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The quasi-ferrite model is proposed and an appropriate PBE exchange functional with the spin density functional theory 
(SDFT) is selected for the calculation of the relation between magnetic moment and residual stress in ferrite using a quantum 
mechanics code. The relationship between ferrite magnetism and the carbon content is determined, and then a ferrite interstitial 
solid solution (ISS) model in a low carbon concentration state is replaced with an -Fe model in the case of majority magnetic 
calculation. The band structure of the loaded -Fe is compared with that of the unloaded -Fe. The comparison shows that the 
energy of Fe atomic 3d orbital changes a little, while the energy of electron orbital of iron core below 3d almost keeps un-
changed. The relationship between the magnetic moment and the stress appears intermittent due to the Bragg total reflection. 
The change in the magnetic moment due to lattice mismatch is much larger than that caused by mechanical loading. 
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1  Introduction 

The non-destructive testing (NDT) techniques based on 
metal magnetic memory (MMM) principle were used to 
detect defects in the stress concentration zone of ferromag-
netic materials at the beginning of the 1980s by the Russian 
researcher Doubov [1–3]. At the same time, the researchers 
made great efforts to establish the material constitutive 
model at the level of macroscale [4–6] because of important 
applications of this kind of function materials，such as in 
these scopes of sonar, brakes, dampers, smart filters, high 
power motors, robotics, and noise and vibration control. In 
essence, MMM is one of the characteristic performances of 

magnetostrictive materials. On the one hand，there is still 
lack of systematic test data for researchers’ investigation of 
the coupling relationship between the stray field signals and 
stress, for they focus mainly on the combined meso-  
macroscopic studies of characterized law of fatigue crack 
initiation, evolution and fatigue damage assessment cur-
rently, although MMM theory and techniques used in the 
study of the fatigue damage had some basic results. In fact, 
the coupling relationship is very complex. If the response 
can be clarified to a certain extent, it is possible to deter-
mine signal variation rules of early damage of ferromagnet-
ic component. On the other hand, there is hardly any re-
searcher engaged in studying the magnetic memory mecha-
nism induced by vacancy defects and doping on the atomic 
scale. The variation of the magnetic property of ferrous 
metals due to the residual stress induced by lattice mismatch 
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is very important as research subjects. The purpose of this 
paper, using quasi-ferrite and appropriate selected density 
functional as the temperature-independent computational 
model, is to investigate the relationship between magnetic 
changes and lattice mismatch by the first-principles meth-
ods, and do fundamental work for temperature-dependent 
computational model research subsequently such as the 
molecular dynamic models and microscopic constitutive 
relations. 

2  Spin Density Functional Theory (SDFT) and 
calculation model 

2.1  SDFT  

Barth and Hedin [7] as well as Pant and Rajagopal [8] pro-
posed the SDFT separately. Though it is the same method 
as the density functional theory (DFT) establishment, SDFT 
differs in the extra magnetic interaction term in the potential 
function in addition to electrostatic interactions. Thus, the 
Hamiltonian operator for the system is 
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( ) r  and ( ) r  are the electron density of spin states  

and β, respectively. According to the constraint search 
method proposed by Levy [9], the ground state energy is 
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where XC ,E       is the exchange-correlation energy, 

J       is the classical Coulomb energy. Under the 

condition that  , ,i     satisfies the constraints of 

orthonormality, one takes the variation of ,E       with 

respect to i  and extremum value, and then gets Kohn- 

Sham equation of SDFT 

(6) 



514 Huang J P, et al.   Sci China-Phys Mech Astron   March (2014)  Vol. 57  No. 3 

 

2
eff eff

1ˆ ( ) ( )
2

( ) ( ),

, ,

i i

i
i i i

i

V

n

 
 


  



 


  

  

      


 



H r r

r r  (8) 

where i   are Lagrangian multipliers, 

 
XC

eff B

,( )
( ) ( ) ( ) d ;

E
V V B

 



  


      


r
r r r r

r r
 (9) 

XC

eff B

,( )
( ) ( ) ( ) d ,

E
V V B

 



  


      


r
r r r r

r r
 (10) 

and ( )d ,  ( )d ,  ,N N N N N          r r r r N
 

and N  are the numbers of electrons with the spin states  

and . 

