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a b s t r a c t

This paper is concerned with the numerical solutions to the linear matrix equations
A1XB1 = F1 and A2XB2 = F2; two iterative algorithms are presented to obtain the solutions.
For any initial value, it is proved that the iterative solutions obtained by the proposed
algorithms converge to their true values. Finally, simulation examples are given to verify
the proposed convergence theorems.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Research on solutions to matrix equations has been very plentiful over the past decades; for example, Zheng et al.
studied the least squares solution to matrix equations by means of singular value decomposition [1]; Xie et al. applied the
hierarchical principle to solve the general linear matrix equations

∑p
i=1 AiXBi+

∑q
i=1 CiX

TDi = F [2]; Zhou et al. proposed
a gradient based iterative algorithm to find the unique solution of the general coupled Sylvester matrix equations by the
weighted least squares and the gradient search principle [3]; Ding et al. demonstrated hierarchical principle based iterative
algorithms in which the general coupled Sylvester matrix equations were treated as the unknown variables or parameters
in control systems [4]. Many other matrix equations have been solved in [5–10].
This paper considers a pair of linear matrix equations

A1XB1 = F1, A2XB2 = F2, (1)

which play an important role in linear system theory and have been actively studied since the 1960s. For instance, Navarra
et al. proposed a representation of the generalized solution to (1) [11]; by using the generalized singular value decomposition
and the canonical correlation decomposition, Liao and Lei derived a least squares solutionwith theminimumnorm [12]; Liu
employed thematrix rankmethod to provide the necessary and sufficient condition for solving (1) [13]; Yuan et al. proposed
a least squares Hermitian solutionwith the least norm over the skew field of a quaternion [14]; however, difficulties in study
of quaternion matrices existed.
Iterative algorithms are not only widely applied in system identification [15–17], but have also been developed for

solving linear matrix equations in (1) [18,19]. For example, in [18], Dehghan and Hajarian presented an algorithm to
obtain the generalized centro-symmetric solution of (1) with the condition that the equations in (1) are consistent over
the generalized centro-symmetric X . In [19], Cai and Chen derived the least Frobenius solutions of (1) iteratively over the
bisymmetric matrices. Inspired by the iterative algorithms in [20–22] which demonstrated iterative methods for Sylvester
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matrix equations and general coupledmatrix equations, we propose a gradient based iterative algorithm and a least squares
iterative algorithm to solve thematrix equations in (1), in whichwe regard the unknownmatrix X as the system parameters
to be identified. For any initial value X(0), the iterative solution X(k) is proved to converge to the unique solution X .
Compared with [20,21], the main contribution of this paper lies in the fact that the proposed iterative algorithms deal
with the coupling matrix equation (1) in which both equations contain the same unknown X , while [20,21] considered
multivariable matrix equations. The objectives of this paper are as follows.

• To find the constraints for unique solution to the matrix equation (1).
• To develop a stochastic gradient algorithm and a least squares algorithm to iteratively generate the approximate
solutions.
• To expand the proposed algorithms to generalized matrix equations of the form AiXBi = Fi.

The paper is organized as follows. In Section 2, several important lemmas are introduced. In Section 3, the expressions
of the iterative solutions to the matrix equations are given. In Section 4, an example is included to verify the convergence of
the algorithms. Some brief concluding remarks are given in Section 5.

2. Main preliminaries

Let us introduce some notations. For twomatricesM and N ,M ⊗N stands for their Kronecker product. For twomatrices
X and Y with

X = [x1, x2, . . . , xn] ∈ Rm×n, xi ∈ Rm,
Y = [y1, y2, . . . , ys] ∈ Rr×s, yi ∈ Rr ,

col[X] is anmn-dimensional vector formed by columns of X :

col[X] =


x1
x2
...
xn

 ∈ Rmn,

and

col[X, Y ] =
[
col[X]
col[Y ]

]
∈ Rmn+rs.

