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1. Abstract

Given the highly complex nature of neutronics and reactor physics, efficient methods of
optimizing are necessary to effectively design the core reloading pattern and operate a nuclear
reactor. The current popular methods for optimization are Simulated Annealing and the Genetic
Algorithm; this paper explores the potential for a new method called Greedy Exhaustive Dual
Binary Swaps (GEDBS). The mandatory trade-off in computation is accuracy for speed; GEDBS
is an exhaustive search and tends toward longer runtimes. While GEDBS performed acceptably
for the criterion administered in this paper (local peaking and k, on a Boiling Water Reactor
(BWR) fuel lattice) the exhaustive nature of GEDBS will inevitably lead to combinatorial
explosion for the addition of the potential dozens of factors that commercial application
mandates. This issue may be resolved with the addition of metaheuristics to reduce the search
space for GEDBS, or by an increasing computation.

Thesis Supervisor: Kord Smith, Ph.D.
Title: KEPCO Professor of the Practice of Nuclear Science and Engineering
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2. Introduction

Since the inception of nuclear power engineers and scientists have pursued optimal core

design; for longer still mathematicians have long sought methods for finding extrema over a large set

of points. With the introduction of high-powered computers, numerical methods now exist to

approximate and find the optima of complex functions. These algorithms are applicable to any

system that can be quantized and weighted; their application to nuclear simulations has led to

dramatic advancements in all aspects of reactor design, from the fuel pins to the core loading pattern.

Within a core design there are hundreds of independent constrained variables that can be

altered, sometimes with drastic physical effect. In an average Boiling Water Reactor (BWR) core

there are over four hundred fuel bundles, some reactors containing close to one thousand. Each

bundle is composed of an 8-by-8 to 10-by-10 grid of fuel pins that are each filled with hundreds

of fuel pellets. These pellets are the lowest level alterable structure for building a reactor core.

Assuming just one variable per pellet, there is a preposterously large search space of

1020,594,603 ~ 1 0 10' unique configurations. For comparison there are approximately 1080

atoms in the observable universe.

Therefore without a supercomputer the size of several universes there is no way to ensure

the absolutely optimal core design. It is possible to achieve reasonably close approximations

using optimization methods, the most popular of which are the genetic algorithm and simulated

annealing. These optimization methods work to find the extrema of a single representative

function by various iterative processes. To further reduce computational challenge, discrete

levels or averages are adopted within bounding limits.

6 |13 U rn s



There are a near infinite number of factors, enrichments, and densities in reactor cores to

consider, however all of these aspects are within the greater structure of a fuel bundle. Creating a

simulation of fuel bundle arrangement is a computationally intense process that seriously

challenges algorithms. The greedy exhaustive dual binary swaps (GEDBS) method was tested on

the level of fuel lattice design within a BWR fuel bundle.

The GEDBS is an algorithm which replaces two fuel pins in a lattice with two from an

available palette of pin types, measures the configuration and iterates from the result. This

method is a more brute force approach than either the genetic algorithm (GA) or simulated

annealing (SA). Ultimately the GEDBS will be compared with the effectiveness of SA and GA;

this could eventually lead to the creation of even more efficient methods to find maxima and

minima.

SA, GA, and GEDBS are all proceed by minimizing/maximizing a single function which

encompasses all of the relevant variables to the problem. By simplifying a great deal of

complexity to a single function the numerical evaluation of a 'better' solution can be more

readily realized by a computer. This function often becomes stagnant around a local extreme

rather than its goal of a global extreme. The amount the algorithm is willing to deviate from its

current best value will indicate how large a potential barrier the algorithm can traverse, however

with this ability to overcome large potential barriers comes inherent chaos and inefficiency. It is

the careful balance of these factors that will prove the ultimate effectiveness of any optimization

method. For example a fully exhaustive system that checked every possibility could reach the

optimal solution, but still continue processing and check the worst solution in the process. A

non-exhaustive pattern would iterate from the current best pattern to differing degrees and not

waste computation time checking in the area of the worst responses.

7 B u r n s



3. Technical Background

The complex nature of reactor core design, fuel bundle assembly, and neutronics

necessitate fast and accurate optimization methods. It is easy to have a fast program or an

accurate program, but a single method that is both fast and accurate is exceedingly difficult to

devise. There are several branches of algorithm that have evolved to meet the computational

needs of modem engineering, the most popular of which are stochastic algorithms. The oldest

and most rudimentary form of search is an exhaustive 'brute force' search, which is

significantly slower than stochastics but more accurate.

3.1. Exhaustive Optimization Algorithms

An exhaustive optimization method attempts to find the best selection from a finite pool

by explicitly testing each possibility. By testing each point, exhaustive methods guarantee that

the absolute best discrete solution will be found. This 100% accuracy comes with an extreme

cost in time and processing power. As the size of the search area increases, exhaustive methods

tend toward combinatorial explosion. [1]

Combinatorial explosion is the phenomena where adding another unit to search through

drastically increases the number of computations necessary. For example in Equation 1, C is the

number of steps to complete the search, Z is the number of possible values, and n is the number

of searched variables in the system. For a system of 25 blocks of which 2 are selected at a time

there are 252 = 625 cases to check. With 26 blocks there are an additional 51 cases to search;

for three blocks selected at any one time there would be an increase of 15,000. Equation 2

shows computation steps for a system which does not allow repeated results.
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C =Z (1)

C =n! (2)

For nuclear systems where often there are hundreds of cases to check with dozens of

potential variables to sort, a brute force computation method is not viable. [2] With the constant

emergence of newer, more powerful processors perhaps this 100% accurate method will

eventually become an option, but until the era of quantum supercomputing more clever ways of

optimizing are needed.