2.2  The selection of density functional 

The local spin density approximation (LSDA) functional is 
built on an ideal model based on the homogeneous electron 
gas, while the actual electron density of atomic or molecular 
system is far from homogeneous, and thus, the calculated 
results by the LSDA are usually not similar to the physical 
and chemical natures of materials actually. In order to make 
the analysis more accurate, the inhomogeneity of the elec-
tron density should be considered by introducing the elec-
tron density gradient in the exchange-correlation energy 
functional, which leads to a generalized gradient approxi-
mation (GGA) functional.  

Many GGA-type exchange energy functional expressions 
have been proposed, such as the Becke’s [10] plus gradient 
corrected exchange energy functional B88, the Perdew and 
Wang’s [11,12] exchange energy functional PW91, and the 
Perdew, Burke and Ernzerhof’s [13] exchange energy func-
tional PBE, etc. 

PBE is improved based on PW91 and can be expressed 
as: 
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  is the spin polarization, C is the correlation energy of a 

single electron, 0.031091c  and 2.146119g   are also 

non-empirical parameters based on the physical conditions 
[13]. Therefore, the PBE will be selected in the following 
calculation. 

2.3  The structural model and calculation method 

Based on SDFT, the magnetic properties and the mismatch 
stress of ferrite have been calculated using the functional 
PBE of GGA. Since the carbon concentration of the calcu-
lated ferrite is very extremely low (about 0.0008% at room 
temperature), it is obviously hard to calculate these models 
which have much more atoms in super cells using quantum 
mechanics codes because the number of the atoms involved 
hardly exceeds 100. In getting rid of this obstacle, the qua-
si-ferrite model is proposed firstly, with which the enabled 
model is close to 1.00% of carbon concentration, so that the 
constrained and non-constrained -Fe interstitial solid solu-
tion (ISS) super-lattice model can be calculated, and the 
effect of the lattice mismatch on the structure and the mag-
netic property can be determined. At the same time, it is 
easier to calculate the response of pure iron single crystals 
between the mismatch stress and magnetism by extrapola-
tion, and obtain the relationship between the carbon con-
centration and the magnetism of ferrite. With these results, 
we conclude that the low concentrated carbon ferrite can 
completely be substituted by pure iron crystal, so that the 
body-centered cubic lattice of pure iron single crystal can be 
used for the model calculation in the case of the [111] direc-
tion loaded and considering the lattice mismatch. 

The calculation of this work is completed by the code of 
Vienna Ab-initio Simulation Package (VASP). Based on 
SDFT and the pseudopotential plane wave method, geomet-
ric optimization is realized by the expansion of plane wave 
basis, and the exchange-correlation function takes the form 
of PBE in the GGA. The details of a particular pseudopo-
tential define a minimum energy cutoff that should be used 
in our calculations including atoms associated with that 
pseudopotential. Pseudopotentials requiring high cutoff en-
ergies are said to be hard, while more computationally effi-
cient pseudopotentials with low cutoff energies are soft. The 
most widely used method of defining pseudopotentials in 
this paper is based on the work by Vanderbilt; these are the 
ultrasoft pseudopotentials (USPPs). As their name suggests, 
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these pseudopotentials require substantially lower cutoff 
energies than alternative approaches. The energy cutoff is 
280 eV, which is a default parameter after the model built. 
In accordance with the sampling of the Brillouin zone (BZ) 
Monkhorst-Pack k point method, the suite k points are se-
lected automatically to ensure the higher convergence pre-
cision. Table 1 shows the MP grid size for SCF calculations 
and the number of k points used corresponding to the super 
cells. The total energy convergence tolerance is 2.0×105 
eV/atom, and the maximum of stress component tolerance 
is 0.1 GPa . 

The calculation process contains three steps: (1) Periodic 
or non-periodic super cells are constructed according to 
model requirement; (2) the geometry of the models is opti-
mized, including the minimization of electronic energy of 
the system and the stabilization of the geometry structure; 
(3) the other properties are calculated, such as the relations 
between the magnetic nature and the mismatch of the struc-
ture. 

Because the same unchanged lattice constants along with 
(100) and (001) directions in super cells are 1 1

n
n


  , and 

while the lattice constant in the direction of (010) is an in-
teger times value of a or c , it is not surprising that the k 
points in reciprocal space is default selected as 7×M×7k 
points. The last two columns in Table 2 list the computa-
tional total energy per atom and the energy difference be-
tween the symmetric 7×7×7 and 7×1×7k points. It can be 
seen from Table 2 for the smaller super cells (n6) that the 
better convergence can be obtained due to the relatively 
smaller values of energy difference between the symmetric 
7×7×7 and 7×1×7k points, while n8 the energy difference 
E has significantly increased. This indicates that fitted 
curve by these calculated results could not be smooth. 
However, the minor energy difference in the acceptable 
range indicates that the computational results are still reliable. 

