cycling of seasonal drought conditions in northeast Brazil during
2011–2012 described in Section 5.1.4 led to spatial disparities in corn
production over the state of BA particularly in 2011, with higher than
average yields in the western MAPITOBA region from the first corn
crop (consistent with the JFM ESI map in Fig. 9), and depressed yields
in eastern BA associated with the failure of safrinha corn crops (more
consistent with the July and August 2011 ESI maps in Fig. 8). Again,
yield reductions due to unharvested (abandoned) acreage during the
second corn season are not incorporated into the IBGE estimates, so
crop losses in eastern BA are somewhat underrepresented in Fig. 9. In
2012, many of these municipalities did not report yields where crops
were abandoned (appearing blank in Fig. 9).

To quantify spatiotemporal variability in yield correlations at the
municipality level, a time series of IBGE yield-index correlation maps
was computed at 7-day intervals over the Brazilian growing season for
each drought indicator, using 3-month composites (ESI-3, TRMM’-3
and LAI’-3). Example maps are shown in Fig. 10, sampled at times of
peak regional sensitivity to corn and soybean yields as identified in
the state-level analyses. Also shown are maps of coefficient of variation
in soybean and corn yields, as well as in fRET, TRMM precipitation and
MODIS LAI over the period of record. Areas of strong annual yield and
index variability (high CV) are spatially collocated, primarily in the
southern and northeastern states. This is advantageous, indicating the
indices have sensitivity in regions where yield is highly variable from
year to year. These are also areas where yield-index correlations are
the highest, which is reasonable given that the magnitude of Pearson's
r can be strongly affected by the degree of variability inherent in the
datasets being correlated. As indicated in the state-level analyses, peak
index-yield correlation strength varies regionally and with cropping
cycle. While the IBGE yield database does not distinguish between
first and second corn harvests, the correlations for corn in Fig. 10 peak
later in the season in states where the second crop is more prevalent,
such as MT and MS in the central west and in the northeast.

Fig. 11 shows the date and strength of peak index correlation with
IBGE soybean and corn yields, summarized for the eight target agricul-
tural states in Table 1. These state-level aggregates were computed by
averaging municipality-level values weighted by crop production from
2009 (mid-point in study; seemaps in Fig. 10), thereby focusing primar-
ily on response in the highest productivity regions. A marked north-
south gradient in peak correlation in all indicators is evident for soybean
yields with the strongest correlations in the southern states, confirming
trends identified with the state-level CONAB datasets (Fig. 4). For soy-
bean, peak correlations are marginally stronger with ESI in most states
(r = 0.62 on average), with LAI anomalies yielding the lowest correla-
tions (r= 0.50), especially in the northeast. Date of peak predictive sig-
nal is relatively uniform across the country, with ESI providing earlier
indication of soybean yield impacts by 10 days on average in compari-
son with TRMM’ and 25 days in comparison with LAI’. In the north-
eastern states, ESI peak correlations occur 20–60 days earlier than
TRMM’ or LAI’.

Date of peak signal is more variable regionally for corn crops, likely
relating to the multiplicity in cropping cycles. In the central western
states of MS and MT where the majority of corn crop acres planted oc-
curs in the second season (Fig. 2, Table 2), peak correlations occur
around DOY 160, consistent with the peaks between week 20 and 24
(DOY 140-170) associated with CONAB state data for the second corn
crop in Fig. 6. In the other states, peak correlations occurred around
DOY 80-120, similar to patterns for the first corn crop in Fig. 6. In rela-
tion to IBGE corn yields (first and second crops combined), precipitation
anomalies yieldedmarginally higher peak signal inmost states,with the
exception of BA. As discussed in Section 5.1.4, the ESI was better able to
reproduce the rapid intra-annual cycling in crop conditions experienced
in BA in 2011–2013.