3.2. Stochastic Heuristic Methods

As opposed to the exhaustive methods which give an optimal answer, stochastics only

attempt to return a near-optimal solution. Stochastic methods take orders of magnitude less

computational steps and time to complete a simulation compared to exhaustive methods,

making them ideal for complex real world application. As the name implies, this class of search

works by incorporating all the relevant variables into a single value function, then introducing

random/semi-random elements to perturb the value function in a more optimal direction. This

element of randomness helps stochastic functions traverse potential barriers that surround local

minima.

Since the 1990s, the field of stochastics has grown explosively, its expansion matching

that of computing power. In addition to the comparative speed of stochastics, they are also

utilized for the following situations: [3]

* No method for solving the problem to optimality is known.
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* Although there is an exact method to solve the problem, it cannot be used on the
available hardware in an acceptable timeframe.

e The heuristic stochastic method is more flexible than the exact method, allowing,
for example, the incorporation of conditions that are difficult to model or the
preferential exclusion of conditions that only need limited modeling.

* The stochastic method is used as part of a global procedure that seeks the
optimum solution of a problem.

3.2.1. Simulated Annealing

Simulated Annealing was originally proposed in a 1983 issue of Science relating the

then-theoretical method to statistical mechanics. SA was tested with the traditional traveling

salesman problem and a computer chip design/wiring problem. The results were very

impressive for both; SA became a leading technique for the wiring problem, and while SA was

outperformed on the traveling salesman problem by other systems, its results were still highly

noted. [4]

Formally, SA is a local search stochastic strategy that seeks the ground state. Over time

SA has evolved many different improvements in general and specialty tweaks depending on the

application. Recently Fast Simulated Annealing, a semi-local search function for faster

convergence in higher dimensional problems, has become popular for faster optimization. [5]

Another innovation is Nested Annealing, which is faster for smaller separable value heuristics.

[6]

The underlying idea of SA is derived from statistical mechanics via metallurgy. As a

liquid freezes the atoms and molecules naturally settle into the most energy efficient

configuration. At full solidification the material is in its lowest energy state. [4] Mathematically,

a cost or value function is selected, slight perturbations are made to lower the cost function, and

finally the method converges to a single solution. For a set of solutions S there is an associated
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cost function T(s) where s is a single solution in the set of S. Let s* and T(s*) denote the SA

algorithm's most recent tested solution and value respectively. During each loop of the process,

a slight perturbation is made to s* such that the immediate neighbors, s±, are tested. If T(s±) is

at a lower cost than T(s*) the new solution is accepted. [4] [7] [8]

To account for potential barriers between minima of the function SA has a metric to

accept solutions that are not immediately better than the current best. This acceptance

distribution is a probability of SA taking the new T(s±) as the best given the probability

defined in Equation 3.

(T(s±) - T(s*)

Pa(S+) = e c (3)

c is a predefined control parameter that alters how open the acceptance distribution is.

Furthermore, different applications of SA commonly have a generating distribution, which tracks

different possible valleys of the cost function to be explored. [7] Figure 1 shows the transition

over potential barriers graphically.

SERIAL MACHINE -- A PIN-BALL-IN-A-BOX
COST

ANNEALING MEANS DE-TRAPPING

PARALLEL MACHINE --
MOLTEN-GLASS-SOUDIFICATION

- STATIE

3.4.5 1.2

PSIMULATED ANNEALING

Figure 1- Material science visualization and cost function
These set of graphs show the transition of a complex 3D model of a set of cooling glass atoms to a
3D graph of their energy function to a final 2D simplification of temperature. The jump over the
potential barrier in the right graph is due to the flexibility lent by the acceptance distribution. [5]



Finally, there is an overarching cooling scheme or annealing scheme that determines the

rate at which T(s) must settle to the minima. By altering this d function with n as a unit of
dn

computation step, SA will go further or shorter down each potential branch of minima. For

example if the annealing scheme dictated that T must decrease by at least 1 'degree' over any

three steps, then the algorithm may take two steps uphill before coming across a decrease again.

The uphill steps are always subject to the acceptance of Equation 3. Figure 2 gives a flow chart

of the general SA process.

The results of SA are highly dependent on the topography of the value function in

question. For a smooth function with a second derivative that doesn't change sign, SA has no

uncertainties about converging on an optimal or near-optimal solution. For a highly erratic

function SA will need to take many more steps to converge to an acceptable final solution, since

there are more potential barriers to overcome between minima.

The possibilities for convergence of SA are convergence to a local minimum,

convergence to a global minimum, and non-convergence; the best and most difficult result is

convergence to a global minimum. In order for SA to converge upon the best solution, S*, there

must be a path from the starting solution to S* where the highest value of the cost function along

this path is less than or equal to T(s*) + h. Here h is the height of the starting position relative to

S*. Now let every possible solution along the path communicate with S* from a value distance of

d*. SA will converge to the global best solution under the conditions in Equation 4, as proposed

by Hajek in 1988. [8]
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Figure 2- Overview of general SA search process [7]
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Theoretically, given a wide acceptance criterion and extremely slow cooling scheme SA

should find the global minimum every time, however this method would only converge given

near infinite run time, as its computational intensity is comparable to, and in some cases higher

than, an exhaustive algorithm. In this application SA would be a slightly directionalized random

cost search, highly limited in its precision. As with computational methods in general, there is

always an inverse relationship between accuracy and speed.