Table 1  MP grid size for SCF calculations and the number of k points 

Number of cells MP grid size for SCF number of k points 

1×2×1 
1×4×1 
1×6×1 
1×8×1 

1×10×1 
1×12×1 

7×3×7 
7×2×7 
7×1×7 
7×1×7 
7×1×7 
7×1×7 

74 
49 
25 
25 
25 
25 

 

3  Results and discussion  

3.1  The effect of carbon concentration on the magnetic 
properties in ferrite 

Ferrite is an ISS formed by C atoms dissolved in the iron 
cells. Because a C atom forms Fe-C metal compounds with 
its neighboring Fe atoms, it will affect the 3d orbital elec-
tron's spin state of the Fe atoms, which in turn changes its 
magnetic moment. In the calculation, the carbon concentra-
tion of the quasi-ferrite model is directly related to the 
number of atoms, so a higher carbon concentration should 
correspond to a smaller lattice state, which is definitely dif-
ferent from the actual ferrite. Therefore, it is nearly impos-
sible for the first-principle calculation codes to build a low 
carbon concentration model for ferrite. In order to eliminate 
the effect of crystal periodic impact of the cell, the group 
number 1P1 is put in, so the concentration of C atoms is 
calculated with the total atoms in a unit cell. Figure 1(a) 
shows the shape of 1×2×1 super lattice-like quasi-ferrite 
unit cell model corresponding to the C concentration of 
6.67%, while the shape of 1×4×1 unit cell (Figure 1 (b)) 
corresponds to 4.00% of C concentration. Such a high con-
centration is far from that of ferrite at room temperature 
state. That the first-principles code can calculate about 
1.00% C concentration model in principle is conventional 
calculation. The band structure diagram shows that the elec-
tronic structure of the super lattice-like quasi-ferrite is the 
majority of C 2s2 2p2 and Fe 3d6 4s2 level electrons.  

Table 3 is the Mullikan population analysis of the 1×2×1 
super lattice-like quasi-ferrite, and Table 4 is interaction  

 

Figure 1  (Color online) High carbon concentrations of the quasi-ferrite 
model. (a) 1×2×1 super lattice-like quasi-ferrite; (b) 1×4×1 super lat-
tice-like quasi-ferrite. 

Table 2  Total energy and the energy difference 

Number of cells 
MP grid size for 

SCF 
Number of k 
points in BZ 

Total energy 
E/atom (eV) 

Energy difference between the symmetric 7×7×7k points and 
7×1×7k points E/atom (eV) 

1×2×1 
1×4×1 
1×6×1 
1×8×1 

1×10×1 
1×12×1 

7×3×7 
7×2×7 
7×1×7 
7×1×7 
7×1×7 
7×1×7 

74 
49 
25 
25 
25 
25 

903.38381750 
884.19710750 
877.81534167 
874.58736875 
872.65345500 
871.38618333 

0.00044250 
0.00058750 
0.00054583 
0.00687832 
0.00732541 
0.00698256 
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Table 3  1×2×1 Super lattice-like quasi-ferrite Mullikan population analysis 

Species s p d f Total Charge (e) Spin (ħ) 

C1 1.50 3.21 0.00 0.00 4.71 0.71 0.13 

Fe1 0.69 0.64 6.58 0.00 7.91 0.09 1.28 

Fe2 0.31 0.48 6.75 0.00 7.54 0.46 0.82 

Fe3 0.54 0.71 6.66 0.00 7.92 0.08 1.04 

Fe4 0.54 0.71 6.67 0.00 7.92 0.08 1.03 

Table 4  Interaction length distribution of 1×2×1 super lattice-like quasi-ferrite 

Interaction Population Spin Length (Å) 

