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The phrase ‘‘not in my backyard’’ (NIMBY) refers to the well-known social phenomena in which residents
oppose the construction or location of undesirable facilities near their homes. Examples of such facilities
include electric transmission lines, recycling centers and crematoria. Due to the opposition typically
encountered in constructing an undesirable facility, the facility planner should understand the nature
of the NIMBY phenomena and consider it as a key factor in determining facility location. We examine
the characteristics of NIMBY phenomena and suggest two alternative mathematical optimization models
with the objective of minimizing the total degree of NIMBY sentiments. Genetic algorithms are proposed
to solve our linear and nonlinear integer programs. The results obtained via genetic algorithms for our
linear integer programs are compared with those of CPLEX to evaluate their performance. The nonlinear
programs are tested with various allocation policies. Sensitivity analysis is conducted about several sys-
tem parameters.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Background

Many facilities that improve human comfort and convenience
are welcomed by their neighbors. Subway or bus stations are often
embraced by people living in near-by areas because such facilities
provide easy access to public transportation and may result in in-
creased property value. Libraries and general hospitals are simi-
larly accepted facilities on account of their usefulness and
benefit. However, not all facilities are as warmly received. While
facilities such as electrical substations or dumping grounds provide
necessary services, they may cause unpleasant odors, health con-
cerns and reduce property values. Therefore it is hard to newly
construct or extend these facilities due to the extreme opposition.
This resistance is often termed ‘‘not in my backyard’’ (NIMBY) phe-
nomena. Though such facilities are beneficial to the general public,
and fulfill essential life demands, we will hereafter refer to them as
undesirable facilities.

We will consider two classes of undesirable facility. The first
kind has a radius of service, but a customer within the radius of
two facilities need not be allocated to the nearest. Examples here
include landfills, garbage collection centers, garbage incineration
plants and electrical substations. In the second, customers select
their facility based on its nearness. This kind of facility is appropri-
ate when considering individual travel distance, such as a hospital
or mental wellness facility.

Undesirable facilities are commonly large and intended for pub-
lic use and benefit. In general, one undesirable facility serves a
wide region and, while serving the public good, is considered det-
rimental to adjacent private interests (e.g. home value). The com-
munity which hosts the undesirable facility bears most of the
environmental, economic and psychological costs. The other nodes
simply enjoy the benefits of the facility (Kunreuther & Kleindorfer,
1986). Therefore, new facility construction or expansion projects
face strong opposition from residents who live in a candidate lo-
cale. People generally agree on the necessity of such undesirable
facilities, but they do not want such facilities near their homes.
NIMBY phenomena can cause various negative consequences. First,
opposition to a facility may result in closure or withdrawal of a
planned facility. Second, it instigates regionalism between candi-
dates. Lastly, perhaps the greatest victims of the NIMBY phenom-
ena are the residents themselves. If some essential facility is not
located well due to extreme opposition, people have to travel
excessive distances and spend additional time to obtain the service
(Dear, 1992). Further details and insight about the NIMBY phenom-
ena can be found in George and Rabe (1994) and Smith and
Marquez (2000).

Academic research seeking to minimize the social costs caused
by NIMBY phenomena by solving the undesirable facilities location
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problem may help to resolve some of the issues. Our research is
motivated by this opportunity. In this research, we propose two
mathematical optimization approaches to the facility location
and customer allocation problems that depend on the characteris-
tic of the undesirable facilities. The rest of the paper is organized as
follows. In Section 1.2, we introduce related research in this field.
Section 2 provides a detailed description of our research and the
mathematical formulations. In Section 3, we develop algorithms
to solve the resulting linear or nonlinear binary integer programs.
We present numerical examples and sensitivity analysis in Sec-
tions 4 and 5. Concluding remarks and suggestions for further work
are given in Section 6.

1.2. Literature review

NIMBY phenomena have been studied via qualitative methods.
Erkut and Moran (1991) applied the Analytic Hierarchy Process to
locate a landfill facility. They considered three factors to deter-
mine the site of the unpleasant facility: environmental, social
and economic factors. Groothuis and Miller (1994) considered
two dimensions of the NIMBY syndrome, tolerance and avoid-
ance. They conducted surveys, and applied regression analysis
to investigate the relationship between NIMBY phenomena and
compensation. Dear (1992) studied NIMBY phenomena with a fo-
cus on community relationships. He investigated several factors
to access community attitudes and suggested alternative ap-
proaches to community relations when locating undesirable
facilities.

Several researchers proposed auction mechanisms for locating
undesirable facilities. Kunreuther and Kleindorfer (1986) sug-
gested a sealed-bid mechanism for the siting process of noxious
facilities. They assumed that any community that decides not to
use the facility can be excluded from the algorithm. Quah and
Tan (1998) also propose a cost – benefit analysis and auction
mechanism to evaluate the available conflict-resolution instru-
ments. They suggested two alternatives based on compensation
payments in their study.