For matrices Ci ∈ Rri×si , i = 1, 2, . . . , q, a cell array C is introduced here which contains matrices of different dimensions
in one variable described by

C = {C1, C2, . . . , Cq},

and the matrix X ∈ Rm×n can be viewed as a special cell array with the same row or column. In order to more
succinctly illustrate the iterative algorithms to be proposed later, we introduce the block-matrix inner product — the star
(?) product [21] for short. Let

X :=


X1
X2
...
Xp

 ∈ R(mp)×n, Y :=


Y1
Y2
...
Yp

 ∈ R(np)×m, Xi, Y Ti ∈ Rm×n, i = 1, 2, . . . , p;

then the block-matrix star product ? is defined as

X ? Y =


X1
X2
...
Xp

 ?

Y1
Y2
...
Yp

 =

X1Y1
X2Y2
...

XpYp

 .
Taking into account the dimension compatibility, the star product is superior to matrix multiplication. Note that AB ? C =
A(B ? C) 6= (AB) ? C . There are some lemmas for better understanding the algorithms proposed later. Consider the matrix
equation

Ax = b, A ∈ Rn×n, b ∈ Rn. (2)

Here, A = [aij] is a full-rank matrix with non-zero diagonal elements, and x ∈ Rn is an unknown vector to be solved. It is
well known that, for the full column-rank non-square matrix A, we have the least squares solution x = (ATA)−1ATb. Let
x(k) represent the iterative solution to matrix equation (2); it is not difficult to get the iterative solution by the following
gradient based iterative algorithm and the least squares algorithm in [20,21].
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Lemma 1 ([4,20,21]). For matrix Eq. (2), assume that A is a full-rank matrix with non-zero diagonal elements; the solution
to (2) given by the following gradient based iterative algorithm,x(k) = x(k− 1)+ µAT[b− Ax(k− 1)],

0 < µ 6
2

λmax[ATA]
or 0 < µ 6

2
‖A‖2

,

yields limk→∞ x(k) = x. Here, ‖A‖2 = tr[AAT], and k is the number of iterations.

Lemma 2 ([4,20,21]). If A is a full-rank matrix with non-zero diagonal elements, then the following least squares based iterative
algorithm leads to limk→∞ x(k) = x:

x(k) = x(k− 1)+ µ(ATA)−1AT[b− Ax(k− 1)], 0 < µ < 2.

Next, we give the iterative algorithms for the matrix equation

AXB = F , (3)

where A ∈ Rp×m, B ∈ Rn×q and F ∈ Rp×q are given constant matrices, and X ∈ Rm×n is the unknown matrix to be solved.

Lemma 3 ([4]). If A is a full column-rank matrix and B is a full row-rank matrix (p ≥ m, n ≤ q), the gradient based iterative
algorithm for matrix equation (3),

X(k) = X(k− 1)+ µAT[F − AX(k− 1)B]BT,

0 < µ <
2

λmax[AAT]λmax[BTB]
,

yields X(k)→ X .

Lemma 4 ([4]). If A is a full column-rank matrix and B is a full row-rank matrix (p ≥ m, n ≤ q), then the least squares based
iterative algorithm for matrix equation (3),

X(k) = X(k− 1)+ µ(ATA)−1AT[F − AX(k− 1)B]BT(BBT)−1, 0 < µ < 2,

yields X(k)→ X .

3. Iterative algorithms

In order to well represent the solutions to the matrix equations in (1), we rewrite them as follows:{
A1XB1 = F1,
A2XB2 = F2,

(4)

where Ai ∈ Rpi×m, Bi ∈ Rn×qi and Fi ∈ Rpi×qi are given constant matrices (i = 1, 2), and X ∈ Rm×n is the unknown matrix
to be solved. Define

S :=
[
BT1 ⊗ A1
BT2 ⊗ A2

]
∈ R(p1q1+p2q2)×(mn).