C1-Fe4 0.14 0.04 1.86211 

C1-Fe3 0.14 0.04 1.86213 

C1-Fe2 1.58 0.03 1.90677 

Fe1-Fe4 0.29 0.04 2.46386 

Fe1-Fe3 0.29 0.04 2.46387 

Fe2-Fe3 0.04 0.03 2.66518 

Fe2-Fe4 0.04 0.03 2.66521 

 
 

length distribution of the 1×2×1 super lattice-like qua-
si-ferrite. Table 1 shows that the atom Fe1 is furthest away 
from the C atom and less affected by the C atom, so the 
magnetic moment is the largest, 2.56B. However, it bears 
no evidence that the magnetic moment of the Fe atom with-
in the influence of the adjacent C atom fully depends on the 
distance of the two atoms, because the main factors deter-
mining the magnetic moment of the Fe atom is the unpaired 
electron spin state of 3d energy level. It can be seen in Ta-
ble 3 that the electron charge distribution in orbital 3d of 
Fe2 atom is significantly greater than that of Fe3 and Fe4 
despite being far away from the C atom. It is clear in Figure 
1(b) that the concentration of C atom decreases with the 
increase of the atomic layer. The magnetic moment of atom 
Fe4 is 1.38B, and the corresponding interaction length of 
Fe-C between Fe4 and C is 1.84643 Å. Similarly, the mag-
netic moments of Fe6 and Fe7 are 1.96B, and the corre-
sponding Fe-C interaction length is 1.9029 Å. Since the 
moment of -Fe at zero carbon concentration is known, it is 
possible to find out approximately the relationship of the 
quasi-ferrite between the magnetic nature and the carbon 
concentration, and to determine the response of low carbon  

quasi-ferrite close to the reality. Table 5 is the variant of 
magnetic moment for the different cells in direction (010), 
i.e., the average magnetism change of atoms in the cell with 
the carbon concentration decreases. The magnetic calcula-
tion of the 1 1

n
n


   near-ferrite is equivalent to the calcula-

tion of the 1×1×1-Fe ferrite. 
Figure 2 shows the fitting curve for the response of the 

magnetism and the carbon concentration. Since the C con-
centration falls from 2.222% to zero, the change of magnet-
ic moment is only about 1.567%. It can be seen that the fol-
lowing cubic polynomial fit relationship could reasonably 
approximate the response if the C concentration is less than 
1.567% 

 = 2.2 0.0 2 3ˆ ˆ ˆ3942 7399 0.01658 0 00155 ,   .M C C C  (14) 

where M  is the average magnetic moment of atoms, and 

Ĉ  is the concentration percentage of the C atom. Suppos-
ing the terms in eq. (14), of which the orders are equal to or 
higher than the square, were omitted, then the response of 
eq. (14) would degenerate to linear equation just as the C 
concentration tends to be 0.0008%. 

Table 5  Magnetism of quasi-ferrite and C concentration 

Number of cells Number of atoms Concentration of C (%) 2×Integrated spin density (ħ) Average magnetism of atoms (B) 

1×2×1 15 6.667 8.09485 2.0237 

1×4×1 25 4.000 16.9136 2.1142 

1×6×1 35 2.857 25.4263 2.1189 

1×8×1 45 2.222 34.5223 2.1576 

1×10×1 55 1.818 42.7396 2.1369 

1×12×1 65 1.538 51.8512 2.1605 

1 1
n
n


  (-Fe) ∞ 0.000 8.7677 2.2384 
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Figure 2  Variation of the ferrite magnetic moment against carbon con-
centration. 

3.2  Magnetic properties of ferrite at low carbon con-
centration  

3.2.1  Ferrite model 

Because of the low carbon concentration in ISS, most mag-
netic calculations of ferrite can be done using the pure -Fe 
model. During crystal growth, two components possess dif-
ferent lattice constants, and such lattice mismatch may re-
sult in residual stress, which may further affect the property 
of the magnetic material. In the quasi-ferrite, because of the 
role of the interstitial, a carbon atom may affect the position 
of body-centered Fe atom in the -Fe. If the -Fe lattice is 
the same as the two simple nesting cubic crystal lattices, 
then the displacement of the body-centered Fe atom induces 
lattice mismatch, and the mismatch strain can be determined 
with 

 2 1

1

,
a a

a



  (15) 

where   is strain, 1a  is the original lattice parameter, Å, 

and 2a  is the mismatch lattice parameter, Å. 

3.2.2  Band structure of -Fe  

Figure 3 shows the energy variation of main symmetric 
point R of 1st Brilliou zone of -Fe against applied tension 
and compression load along [111] direction. The reason for 
proportional loading in that direction is to ensure the linear 
displacement produced between the nearest neighboring 
atoms in cell, while the angular displacement is not gener-
ated due to lacking the shear interaction. From the compres-
sion, the energy of the R-point is on the increase of load, 
which may be interpreted from the pair potential formed 
between two atoms. Contrary to the tension, there is a sig-
nificant energy well for the energy change, and then the 
energy of the system is maintained constant substantially. If 
the lattice constant a=2.8664 Å of -Fe was taken as the 
balanced position of the atom in cell, the curves shown in 

Figure 3 could be converted to the curve shown in Figure 4. 
This means the analogous potential rule to comply with 
between two of the atoms, such as Lennard-Jones [14] and 
Morse [15]. 