Some research considers political approaches. Fredriksson
(2000) offers a political economy explanation for siting hazardous
waste treatment facilities in the US federal system. Feinerman,
Finkelshtain, and Kan (2004) considered political factors such as
lobbying and suggested a political approach in a real problem of
landfill siting in the center and south regions of Israel.

Mathematical optimization approaches have been employed for
various situations. They have focused on total distance from the
facility, repulsion from neighborhoods, environmental effect, and
so on. Church and Garfinkel (1978) deal with a location problem
of an obnoxious facility so as to maximize the sum of its weighted
distances to the nodes. Melachrinoudis and Cullinane (1986) pro-
posed a minimax approach. They minimized the maximum
weighted inverse square distance from the undesirable facility.
Melachrinoudis (1999) also developed a maxmin–minisum bicrite-
ria location model with rectilinear distances. Using this bicriteria
location model, they tried to minimize the total transportation cost
while preventing too close a placement because of the undesirable
effect of semi-obnoxious facilities. Recently, Colebrook, Gutierrez,
and Sicilia (2005) proposed a new bound based algorithm to max-
imize the total weighted distance to all nodes for the p-median
problem (which requires that exactly p facilities be located). Fer-
nandez, Fernandez, and Pelegrin (2000) considered a mathematical
model to minimize the global repulsion of the inhabitants of the
region.

Unlike the mathematical optimization papers mentioned pre-
viously, others have concentrated on multiple criteria optimiza-
tion. Erkut and Neuman (1992) presented a three-objective
mixed-integer programming formulation to minimize total cost
for locating facilities, minimize total opposition and maximize
equity. Opposition and disutility are assumed to be nonlinearly
decreasing functions of distance, and increasing functions of facil-
ity size. This problem was solved by an enumeration algorithm.
Recently, Erkut, Karagiannidis, Perkoulidis, and Tjandra (2008)
also suggested other criteria for locating municipal solid waste
management facilities in North Greece. They considered five
objectives: minimize the greenhouse effect, minimize the final
disposal to the landfill, maximize the energy recovery, maximize
the material recovery and minimize the total cost (including the
installation cost, transportation cost and treatment cost). They
applied the lexicographic minimax approach to obtain a fair
non-dominated solution. Various types of criteria have been con-
sidered in the undesirable facility location problem; see Banias,
Achillas, Vlachokostas, Moussiopoulos, and Tarsenis (2010) and
Colebrook and Sicilia (2007) for more.

Based on the survey article of Owen and Daskin (1998), location
problems can be classified into four categories: median problem,
covering problem, center problem and fixed charge facility location
problem. Our study belongs to the fixed charge facility location
problem which has a fixed charge associated with locating each
potential facility. In our research, the objective is to minimize the
total degree of NIMBY phenomena. Since compensation could play
a role to help eliminate NIMBY phenomena (Groothuis, Groothuis,
& Whitehead, 2008) minimizing the total degree of NIMBY phe-
nomena can be interpreted as minimizing the total compensation
cost, where the compensation cost for candidate location j has a
fixed charge (of course, costs associated with construction can be
included). In most fixed charge facility location research, the fixed
charge is a constant Fj, to locate a facility at location j. However, the
fixed charge can also possess a functional form such as the popular
concave function. Concave fixed charges are used to reflect econo-
mies of scale such as occurring with construction costs (see Kelly &
Khumawala, 1982; Soland, 1974 and Klincewicz, 2002). In our re-
search, the degree of NIMBY phenomena caused by locating an
undesirable facility at candidate location j is an increasing function
of the number of nodes assigned to location j. We consider three
classes of functions for the NIMBY phenomena: linear, convex
and concave.

The fixed charge problem has been studied with maximum
service distance and closest assignment constraints (see Nozick,
2001 and Guha, Meyerson, & Munagala, 2003). However, in the
functional fixed charge problem, to our knowledge, none have in-
cluded maximum service distance and closest assignment con-
straint. In this article, we will extend our functional fixed
charge location problem to include maximum service distance
and closest assignment to describe two classes of undesirable
facility.

The contributions of this work are as follows. We, for what is to
our knowledge the first time,

(1) Propose the use of the functional fixed charge problem for
the minimization of costs associated with NIMBY
phenomena.

(2) Illustrate how two classes of undesirable facilities can be for-
mulated using maximum service distance and closest
assignment constraints.

(3) Extend the functional fixed charge problem to include maxi-
mum service distance and closest assignment constraints.

(4) Develop and test genetic algorithms for our linear, convex
and concave functional fixed charge problems. By having a
simple chromosome and developing allocation methods,
we improve the convergence rate of the proposed genetic
algorithm.
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(5) In the maximum service distance model, we propose an allo-
cation method with fixed locations (chromosome). In the
linear objective function case, we suggest an optimal
allocation method. In the nonlinear objective function case,
we suggest an allocation method based on random alloca-
tion order.