Fig. 7.Yield and index relationships over BAduring the 2010/2011 and2011/2012 growing seasons: a) similar to Fig. 3, but focused on 2010–2013; b) similar to Fig. 5, but isolatingBA state
from NE region.
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6. Discussion

6.1. ESI utility in monitoring agricultural drought

In comparing the relative performance of ET, precipitation and LAI
anomaly indices, assessed here using yield anomaly correlations, the
ESI appears to have some advantage in terms of timing and strength
of correlative signal, particularly for soybean, cotton, and primary corn
crop. Correlations at the state level were similar between indices for
the safrinha corn crop, and precipitation deficits were marginally
more successful in explaining annual yield variability for the two corn
crops combined as reported at the municipality level. An exception
was noted in the state of Bahia in northeast Brazil, where ESI responded
quickly to rapid intra-annual cycling of wet and dry conditions during
the 2011–2012 growing seasons, providing better correlation with
first and second corn crop yield anomalies. LAI correlations were
lower for all crops examined, and the peak signal occurred later in the
season. Indices relating to plant green biomass are considered to be
slow-response variables, lagging surface/canopy temperature which re-
sponds more rapidly in response to crop stress (Moran, 2003).
Despite limitations of individual indicators, concomittant de-
velopment of negative ET, vegetation index, and precipitation
anomalies over timescales of several weeks provides valuable cor-
roborative evidence of impending yield impacts. A robust suite of
complementary remotely sensed crop health and moisture indica-
tors will benefit climate vulnerability assessments and develop-
ment of national drought preparedness plans, as currently
underway in northeastern Brazil (Gutiérrez et al., 2014). One out-
come of this plan includes the recent development of a regional
Drought Monitor (monitordesecas.ana.gov.br) for northeast
Brazil, modeled after the U.S. Drought Monitor (USDM; Svoboda
et al., 2002) approach which integrates drought information from
multiple sources and indicators, and includes consideration of
reported drought impacts. ESI has been demonstrated to agree
well with drought severity classifications recorded in the USDM ar-
chive (2013; Anderson et al., 2011), and to lead USDM and other VI-
and precipitation-based indicators during development of rapid
onset, or “flash” drought events (Otkin et al., 2013, 2014). Similar
analyses are underway in comparison with monthly archived as-
sessments from the Northeast Brazil Drought Monitor.



Fig. 8. Comparison of ESI, LAI’ and TRMM’ (1-month composites) over the 2010/2011 and 2011/2012 growing seasons in northeastern Brazil showing development of mid-season
drought.
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6.2. Water limitations on crop growth — ESI utility in yield gap analyses

Yield-satellite index correlation analyses at both the state and mu-
nicipal levels identified agricultural regions within Brazil where crop
yields have been climatically sensitive to moisture deficits during the
past decade, primarily in the southern and northeastern states. These
results corroborate the findings of Sentelhas et al. (2015) who used
agrometeorological modeling to analyze soybean yield gaps over
Brazil. Using cropmodels for attainable and potential yield forced at dis-
crete points by surface weather station data along with actual yield in-
formation from IBGE and CONAB for 1980 to 2011, they determined
that the soybean yield gap in Brazil due to water limitations was the
highest in the southern states of RS, PR, MS as well as Sao Paulo (north-
eastern states were not included in that study) due to recurrent severe
droughts. Here we find that during the period 2003–2013, strong vari-
ability in the remote sensing indicators studied coincided with regions
of large interannual crop yield variability in Brazil (Fig. 10).

This suggests that at the global scale, remote sensing– particularly of
moisture variables like ET and rainfall – can play an important role in
identifying climatically sensitive agricultural systems, providing a diag-
nostic assessment of areaswhere theremay be a strongwater limitation
component in the yield gaps. Large-scale efforts, such as the Global Yield
Gap and Water Productivity Altas (www.yieldgap.org) will benefit by
integrating geospatial information from satellites to provide better spa-
tial and temporal coverage (Lobell, 2013). Diagnostic information about
moisture variability from the long-term ESI record may help to refine
the climatic zonations used to upscale field-scale gap simulations to
larger regions (van Bussel et al., 2015).