Finally, it is highly unlikely that SA would fail to converge on a solution, especially

given that standard double type variables would need to be identical to at least 15 significant

figures [9]. This outcome is only marginally possible for a highly erratic function with many

local minima very close to each other at exactly the same value. Even for this rare case, there

are simple modifications to the SA annealing schedule that would circumvent this problem.

3.2.2. The Genetic Algorithm

The Genetic Algorithm is a part of the evolutionary strategy field of computation that

emerged in the 1960s. Evolutionary strategy is the general field in which solutions to numerical

problems are attempted solved by modeling the algorithms after natural biological processes.

The GA in particular is modeled after the reproductive cycle of genes and the Darwinian

theories of survival of the fittest and adaptive mutations.

GAs were first proposed by John Holland in the 1960s; Holland and his research group

developed this proposal into a functional system and in 1975 they published Adaptation in

Natural and Artificial Systems, presenting the GA as an abstraction for biological evolution to

formally study the phenomena of adaptation as it occurs in nature. [10] GAs are generally high
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performers in changing conditions, since the solution is derived from a changing series of

digital genes, chromosomes, alleles, and offspring.

The GA is a stochastic algorithm that operates off a value function; in the GA context the

value function is known uniquely as a fitness function. Each individual in a population (solution

in a set) is judged according to the fitness function. As per natural selection the most fit survive

while inferior genes pass away. The GA starts with an initial set of individuals who create

offspring, the most fit of the offspring and parents are kept and cross-bred with each other

again.

It is easy to foresee how this could converge on a local minimum; the operations that

make the GA effective are selection, crossover, and mutation. Selection is the process where the

GA heuristic recognizes that a particular trait in a solution is highly desirable so the algorithm

actively reproduces that trait in other chromosomes. Crossover refers to the reproduction

process between two chromosomes; this operator will randomly chose a point in the sequence of

variables that make up a solution and exchange everything after this point with another solution.

This process is a crude parallel to haploid organisms. Finally mutation randomly changes one of

the traits in a chromosome. Mutation can occur at any point, but any individual section has a

very small chance of mutation. [10]

To apply these processes to lattice design, GA might select a 2 35U enrichment of 5% to

be prolific throughout all the pins and actively try to pass on that trait. A crossover might occur

between two pins where the density of the 2 38U is exchanged, and a mutation could occur where

the gadolinium enrichment in the lattice randomly changes from 3% to 1%. Depending on a

variety of other factors, any of these changes could improve or deteriorate the fuel bundle's

performance, however since only the positive improvements are kept the generations will

15B 1 u r n s



improve on average and converge toward a set of optimal offspring. Once the mutation and

interbreeding of these offspring stops yielding improving results, the best solution may be taken

from the final optimal set. Figure 3 depicts a flowchart of the GA's application to a "search for

solutions" problem.

I

Choose candidate solution at random
Save best of new generation as a

fitness 'hilltop'

h

ISystematically mutate each trait in the
chromosome individually, tracking the fitness

of the one-trait mutants

Take highest fitness function for the new
generation

Save best of new generation
as a parent for mutation -

YES

NO

Figure 3 - Flowchart of simple genetic algorithm. [101
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Interestingly, it is possible to have GA simulate or behave extremely closely to SA for

certain types of problems. If the mutation operator for the GA is taken as the annealing schedule

for SA, there is very little difference between the two algorithms. [11] This makes sense

because both of these mechanisms are the overarching control method by which the algorithms

can bypass potential barriers. If both algorithms can only jump over barriers of the same height

or height-width ratio, then it is highly likely they will behave similarly and return greatly

similar, if not identical, results.

Because the GA does not mutate an offspring if has equal fitness to its parent, it must

always converge. Granted this may not be convergent on the most fit solution, but it will return

a local extreme at least. For example if there were a value function that was a flat plane in 3D

space parallel to the independent variable axes, SA would not converge since it would change to

any solution's equally valuable neighbor. The GA would simply sit at the randomly chosen

starting position until the preset generation limit was met. This being said, the expected number

of generations for the GA to stochastically converge is given in Equation 5. gcono is the number

of generations to converge and 1 is the length of the chromosomes under evaluation. [12]

9conv = 1 - ln(1) (5)

3.3. Greedy Methods

Another subclass of search/sort algorithm are greedy methods; these methods are not

exclusive and any other form of optimization can be forced to behave as a greedy method,

although doing so will negate many of the intrinsic advantages of the original method. When

17 I B U r n s



evaluating the value function of a new solution compared to a previous best, the greedy method

will immediately switch to the new function as better if and only if the value is higher. The

greedy method will make the locally optimum choice at each step. [13]

This will lead to entrapment by local minima very frequently in searches where

movement after comparison is not necessitated. For smaller problems that are similar to the

traveling salesman case, greedy algorithms can very quickly yield acceptable solutions since the

number of computational steps is only equal to the number of elements to sort. Since this runs in

constant time, this is the fastest possible method.