Lemma 5 ([4]).Matrix equation (4) has a unique solution if and only if rank {S, col[F1, F2]} = rank{S} = mn; in this case, the
unique solution is given by

col[X] = [STS]−1STcol[F1, F2], (5)

and the corresponding homogeneous matrix equations A1XB1 = 0, A2XB2 = 0 have a unique solution: X = 0.

Define

G :=
[
A1
A2

]
, H := [B1, B2].

According to Lemmas 1 and 3 and referring to [4], if Ai is a non-square pi × m full column-rank matrix and Bi is a non-
square n× qi full row-rank matrix, then we have the gradient based iterative (GI) algorithm described in the following:

X(k) = X(k− 1)+ µGT
{
F1 − A1X(k− 1)B1
F2 − A2X(k− 1)B2

}
? HT, (6)

0 < µ <
2

λmax[GGT]λmax[HTH]
=: µ0. (7)
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To initialize the GI algorithm, we take X(0) = 0 or some small real matrix, e.g., X(0) = 10−61m×n, with 1m×n being anm×n
matrix whose elements are 1.

Theorem 1. If the matrix equations in (4) have a unique solution X , then the iterative solution X(k) given by the algorithm
in (6) converges to X , i.e., limk→∞ X(k) = X , or the error X(k)− X converges to zero for any initial value X(0).

Proof. Define the error matrix

X̃(k) := X(k)− X .

Using (4) and (6), we have

X̃(k) = X̃(k− 1)+ µGT
{
A1XB1 − A1X(k− 1)B1
A2XB2 − A2X(k− 1)B2

}
? HT

= X̃(k− 1)− µGT
{
A1X̃(k− 1)B1
A2X̃(k− 1)B2

}
? HT

= X̃(k− 1)− µGTGX̃(k− 1)HHT.

Using the formula tr[AB] = tr[BA] and tr[AT] = tr[A] gives

‖X̃(k)‖2 = tr[X̃T(k)X̃(k)]
= ‖X̃(k− 1)‖2 − 2µtr[X̃T(k− 1)GTGX̃(k− 1)HHT] + µ2‖GTGX̃(k− 1)HHT‖2

= ‖X̃(k− 1)‖2 − 2µtr[GX̃(k− 1)HHTX̃T(k− 1)GT] + µ2‖GTGX̃(k− 1)HHT‖2

= ‖X̃(k− 1)‖2 − 2µ‖GX̃(k− 1)H‖2 + µ2‖GTGX̃(k− 1)HHT‖2

≤ ‖X̃(k− 1)‖2 − 2µ‖GX̃(k− 1)H‖2 + µ2λmax[GGT]λmax[HTH]‖GX̃(k− 1)H‖2

= ‖X̃(k− 1)‖2 − µ{2− µλmax[GGT]λmax[HTH]}‖GX̃(k− 1)H‖2

≤ ‖X̃(0)‖2 − µ{2− µλmax[GGT]λmax[HTH]}
k∑
i=1

‖GX̃(i− 1)H‖2.

Using (7) gives
∞∑
k=1

‖GX̃(k)H‖2 <∞.

It follows that

GX̃(k)H → 0, as k→∞.

According to Lemma 5, we have X̃ → 0 as k→∞. �

Also, according to Lemmas 2 and 4 and referring to [4], if Ai is a non-square pi × m full column-rank matrix and Bi is a
non-square n× qi full row-rank matrix, the least squares based iterative algorithm (LSI) is described as follows:

X(k) = X(k− 1)+ µ(GTG)−1GT
{
F1 − A1X(k− 1)B1
F2 − A2X(k− 1)B2

}
? HT(HHT)−1, 0 < µ < 2. (8)

Theorem 2. If the matrix equations in (4) have a unique solution X , then the iterative solution X(k) given by the algorithm
in (8) converges to X , i.e., limk→∞ X(k) = X , or the error X(k)− X converges to zero for any initial value X(0).