By comparing the mismatch stress in the micro scale 
with the macro mechanical interaction in engineering, the 
ranges of compression and tension are reasonably less than 
300 GPa. Figure 5 shows the band structure of compressive 
-Fe between the loaded and the unloaded, while the band 
structure of tensile -Fe is shown in Figure 6.  
  Due to the crystal field effect, for -Fe, the 3d  energy 
level can be split into five sublevels, in which the four 
sublevels on the top, 2 23d

x y
, 23d

z
, 3d yz  and 3d xz , have 

higher energy state, while the sublevel 3d xy  at the bottom 

has lower energy state distribution in the first BZ. Therefore, 
from the analysis of the band width, we can conclude that 
the sublevels 2 23d

x y
, 3d yz  and 3d xz  form metal com-

pounds while the sublevel 3d xy  and level 3p then cannot 

form metal bonds. It can be interpreted by the atomic core 
state when the level energy is less than 3d. Otherwise,  

 
Figure 3  (Color online) Energy variation of main symmetric point R of 
1st Brilliou zone against load. 

 

Figure 4  (Color online) Energy variation of main symmetric point R of 
1st Brilliou zone against lattice parameter. 
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because the energy at 4s is lower than 3d, there is no bond 
for 4s (Figures 5 and 6). The energy levels involved in the 
formation of all metal compounds are unpaired electron 
orbital. 

It can be seen under the given loading conditions that the 
energy at orbital 3d increases more apparently, because 
when the crystal is compressed, the ion core affects the ex-
ternal electron less, and the distance between the outer elec-
trons decreases due to the compressive loading, resulting in 
the enhancement of electrostatic forces and the orbital en-
ergy, while the orbital energy of 3d yz , 3d xz  and 4s do not 

change the basic energy level. In contrast, in the interaction 
under tension, the ion core almost does not affect the exter-
nal electron, and the distance between the outer electrons 
increases due to the external loading, resulting in a slight 
reduction of the electrostatic force and the 3d orbital energy, 
but the change in the orbital energy 3d yz , 3d xz and 4s is 

insignificant (Figure 6), especially in the energy band below 
the Fermi surface.  

 
Figure 5  (Color online) Band structure comparison of [111] proportional 
loaded (compression) with unloaded. 

 
Figure 6  (Color online) Band structure comparison of [111] proportional 
loaded (tension) with unloaded. 

It can be seen from Figure 5 that the band structure can-
not be altered, but it increases in width under the mechani-
cal loading in engineering. Since the width of the band de-
pends on the interaction between the atoms, especially the 
nearest neighboring atoms, the stronger interaction induces 
the wider band. 

3.2.3  Magnetic response of ferrite under proportioned 
[111] loaded  

The magnetic moment of Fe atom in the free state (the 
ground state) is 6.7B, while the magnetic moment of metal 
crystals -Fe is 2.32B, the experimental magnetic moment 
of iron in bcc crystal is 2.22B, and the magnetic moment of 
the unloaded ferrite -Fe obtained with the first-principles 
calculation is 2.24B. It can be seen that the calculated 
magnetic moment of iron coincides with the experimental 
results [16]. Based on the SDFT and using the computation-
al model mentioned above, the relationships between the 
magnetic change and the applied stress of -Fe are shown 
in Figures 7 and 8, which show that: i) Under the given 
loading condition, the relationship between the magnetism 
and the applied stress is linear; ii) Under some load, the 
calculated magnet moment exhibits discontinuity. The in-
tervals and the jumps of the discontinuities in the tension 
are almost identical with each other, and the similar ten-
dency can also be observed in compression. This kind of 
continuities can be attributed to the lattice parameters 
changing with the increase of the applied load. For a given 
wave vector, when the conditions for the Bragg reflection 
are satisfied, the electrons will be reflected thoroughly and 
the corresponding energy state, as well as the corresponding 
magnetic moment, will no longer exist, which appears in-
termittently in the area. The linear relationships in Figure 7 
are fitted with  

 

2.1132+0.0026 , 0.00 0.20,

2.1139+0.0031 , 0.20 0.65,

2.1149+0.0027 , 0.65 1.20.