SA could be made into a greedy method by modifying Equation 3 such that Pa = 0

fl-2

which is true as lim,_o e c . The GA could also be made into a greedy method if instead of

storing all the mutated offspring, the algorithm simply accepted the first improved solution and

continued to operate. In both cases the ability to jump over potential barriers is reduced. For

both greedy GA and SA the only way to find global minima on an erratic function would be by

a random starting position or selection to that area, not at all a likely event given the magnitude

of search space these methods are often applied to.

3.4. Greedy Exhaustive Dual Binary Swaps

The GEDBS algorithm is not (yet) a formal optimization search method in computation;

however it has found use in academic and nuclear industry manual optimization calculations.

[14] As the name implies, this is both a greedy method and exhaustive. Since exhaustive

methods tend toward long run time with full accuracy and greedy methods tend toward shorter

run times with low accuracy the combination of the two yields a theoretical middle ground.
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GEDBS changes two elements in a solution before comparing this mutation to its

predecessor. In this respect this is akin to performing two mutations of the GA at once. The

changes are not random however; GEDBS exchanges a pin in a lattice with a different pin from

a palette of possible pin types. For a grid of B independent pins in a fuel lattice and Z available

pin types in the palette, the number of steps required by GEDBS is given in Equation 6.

n = B2 Z 2  (6)

Because GEDBS is greedy it is susceptible to the pitfalls of local extrema, however

because it alters two elements at once rather than just one it has the capacity to jump over higher

potential barriers. It is also guaranteed to jump over any barriers within the current solution's

two element range because it is exhaustive; the algorithm completely cycles through all

potential switching of any two given elements. If the program were to be fully exhaustive under

the same switching sequence the number of steps would behave according to Equation 7. This

runtime regime is unreasonably large for any modem computer.

n = BB.ZB (7)

4. Methods

4.1. Fuel & Core Design

Reactor cores are often made for perfect symmetry for ease of design and operational

purposes; this concept holds for the smaller scale of lattice design. When designing a new fuel
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lattice, symmetry can appreciably reduce the computation power needed as well as make easier

conceptualizations for the designer. All lattice simulations performed for this paper were done

in half symmetry. Diagonal symmetry is a standard symmetry for BWR lattice design.

Gadolinium, particularly 17Gd, is the burnable poison for many commercial nuclear

reactors. 17Gd has a thermal neutron cross section of 255,000 barns, larger even than 10B

thermal cross section. [15] [16] For the simulations in this paper gadolinium was used as a

burnable poison ranging from 0-10% enrichment at 2.5% intervals, this gives five discrete

levels of gadolinium enrichment as [0, 2.5, 5, 7.5, 10]. The gadolinium is used to control

peaking, axial and radial power profiles, and the overall cycle depletion of the reactor. [16]

These concepts are equally applicable to fuel bundle lattices as to the entire core loading.

In cases where gadolinium varied, the uranium enrichment, N( 2 U) was fixed atIn cases ( 235U) +N( 338u)'wsfxda

5% with a density of 10.2 g/cm3 . In cases where uranium varied, the enrichment was fixed at

5% while density varied from 0.1 g/cm 3 to 10 g/cm 3 at intervals of 2.475 g/cm 3; there was no

gadolinium present for those cases. For both sets of simulations all pins were taken as

geometrically uniform.

The km, eigenvalue reflects the criticality condition of a lattice that does not have neutron

leakage. For an ideal lattice at steady operating conditions km, = 1, any lattice with too large a

k, will create a local peak in power that is not tolerable . If a lattice has too low a k, then it is

losing more neutrons than it is creating, hindering power production. [16] [17] The upper limit

used for simulation was k, 1.1.

The radial pin power peaking factor (PPPF) is a measure of local power compared to

global energy production. This is monitored to ensure that any one pin in a lattice does not

generate more power than its technical specifications permit. The local peaking can be
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determined at the level of a single fuel pellet, however all PPPFs generated in GEDBS

simulations were monitored at the fuel pin level. The maximum PPPF allowed was set at 1.3.

The limits of both k, and PPPF will be reflected in the heuristic value functions of SA, GA,

and GEDBS.

All lattice optimization attempts were run at beginning of cycle (BOC) conditions. There

was no fuel depletion for lattices. This zero burn up condition is important for how the lattice,

and overall reactor, will behave upon the initial startup of a cycle; however realistically there

would have to be a full depletion case run to ensure conditions are met continually through the

end of cycle.

4.2. CASMO-4

Regardless of which optimization algorithm is used, at some point the new lattice design

is analyzed by some code for neutronic evaluation. The code used in all simulations in this

paper is the CASMO-4 lattice physics code of Studsvik Scandpower Inc. and run on the

Massachusetts Institute of Technology Department of Nuclear Science and Engineering server

clusters. [18]

CASMO is a lattice physics code for modeling PWR and BWR heterogeneous fuel

designs, such as mixed concentrations of uranium-oxide and burnable poisons. The code is a

multi-group two-dimensional transport code written in FORTRAN. CASMO can return an

extremely wide array of data regarding almost any part of a core or lattice, however as

previously stated the values of interest here are kand PPPF at BOC. Figure 4 shows the flow

diagram of CASMO-4's main evaluation process.
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Figure 4 - Flow diagram of CASMO-4 lattice evaluation. [21]
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4.3. Application of the GEDBS algorithm

GEDBS was applied to BOC lattice starting conditions under several different

circumstances. In all cases there was half lattice symmetry of fifty-five possible locations, less

four water tubes, to place a variable number of fuel types. Figure 5 shows a uniform starting

map of the input for a palette of five different fuel pin types. The GEDBS algorithm will engage

this set by changing the first two fuel pin locations, then the first and third, then first and fourth,

1

1 1

1 1 17 1 1

Figure 5 - Half lattice map with accompanying five pin type palette. The tubes labeled "WT"
are water tubes not available for pin exchange. This is the starting position for all simulations.
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and so forth until all possible dual combinations have been exhausted. The lattice map in Figure

5 shows the starting configuration for both the gadolinium variable and uranium variable

simulations.