The proof can be obtained in a similarway to that above, and is omitted here. The proposed algorithms can be also applied
to the generalized matrix equations:

A1XB1 = F1,
A2XB2 = F2,
...
ApXBp = Fp.

(9)

Define

Gp :=


A1
A2
...
Ap

 , Hp := [B1, B2, . . . , Bp];
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Table 1
The iterative solutions of the GI algorithm with µ = 1/52.63.

k x11 x12 x21 x22 δ (%)

1 −0.944120 −5.521457 1.444380 3.050525 41.498997
2 −0.130592 −4.723496 1.253092 1.162763 25.947768
5 0.603962 −5.058627 1.908965 1.919378 8.171622
10 0.932533 −5.181802 1.979618 1.682126 1.268198
20 0.998122 −5.199455 1.999776 1.699733 0.033617
25 0.999688 −5.199899 1.999996 1.700036 0.005581
Solution 1.000000 −5.200000 2.000000 1.700000

the GI based solution can be expressed as

X(k) = X(k− 1)+ µGTp


F1 − A1X(k− 1)B1
F2 − A2X(k− 1)B2

...
Fp − ApX(k− 1)Bp

 ? HTp , 0 < µ 6 2
( p∑
i=1

‖Ai‖2‖Bi‖2
)−1

.

Similarly, one can easily give the LSI solution to the matrix equations in (9):

X(k) = X(k− 1)+ µ(GTpGp)
−1GTp


F1 − A1X(k− 1)B1
F2 − A2X(k− 1)B2

...
Fp − ApX(k− 1)Bp

 ? HTp (HpHTp )−1, 0 < µ 6 2.

4. Numerical examples

Example 1. Consider the following coupled matrix equations:

A1XB1 = F1, A2XB2 = F2

with

A1 =
[
1.00 1.00
2.00 −1.00

]
, A2 =

[
1.00 3.00
−2.00 1.00

]
, B1 =

[
1.00 −1.00
2.00 0.80

]
,

B2 =
[
1.00 1.00
2.50 −1.00

]
, F1 =

[
−4.00 −5.80
−24.20 −9.68

]
, F2 =

[
6.75 7.10
30.25 −12.10

]
.

Then the solution X from (5) is

X =
[
x11 x12
x21 x22

]
=

[
1.00 −5.20
2.00 1.70

]
.

Taking X(0) = 10−612×2, we apply the GI algorithm in (6) to compute X(k). The iterative solutions X(k) are shown in
Table 1, where δ := ‖X(k) − X‖/‖X‖ is the relative error. The errors δ versus k with different convergence factors are
shown in Fig. 1.

As shown in Table 1 and Fig. 1, the convergence factor µ0 in (6) may be not the best but the conservative one, when
µ = 1/52.63 or larger, the better convergence will be obtained. δ becomes smaller and smaller and goes to zero within
several iterations. This indicates that the gradient based iterative algorithm is effective.
Taking µ = 0.88 and µ = 1.34, respectively, and applying the LSI algorithm in (8), the errors versus k are shown in

Table 2 and Fig. 2.
From Tables 1–2 and Figs. 1–2, the iterative solutionsX(k) obtained by using the LSI algorithm converge faster than those

obtained by using the GI algorithm in Example 1.

Example 2. Consider the following coupled matrix equations:

A1XB1 = F1, A2XB2 = F2

with

A1 =
[
1.00 −0.50
0.50 1.00

]
, A2 =

[ 1.00 1.00
−2.00 1.00
1.00 1.10

]
,
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k

δ

μ = 1/52.63
μ = μ0 = 1/76.35 
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Fig. 1. The relative errors δ versus k of the GI algorithm.