 
 
 

 
  
  

M  (16) 

The linear relationships in Figure 8 are fitted with 

 

2.1132-0.0023 , 0.00 0.30,

2.1127-0.0026 , 0.30 0.80,

2.1128-0.0033 , 0.80 1.35,

M

 
 
 

 
  
  

 (17) 

where M is the magnetic moment, and  is the stress. This 
shows that the ferrite magnetic changes are associated with 
the loading mode. In tension loading, the enhanced electron 
spin polarized leads to magnetic moment increase. This can 
be interpreted at the micro level that the interaction length 
increases leading to the unpaired valence electron enhanced; 
On the contrary, in compression loading, the reducing elec-
trons spin polarization leads to the magnetic moment de-
crease. Despite the scale effect, the fit relationship still ex-
plains the linear constitutive property of magnetism in the  
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Figure 7  (Color online) Variation of the magnetic moment of -Fe 
against applied tension stress. 

 
Figure 8  Variation of the magnetic moment of -Fe against applied 
compression stress. 

small strain state [5]. 

3.3  Variation of magnetism against lattice mismatch 

Assuming that the C atom in the ISS lies in the position of 
face-centered [010], the calculated results suggest that the 
body-centered Fe  in -Fe deviates from its original equi-
librium position in the direction (010) due to the interaction 
of interstitial C atom, but for the need of symmetry, C at-
oms are still in the face-centered [010] position, so the lat-
tice parameters in the direction of (010) are changed. If we 
take the -Fe crystal lattice as the same two simple nesting 
cubic crystal lattices, it is obvious that the displacement of 
the body-centered Fe atom will induce lattice mismatch, 
which conversely results in magnetic variance. 

According to the results in sect. 3.2, the movement of the 
body-centered Fe atom in ferrite can be calculated with the 
following model: the constraint condition is that the lattice 
parameters in directions (100) and (001) keep constants for 
crystal periodicity, i.e., the lattice parameters of a and c 
keep constants, while b can be changed. The optimization of 
the geometric model and the differential charge distribution 

are shown in Figure 9. Central C atom mainly forms Fe-C 
metal compounds with the nearest neighboring Fe atoms, 
and the lattice parameters in the directions (100) and (001) 
are reduced, but in the direction (010), driven by the inter-
stitial C atom, the distance between the two body-centered 
Fe atoms in the neighboring cells increases evidently, so 
that the lattice parameter increases. 

However, the lattice atoms suffer constraints increase 
with the increase of the superlattice layers due to the con-
straint of periodic boundary condition and interlayer ex-
change coupling between the layers [17–23], and finally the 
atoms move gradually to a normal lattice state. This ac-
counts for constant lattice parameters a and c, and the 
change in b. Figure 9 shows the population analysis of the 
differential charge, and Figure 10 shows the relation be-
tween atomic layers and mismatch strain (010) in the direc-
tion of (010). 

4  Conclusions 

We draw the following conclusions by the calculation of the  

 

Figure 9  (Color online) Population analysis of the differential charge. 

 

Figure 10  (Color online) Mismatch strain (010) against layers. 
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magnetic responses of ferrite super-lattice under constrained 
and unconstrained conditions. 

1) The magnetism of ferrite increases with decreasing 
concentration of C atoms, and the magnetic properties of the 
ferrite is equivalent to the 1×1×1-Fe cyclical cell when it 
satisfies the condition of 1 1

n
n


  ; 

2) Ferrite lattice mismatch generated due to the presence 
of crystalline periodicity constraints is mainly in the direc-
tion of (010), which is due to the existence of interstitial C 
atoms. The mismatch makes the large distance between the 
two of body-centered Fe atoms in the crystal for the relative 
repulsion, and at the same time, the atoms Fe and C form 
the corresponding Fe-C metal compounds in the same crys-
tal plane. Under the condition of unconstraint, the lattice 
parameters decreasing in the directions of (100) and (001) 
induce the residual stress in the local area of ferrite;  

3) The ferrite response of magnetism with stress in engi-
neering is much smaller than the magnetic response due to 
lattice mismatch; it reflects the magnetic properties of fer-
rite in crystal structure. Because of the energy of core ion 
bellow 3d orbital cannot be changed under the condition of 
mechanical loading, and while the energy change above 3d 
orbital is smaller in microscope, there is less impact on the 
electron spin state, so the magnetic changes are smaller.  
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