At each evaluation point, the python script running GEDBS will submit a job request to

CASMO. The GEDBS script can be viewed in its entirety in section 8.1 of Appendix A. A

sample job submission, which is a close ASCII interpretation of Figure 5, is in Section 8.2.

Since this is a lattice of a BWR, there are water tubes at spaces number 18, 19, 24, and 25. This

numbering system starts at zero in the upper left and works across then down. The water tubes

are skipped in the GEDBS process.

CASMO will take on average 3 seconds per submission to return results. It would be

possible to speed this processing time up significantly by incorporating parallel processing

techniques; however such endeavors are outside the scope of this study. GEDBS will take the

k, and PPPF from CASMO's results and apply them to the objective function shown in

Equation 8. GEDBS will continue iterating to maximize this value.

V(kOOPPPF) = 4 -(1.3 - PPPF) + 2 - (1.1 - koo) (8)

The GEDBS algorithm was applied for a varying gadolinium, varying uranium density,

and both varying uranium and gadolinium sequence. Results were garnered for sequences not

involving both uranium and gadolinium due the effects of Equation 6, which when applied

yielded a runtime of: (552 - 25 2)runs - 3 seconds65 days. This unreasonable two month
run

runtime is a result of the combinatorial explosion of the palette factor Z, which increased from 5

for only one changing variable to 52 for two changing variables.
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4.3.1. Metaheuristic modification to GEDBS

A metaheuristic modification was applied to some sweeps of the GEDBS code. After

finding that some pins never changed upon reaching a certain type, the python code could apply

a metaheuristic and not evaluate changes in that pin to save computation time. The results from

this metaheuristic application were compared to several results from sequences that did not

apply the metaheuristic and found no difference in the end result. This metaheuristic cannot be

applied upon starting the GEDBS algorithm, as many unsuccessful attempts to change the pin

must occur before the metaheuristic recognizes it as optimally set.

5. Results

In the scenario where gadolinium varied, the final lattice solution is shown in Figure 6.

Figure 6- Final lattice configuration from gadolinium variable
simulation. 25 1 B i r n 



The 0% gadolinium are pins 1 and the 10% are pins labeled 5; water tubes are zeros. The

intermediate pins are at intervals of 2.5%. This result confirms one's intuition, the highest

gadolinium concentration pins are placed at the corners to reduce the high pin powers resulting

from thermal flux peaking in the water gaps. The selection is relatively symmetric about the

central axes and homogenous in the center of the bundle.

Figure 8 and Figure 7 give graphic data on the convergence of GEDBS. Figure 7 shows

only the maximums found in the iteration process; not every individual point of iteration. The

value function starts off slow moving, then makes nearly linear improvements until

asymptotically leveling off again. It took three sweeps of the GEDBS algorithm to converge. We

can see from Figure 8 that the distribution of local maxima solutions that there is a bimodal

distribution, with a strong trade-off between koo and PPPF.
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Figure 7 - Plot of value function against newest local maximum found.

26 I B u r n s



4.0

1.15 1.16 1.17 1.18
PPPF

1.19
--F

1.2 1.21 1.22 1.23

Figure 8 - PPPF vs. k,.

In the case where uranium density was varied the system converged in quite a different

manner. The final result is given below in Figure 9.

Figure 9 - Final lattice configuration for varying
uranium simulation.
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Here the highest enrichment is pin #5 and the lowest is pin #1; the intermediates are

populated as previously noted. This is an expected result, since again there is a symmetric bundle

with the lowest reactivity pins along the outside of a homogenous lattice. Figure 10 shows that

the uranium variable case started out much further from its final solution, however GEDBS

closed in on its solution quickly and then spent several thousand iterations hovering in the

proximity of the purported optimum. Note that unlike Figure 7, Figure 10 shows all iterations of

the algorithm, not just the local maximums. It took seven sweeps of the GEDBS algorithm to

converge on the solution shown in Figure 9.

Value Function

0
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Figure 10 - Value function against iteration number of GEDBS.

Figure 11 shows that the distribution of PPPF against k" is much more dispersed than in

the variable gadolinium scenario. The PPPF starts out extraordinarily large due to the starting

configuration, the pins on the perimeter have essentially all the uranium and therefore are

creating all the power, resulting in a massive PPPF in those locations.
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Figure 11 - K., vs. PPPF.

While both gadolinium variable and uranium variable cases reached different numerical

values, the qualitative nature of the respective solutions are quite similar. The starting lattice of

all Is with 5s at the corners was used for both; this meant that the uranium variable sequence had

close to the worst possible starting position. This is consistent with Figure 10, where the value

function starts an extra order of magnitude away from the solution compared to Figure 7.