We note that sensitivity of the ET and precipitation indices to crop
yield variability was not isolated to areas in Brazil that are classically de-
fined as “water-limited” under the Budyko (Budyko, 1974) aridity index
definition. While the climate in northeast Brazil is classified as semi-arid
and crop growth is normally water-limited, southern Brazil is classified
humid but is still subject to periodic extreme drought events (Alvares,
Stape, Sentelhas, Goncalves, & Sparovek, 2014). In this study drought
index-yield correlations tended to be high in water-limited regions, as
was also demonstrated by López-Lozano et al. (2015) over Europe. In
Brazil, there is also sensitivity in the southern states, which are identified
as “equitant”byMcVicar, Roderick, Donohue, andVanNiel (2012), strad-
dling the boundaries between water and energy limitations.

6.3. Utility in yield forecasting and crop modeling

Several factors confound simple interpretation of remotely sensed
moisture indicators such as ESI in terms of yield impacts.While drought
during physiologically sensitive times in the crop growth cycle will
clearly reduce yield, crop failures can also accompany pluvial periods,
leading to waterlogging and favoring pest and disease occurrences
such as Asian soybean rust, white mold and mildew that benefit from
warm andmoist conditions. Thusmoisture conditions at both extremes
can lead to yield reductions. Sentelhas et al. (2015) note that Brazilian
crop yields can vary significantly even given similar levels of ET (mois-
ture availability) due to differences in management, soil properties
(e.g., organic matter content), sowing date and cultivar. A more robust
interpretation of remote sensing data as leading indicators of yield re-
quires integration with crop, pest and disease models that will properly
consider moisture and temperature extremes occuring during critical
phenological stages of the crop growth cycle, as well as evolution in
plant light harvesting capabilities (sunshine and green leaf area).

Models of varying complexity have been developed to forecast
yields, including index regression models of the type explored here,
simple agrometeorological models that consider sensitivity tomoisture,

http://www.yieldgap.org


Fig. 9. Annual JFM ESI maps, with annual anomalies in municipal level corn and soybean yields reported by IBGE for 2003–2012.
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temperature and light limitations, and crop simulations that represent
plant biophysical relationships in more physical detail (see review by
Basso et al. (2013)). Efforts to integrate remote sensing into
agrometeorological models for Brazil have initially focused on NDVI as
a proxy for biomass or leaf area, diagnostically capturing management
impacts on crop development that are difficult to model a priori with
fine spatial detail (Fontana, Melo, Klering, Berlato, & Ducati, 2006).
Moisture limitations can be incorporated using estimates of the relative
ET ratio (fRET) (e.g., Doorenbos & Kassam, 1979; Jensen, 1968; Rao,
Sarma, & Chander, 1988) derived from a simplified soil water balance
approach using weather and soil texture data (e.g., Rudorff & Batista,
1990), or from remote sensing (Teixeira et al., 2013).

Mishra et al. (2013) demonstrated use of fRET from ALEXI ESI to up-
date soil moisture status in a gridded application of the Decision Sup-
port System for Agrotechnology Transfer (DSSAT) crop simulation
model over rainfed and irrigated corn in southeastern U.S., and found
it served as a reasonable proxy for in-situ measurements of rainfall.
An alternate version of the two-source land-surface representation in
ALEXI uses an analytical light-use efficiency approach for estimating
canopy resistance and coupled carbon, energy and water fluxes
(Anderson, Norman,Meyers, & Diak, 2000), leveraging stress signals di-
agnosed from the thermal retrieval of canopy temperature (Anderson
et al., 2008; Houborg, Anderson, Daughtry, Kustas, & Rodell, 2011;
Schull, Anderson, Houborg, Gitelson, & Kustas, 2015). Accumulated car-
bon flux from this framework, responding to both light and moisture
limitations, may further improve remotely sensed yield estimation
capabilities.