Table 2
The iterative solutions of the GI algorithm with µ = 1.34.

k x11 x12 x21 x22 δ (%)

1 0.644924 −3.421538 1.304346 1.211674 33.888222
2 0.875295 −4.594682 1.761699 1.553962 11.476654
5 0.994780 −5.176481 1.990840 1.695354 0.443127
10 0.999975 −5.199897 1.999962 1.699981 0.001936
20 1.000000 −5.200000 2.000000 1.700000 0.000000
25 1.000000 −5.200000 2.000000 1.700000 0.000000
Solution 1.000000 −5.200000 2.000000 1.700000 0.000000

         k

δ

μ = 1.34

μ = 0.88
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Fig. 2. The relative errors δ versus k of the LSI algorithm.

B1 =

[ 1.00 3.00 0.80 2.00
1.00 1.00 −3.00 1.20
−1.10 −2.10 5.00 1.00

]
, B2 =

[1.00 2.60 0.80
2.50 −1.10 1.00
1.00 −1.50 2.00

]
,

F1 =
[
−8.175 −13.925 23.50 −4.63
3.925 13.675 11.25 12.01

]
, F2 =

[ 4.35 13.57 8.30
15.75 8.02 −1.30
5.165 14.742 8.81

]
.

Then the solution X from (5) is

X =
[
x11 x12 x13
x21 x22 x23

]
=

[
1.00 −3.00 2.70
5.00 1.30 −0.10

]
.

Taking X(0) = 10−612×3, we apply the algorithms in (6) and (8) to compute X(k), respectively. The iterative solutions X(k)
are shown in Tables 3–4 and Figs. 3–4.

In Example 2, a larger µmakes the LSI algorithm work as effectively as the GI algorithm. As shown in Figs. 1–4, both the
proposed algorithms are effective, but as shown in the algorithms (6) and (8), the computational burden of the GI algorithm
is much less than that of the LSI algorithm.
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Table 3
The iterative solutions of the GI algorithm with µ = 1/66.67.

k x11 x12 x13 x21 x22 x23 δ (%)

1 0.363978 −2.216651 2.516167 3.534082 1.303469 −0.568099 27.882781
2 0.920848 −2.874524 2.472307 4.494598 1.423831 −0.263796 9.189076
5 0.997283 −2.994392 2.705240 4.970215 1.324223 −0.106211 0.599080
10 1.000030 −3.000051 2.699929 4.999561 1.300473 −0.100077 0.009894
20 1.000000 −3.000000 2.700000 5.000000 1.300000 −0.100000 0.000003
25 1.000000 −3.000000 2.700000 5.000000 1.300000 −0.100000 0.000000
Solution 1.000000 −3.000000 2.700000 5.000000 1.300000 −0.100000

         k

δ
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μ = μ0 = 1/162.64μ = 1/66.67

Fig. 3. The relative errors δ versus k of the GI algorithm.

Table 4
The iterative solutions of the LSI algorithm with µ = 1.8.

k x11 x12 x13 x21 x22 x23 δ (%)

1 0.583109 −1.546975 0.685887 3.955392 0.939774 0.119684 41.595160
2 0.724009 −1.890218 1.499962 4.793526 1.154572 0.009876 25.335799
5 0.936698 −2.717858 2.366530 4.998992 1.294205 −0.093802 6.656006
10 0.992841 −2.967804 2.662443 4.999820 1.300806 −0.100940 0.753861
20 0.999908 −2.999587 2.699518 4.999997 1.300015 −0.100017 0.009676
25 0.999990 −2.999953 2.699945 5.000000 1.300002 −0.100002 0.001096
Solution 1.000000 −3.000000 2.700000 5.000000 1.300000 −0.100000
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Fig. 4. The relative errors δ versus k of the LSI algorithm.

5. Conclusions

In this paper, iterative algorithms are established to solve the matrix equations A1XB1 = F1 and A2XB2 = F2. The
algorithms can generate an iterative solution which converges to the true solution. But how to choose the convergence
factor or step size µ to ensure its properties is worth further study.
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