Table 1 - Summary of final convergence of GEDBS algorithm.

ko PPPF Value function

Gadolinium Variable 1.11927 1.218 0.30946

Uranium Variable 1.4351 1.154 -0.066

To compare these results to the more traditional SA and GA schemes, another python

script was written primarily by Jeremy Roberts implementing the SA scheme for changing
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gadolinium and uranium [19]. This SA python code managed to effectively find an optimum at

km = 1.09, PPPF = 1.19 giving a final value function of 0.48. This value function is higher than

either of the results seen by GEDBS, and both k, and PPPF are within their respective limits. It

should be noted that the SA code did solve for two variables at once and was applied to more

than just BOC conditions, however the capacity to alter both ko and PPPF simultaneously lent

SA more flexibility within the value function. Nonetheless the results of SA, while applied

slightly differently, still outperformed those of GEDBS.

After realizing these results it was not necessary to test GEDBS against a GA, since GA

can be made to imitate SA results as discussed in Section 3.2.2. This would only have become a

comparison of SA to GA, which is not the directive of this paper. Since the GA results can be

made to approximate the results of SA, the question of whether GA is superior in this application

to GEDBS could simply devolve into how much the GA operators were akin to the SA cooling

schedule.

6. Conclusions

Given the superior results of the SA/GA over GEDBS, there are clearly some

improvements that need to be made to the GEDBS model to make it more competitive with the

well-established optimization methods. A primary restraint to the GEDBS method is the

runtime dictated by Equation 6. Due to the exhaustive nature of GEDBS there are an extreme

number of iterations that need to be run.

This problem could be alleviated by advances in computing power. A large number of

sweeps at a minor amount of time per sweep would lead to a reduced runtime. Furthermore,
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with a runtime on the order of minutes rather than days troubleshooting and improvement of the

GEDBS algorithm would also be greatly expedited.

If GEDBS were working on a certain type of problem for an extended period, or was

always applied to a specific scenario more metaheuristic modifications could be made. As

shown by the differences between Figure 10 and Figure 7 the starting position can make a very

big difference in the number of sweeps GEDBS needs to perform to come to convergence. If a

metaheuristic method of selecting a generally beneficial starting position were applied, this

could save a significant number of iterations. For example, given any particular lattice

optimization problem the metaheuristic could preemptively place the higher reactivity pins

starting in the center and occupy the corner positions with lower reactivity pins. This would not

help the GEDBS algorithm perform any better in a mathematically significant manner, only

reduce the necessary runtime of its implementation to certain cases.

For real lattice design for use in an operational reactor there will be many more than two

variables to alter. As previously discussed, adding new variables to examine exponentially

increases the search space. There are dozens of variables that are federally mandated to be

tracked in industry. Therefore it can be concluded that without drastic improvements to

computing power the GEDBS algorithm is not ready for industry application.
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8. Appendix A

8.1. Python omnicont.py code

import os
import numpy as np
import random

class palette(object):
def _init (self):

#maximum enrichment of uranium
self.uEnrich = 5.0
self.uDensity = 10.2
#min enrichment, global variables as they are needed throughout the palette
self.minGd = 0
self.maxGd = 10

self.deltaGd = 2.5
self.pinPal = []
self.pins = []

#For reasons unknown, there is a floating point error that necessitates multiplying everything
by 10 to use integers.

global pinPalette
pinPalette = []

def makePalette(self): # makes a palette of possible pin types
gd = self.minGd
while gd<=self.maxGd:

self.pinPal.append((self.uEnrich, gd))
gd+=self.deltaGd

i=0
for tup in self.pinPal:

self.pins.append("FUE" + str(i+1) + "" + str(self.uDensity) + "/" + str(tup[0]) +"
64016="+str(tup[1]) )

i+=1
print self.pins
return self.pins

class Lattice:
#def __init (self, burnup = 0, oldArray =

[1,2,4,3,5,4,3,4,4,5,3,4,4,4,4,3,4,5,2,2,4,3,4,4,2,2,5,4,3,5,4,4,5,4,4,4,2,4,5,4,4,5,4,5,4,1,2,4,4,4,4,4,4,2,1]

def __init (self, burnup = 0, oldArray =
[1, 1, 1, 1,1,1,1, 1,1, 1,1, 1,1, 1,1, 1, 1,1,2,2,1,1,1,1,2,2, 1, 1,1, 1,1, 1,1, 1,1, 1, 1,1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1, 1,1,1]
fedPalette = []):

self.upTemp = "blank"
self.downTemp =
self.octant = []

self.oldArray = oldArray #optionally accepts an old array
self.burnup = burnup
self.pinPalette = fedPalette
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def upperTemplate(self):
self.upTemp = "TTL * basecase\n" + \
"TFU=900 TMO=560 VO=40\n" + \
"PDE 54 'KWL'\n\n" + \
"BWR 10 1.3 13.4 0.19 0.71 0.72 1.33/0.3048 3.8928\n"+ \
"PIN 1 0.4400 0.4470 0.51 00\n" + \
"PIN 2 1.1700 1.2400 /'MOD' 'BOX' //4\n" + \
"LPI\n" +
"11\n" + \
"1 1 1\n" + \
"1 1 1\n" +
"l1 1 1 1\n" +\
"1 1 1 1\n" +\
"1 1 1 2 2 1\n" +
"1 1 1 2 2 1 1\n" +
"l1 1 1 1 1 1 1 1\n" +\
"1 1 1 1 1 1 1 1 1\n" + \
"1 1 1 1 1 1 1 11 1\n\n"
return self.upTemp