6.4. Issues of spatial resolution

The0.1 deg. spatial resolution of the ET and LAI remote sensingprod-
ucts used in this study has undoubtedly degraded reported correlations



Fig. 10. Production for 2009 (first column) and coefficient of variation (CV; second column) in municipal level corn and soybean yield estimates (IBGE); (bottom row) CV in fRET, LAI and
TRMM precipitation (3-month composites ending DOY 84 and 161); (rest) correlation between yield and index anomalies (3-month composites ending on DOY 84 and 161) over the
period 2003–2013 (n = 11).
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with crop yields, as most pixels at this coarse scale will carry composite
surface moisture and biomass signals associated with a mixture of sub-
pixel crop types at different stages of development. At present, only the
Landsat series of satellites provides routine measurements in both TIR
and reflective bands capable of resolving individual farm fields of typical
size. At the Landsat scale (30 m in both band classes, using thermal
sharpening techniques; Gao, Kustas, & Anderson, 2012), water use and
phenology can be differentiated by crop type and land management
practice (Anderson, Allen, Morse, & Kustas, 2012), making this an opti-
mal scale for assessments of yield and water productivity (Lobell, 2013;
Lobell, Thau, Seifert, Engle, & Little, 2015). Data fusion methodologies,
combining thehigh spatial resolution of Landsatwith the daily temporal
frequency of MODIS or similar moderate resolution systems, facilitate
estimation of daily ET and vegetation indices at sub-field scales
(Cammalleri, Anderson, Gao, Hain, & Kustas, 2013; Cammalleri,
Anderson, Gao, Hain, & Kustas, 2014; Semmens et al., in press). At
these scales, ESI time series in combination with remotely sensed phe-
nology could beused to empirically investigate and improve parameter-
ization of moisture stress functions and alarms implemented in crop
simulation models and operational yield estimates (Gao et al., 2015).
High resolution seasonal ET accumulated in pure (unmixed) 30-m
pixels can be ratioedwith reported yield data to assess water productiv-
ity differentiated by crop type at the municipal or state level.

7. Conclusion

A suite of satellite-based indicators describing anomalies in precipi-
tation (from TRMM), LAI (from MODIS), and the relative ET ratio
(i.e., ESI) were correlated with yield data for three major Brazilian
crops (soybean, corn and cotton) reported at state and municipality
levels over the period 2003–2013. In general the indicators provided
similar spatial patterns in correlation strength, with the highest



Fig. 11. Date and strength of peak correlation of ESI, LAI’ and TRMM’ indicators with IBGE soybean and corn anomalies for the 8 target agricultural states.
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correlations occurring in regions with the highest index and yield vari-
ability over the period of record – due in part to flash drought events
that have occurred in the northeast and southern states of Brazil during
the past decade.

Timing of peak index correlation with at-harvest yields varied by
crop and region, and typically occurred during critical growth stages
(flowering and grainfilling). At regional scales using state-level yield
data from CONAB, the ESI provided higher correlations for most crops
and regions in comparison with TRMM and LAI anomalies. Using finer
scale yield data at the municipality level from IBGE, ESI showed higher
and substantially earlier peak correlations with soybean yields by 10
to 25 days in comparison with TRMM and LAI, respectively. In most
states, TRMM peak correlations were marginally higher with IBGE
corn yields. A notable exception was the state of Bahia in northeast
Brazil, where ESI was better able to capture rapidly developing late-
season droughts that differently impacted the first and second corn
crops in 2011 and 2012. The difference in performance between ESI
and LAI anomalies indicates utility for droughtmonitoring in combining
LAI and LST indicators within a physically based model of crop water
use.

Because negative yield anomalies can accompany both dry and
moist conditions in Brazil, resulting from droughts, floods and
moisture-loving pests or diseases, simple regression-based yield fore-
casts using moisture-related satellite indices can be confounded in
some regions. A more robust approach to yield estimation would
involve integration with crop modeling systems accounting for likeli-
hood of pest and disease outbreak. The regression analyses presented
here provide insight into when andwhere different indicators are likely
to add significant value to yield forecasts.
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