def lowerTemplate(self): #create the LFU
if self.pinPalette == []:

p = palette()
self.pinPalette = p.makePaletteo
lineNum = 1
colNum = 1
i =0
j =0
while i < len(self.pinPalette): #create list of fuel pins
self.downTemp = self.downTemp + self.pinPalette[i] + "\n"
i+=1
if (len(self.pinPalette)== i): #add an extra line between FUE and the pins

self.downTemp = self.downTemp + " \nLFU \n"

while j < len(self.oldArray): #create triangle of pin types
self.downTemp = self.downTemp + str(self.oldArray[j]) + " "
if colNum==lineNum: #steps to next line if the length of the triangle equals the width

self.downTemp = self.downTemp + " \n"
colNum=0
lineNum+=1

colNum+=1
j+=1
if len(self.oldArray) == j:

self.downTemp += "\nDEP -" + str(self.burnup) + "\n\nSTA\nEND"
return self.downTemp, self.pinPalette

class createlnput:
def _init_(self, inArray, permPalette=[]):

self.inArray = inArray
self.pinPalette = permPalette
self.output = ""
self.writeFile = "BWRin"
self.writeOut(self.output)

def create(self): #feed arrays to lattice or create from empty if not applicable.
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#The upper lattice never changes, so no need to keep generating it.

lat = Lattice(0,self.inArray, self.pinPalette)
top = lat.upperTemplate()
bottom = lat.lowerTemplateo
self.output = top + bottom[0] #join the top and bottom halves to create a whole input file
self.pinPalette = bottom[1]

def writeOut(self, output):
self.createo
self.file = open(self.writeFile + '.inp','w')
self.file.write(self.output)
self .file.closeo

def getPalette(self):
return self.pinPalette

class subJob:
def _init (self, file = "blank"):

self.file = file
if self.file == "blank":

c = createlnput()
self.file = 'BWRin'

self.runCASMO()

def runCASMO(self):
# remove old copies of out and cax
os.system('rm -Rf '+self.file+'.out '+self.file+'.log '+self.file+'.cax outout')
# run casmo
#print " running: casmo4e " +file + ".inp\n"
os.system('casmo4e '+self.file+'.inp > output')
# remove outputs and cax for not, not needed

class readCasmo:
def _init (self, file = "output"):

self.file = file
self.burnup = [] #create variables for all data we want to extract
self.kinf = []
self.pppf = []
#self.reado

def read(self): #read the output file and return the desired variables
f = open(self.file, 'r')
lines = f.readlines(
startScan = 45
words = lines[startScan].split()
#print words
self.burnup.append(float(words[6]))
self.kinf.append(float(words[7]))
self.pppf.append(float(words[10]))
return self.burnup,self.kinf,self.pppf

class runSim:
def

5,1,1,1,1,1,1,1,1,5],slowPos=0,slowVal=5,fastPos=l,fastVal=5,bestArray=[5,5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,10,0 1,11,10,0 1,11,11,11,11,11,,1, ,1, ,1,,1,,1,,1,,1,,1,,5]bes =-000):
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#self.burnUp = 0
self.kinf = 0
self.kinfBest = 0
self.best = [] #store best array
self.pppf = 0
self.kinfMax = 1.13
self.kinfMin = 1
self.pppfMax = 1.35
self.vialbe = False
self.waterTube = [18,19,24,25] # water tubes dont change
self.array = array
self.perm Palette = []
self.optimize(array,slowPos,slowVal,fastPos,fastVal,bestArray, best)

def isViable(self, kinf,pppf):
if (kinf > self.kinfMin) and (kinf < self.kinfMax) and (pppf < self.pppfMax):

self.viable = True
else: self.viable = False

def optimize(self,array,slowPos,slowVal,fastPos,fastVal,bestArray, best):
#slowPos = 0 #Position of slow loop - i
#fastPos = 0 #Position of fast loop - j
c=createlnput(self.array,self.permPalette) #create the input file
self.permPalette = c.getPalette()
subJob('BWRin')
r = readCasmo()
results=r.read()
self.best = bestArray
self.bestScore = best
self.isViable(results[1 ],results[2])
while (fastPos in self.waterTube) or (slowPos==fastPos): fastPos+=1 #avoid changing water

tubes or the other variable pin.
while slowPos <len(self.array): #Slow position loop

if slowVal == 0: slowVal = 5 #Value inserted into slow loop
while slowPos in self.waterTube: slowPos+=1 # don't change watertubes
slowChanged = False #track if large loop has made a better iteration
while slowVal > 0 and slowVal <= len(self.permPalette):

self.array[slowPos] = slowVal
if fastPos == 55: fastPos =0
while fastPos < len(self.array): #Fast Position loop

fastChanged = False
#tempj = self.array[fastPos]
fastVal = len(self.permPalette)
while fastVal <= len(self.permPalette) and fastVal>0: #Fast value loop

self.array[fastPos] = fastVal #randomly change second variable pin
self.file = open('record.txt','a')
self.file.write( str(slowPos) +', '+str(slowVal)+', '+str(fastPos)+',

'+str(fastVal)+', '+ str(self.array) + str(4*(1.3-results[2][0])+2*(1.11-results[1][0]))+" "+str(resuts[2][0])+"
"+str(results[1 ][0])+ '\n')

print slowPos, slowVal,fastPos,fastVal
if self.array != self.best:

c=createlnput(self.array,self.permPalette)
subJob('BWRin')
r = readCasmoO
results=r.reado
#compare the score of different groups and choose the 'better' one
if (4*(1.3-results[2][0])+2*(1 .11-results[1][0])) > self.bestScore:

self.bestScore = (4*(1.3-results[2][0])+2*(1 .11-results[1][0]))
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self.best=self.array[:]
fastChanged = True
slowChanged = True
self.file.write( "BEST:" + str(self.best)+str(self.bestScore)+ '\n')

elif (4*(1.3-results[2][0])+2*(1.11 -results[1 ][0])) == self.bestScore:
self.isViable(results[1 ],results[2])
if self.isViable:

self.bestScore = (4*(1.3-results[2][0])+2*(1.11 -results[1 ][0]))
self.best = self.array[:]
fastChanged = True
slowChanged = True

fastVal-=1
if not fastChanged: self.array[fastPos] = self.best[fastPos]
fastPos+=1
while (fastPos in self.waterTube) or (slowPos==fastPos): fastPos+=1 #avoid

changing water tubes or the other variable pin.
slowVal -=1

if not slowChanged: self.array[slowPos] = self.best[slowPos]
slowPos+=1
print 'end slow loop'
#print self.best

print self.best

class textreader:
def _init_(self, file = "record.txt"):

self.file = file
self.pickupo

def pickup(self):
array ['p', p, 'p, p, 'p', 'p ' 'p', 'p 'p ' 'p' 'p' 'p 'p', p 'p', 'p' 'p', 'p', 'p' 'p', 'p' ' p' ' p ', ' p',

p p p, p p, p, ' p', p, p, p, p, p, p p, P' p' p1 p' P' P' p' P' p p p P P P', P, P, p
bestArray =[]
best = 0

f = open(self.file, 'r')
lines = f.readlineso
if len(lines)==2:
del lines[1]
for i in range(0,Ien(lines),1):
if lines[i][0:4] =="BEST":

bestArray = lines[i][5:170]
best = float(lines[i][170:len(lines[i])])

lastLine = lines[len(lines)-1]
j =0
k=0
bookmarks = [0,0,0,0]
while lastLinej] ! '[':

if (lastLinej]) == '0' or (lastLinej]) == '1'or (lastLinej]) == '2'or (lastLinej]) == '3'or
(lastLine[j]) == '4'or (lastLinej]) == '5'or (lastLineoj) == '6' or (lastLinej]) == '7' or (lastLinej]) == '8' or
(lastLinej]) == '9': bookmarks[k]=str(bookmarks[k]) + lastLinej]

elif lastLinej] ==',':
bookmarks[k] = int(bookmarks[k])
k+=1

j+=1
k=0
while lastLine[j] != ']':
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if (lastLine[j]) == '0' or (lastLinej]) == '1'or (lastLinej]) == '2'or (lastLine[j]) == '3'or
(lastLinej]) == '4'or (lastLinej]) == '5'or (lastLine[j]) == '6' or (lastLinej]) == '7' or (lastLine[j]) == '8' or
(lastLine[j]) == '9': array[k]=str(array[k]) + lastLine[j]

elif lastLine[j] == ',':
array[k] = array[k]. replace('p',")
array[k+1] = array[k+1].replace('p',")
k+=1

j+=1
for q in range(0,len(array),1):

array[q] = int(array[q])
bestArray = eval(bestArray)
return bookmarks[0],bookmarks[1],bookmarks[2], bookmarks[3],array,bestArray,best

class overseer:
def __init__(self, cont = 'yes'):

if cont =='yes':self.cont = True
else:self.cont = False
self.runo

def run(self):
if self.cont:

t = textreader()
SD = t.pickupo[:]
array =SD[4]
slowPos = SD[0]
slowVal=SD[1]
fastPos=SD[2]
fastVal = SD[3]
bestArray =SD[5]
best = SD[6]
runSim(array,slowPos,slowVal,fastPos,fastVal,bestArray,best)

else:
if os.path.exists('record.txt'):

os.remove('record.txt')
file('record.txt','w').close()

runSimo

overseer('yes')
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8.2. Sample CASMO Submission

TTL * basecase
TFU=900 TMO=560 VOI=40
PDE 54 'KWL'

BWR 10 1.3 13.4 0.19 0.71 0.72 1.33/0.3048 3.8928
PIN 1 0.4400 0.4470 0.5100
PIN 2 1.1700 1.2400 /'MOD' 'BOX' //4
LPI
1
1 1
1 1 1
1 1 1 1
1 1 1 1 1
1 1 1 2 2 1
1 1 1 2 2 1 1

1 1 1 10./ .16141 1 6=

FUE 1 10.2/5.0 64016=0.

FUE 3 10.2/5.0 64016=5.0
FUE 4 10.2/5.0 64016=7.5
FUE 5 10.2/5.0 64016=10.0

LFU
2
1 1
111

1112

5 1 1 1 1
1 1 1 0 0 1
1 1 1 0 0 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
2 3 5 1050 1 1 1 4

DEP -0

STA
END
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