It is worth noting that while the functional fixed charge facility
location problem is well known, none have yet sought to apply it in
the NIMBY context.
2. Mathematical modeling

2.1. Problem description

In this study, we will propose a single criteria mathematical
optimization model for locating and allocating undesirable facili-
ties. We consider NIMBY phenomena directly through our objec-
tive function structure. Our objective structure allows us to
address the fact that residents who host the plant in their locale
absorb all of the environmental costs, while residents of other
locations enjoy the benefits of the facility. The degree of NIMBY
phenomena of those residents hosting the facility will be high be-
cause they absorb the negative effects directly for everyone. How-
ever, if undesirable facilities are located at each locale and cover
only their regional demand, the degree of NIMBY phenomena at a
given location will be less relative to a large facility and because
they do not need to sacrifice for another location. The cost of
NIMBY phenomena for a facility is a function of the total number
of nodes served by that undesirable facility. Using this basic in-
sight, we develop mathematical models with linear, convex and
concave objective functions for representing the cost of NIMBY
phenomena. Considering the properties of undesirable facilities,
we suggest two alternative mathematical models in this research.
Naturally, all of our cost structures may include construction
costs as well.
2.2. Assumptions

1. There are no existing undesirable facilities; all undesirable
facilities should be newly built. (This can easily be relaxed.)

2. There are demand nodes. Each demand node has its own
demand quantity and two-dimensional location information.

3. All demand nodes are candidate nodes for locating an undesir-
able facility. (This can easily be relaxed.)

4. Each demand node is served by exactly one undesirable facility.
5. The maximum number of facilities is given; it is less than the

total number of candidate nodes.
6. A facility located at a node will serve all of the demand for that

node.
Fig. 1. Linear trend objective function.
2.3. Notation
i, j
 Indices for nodes

J
 Number of all nodes

dij
 Euclidian distance between node i and node j

Nj(yj,x1j, . . . ,xJj)
 Total degree of NIMBY phenomena

experienced by node j when an undesirable
facility is located at j under allocation x1j, . . . ,
xJj
aj
 Basic degree of NIMBY phenomena at a node j
when a facility located at node j serves only
node j
bj
 Marginal degree of linear trend NIMBY
phenomena at a node j when an additional
node is served by the undesirable facility
located at j
R
 Maximum service distance restriction of an
undesirable facility
K
 Maximum number undesirable facilities to
be located
b
 Scaling parameter for convex objective
function
c
 Scaling parameter for concave objective
function
yj
 Binary location decision variable indicating
that an undesirable facility is located at node
j

xij
 Binary allocation decision variable indicating
that node i is assigned to the facility at node j
2.4. Objective functions

We consider three types of function to express the cost associ-
ated with the degree of NIMBY phenomena. These linear, convex
and concave costs will serve as the objective functions as we devel-
op mathematical programs to minimize the cost associated with
the installation of NIMBY facilities.

2.4.1. Linear trend
If the degree of NIMBY phenomena increases by a constant for

each additional node served by an undesirable facility located at
j, the cost associated with the NIMBY phenomena due to the
facility at locale j has the linear form:

Njðyj; x1j; . . . ; xJjÞ ¼ ajyj þ bj

XJ

i¼1

xij � yj

 !
ð1Þ

This linear trend objective function model will be solved by our
genetic algorithm and compared with the result of Cplex in the
sequal. Fig. 1 depicts a linear trend objective function.

2.4.2. Convex trend
As is often done in the literature (cf. Ko & Hwang, 2009), we will

use an exponential function for our convex cost associated with the
NIMBY phenomena due to the facility at locale j:

Njðyj; x1j; . . . ; xJjÞ ¼ ajyje
b
PJ

i¼1
xij�1

� �
ð2Þ

Fig. 2 depicts a such a convex cost term. We will solve the resulting
program via genetic algorithm. Numerical examples and various
sensitivity analyses will be conducted in Sections 5 and 6.

2.4.3. Concave trend
As often done in the literature (cf. Shepard, Olivera, Reckwerdt,

& Mackie, 2000), we will use a logarithmic function for our concave
objective function:



Fig. 2. Convex trend objective function.
Fig. 3. Concave trend objective function.
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Njðyj; x1j; . . . ; xJjÞ ¼ ajyj 1þ c ln
XJ

i¼1

xij

 ! !
ð3Þ

Fig. 3 depicts such a concave objective function. Such a function
may be used to express economies of scale. We will solve the
resulting program via a genetic algorithm; numerical examples
and sensitivity analyses will be conducted.
2.5. Mathematical model with maximum distance restriction

We first consider a mathematical program in which a maximum
distance restriction is imposed. That is, there is a given service ra-
dius for a facility, and nodes outside are not eligible to receive ser-
vice from that facility. We will use this to model facilities that
address daily demands, e.g. landfill, garbage collection center, gar-
bage incineration plant and electrical substation. The maximum
distance restriction is a key factor for locating the undesirable
facilities.

We allow the three types of objective functions suggested in
Section 3.4. The following mathematical program seeks to mini-
mize the cost of locating and allocating customer nodes to NIMBY
facilities, subject to a maximum service radius condition

Minimize
XJ

j¼1

Njðyj; x1j; . . . ; xJjÞ ð4Þ

Subject to
XJ

j¼1

dijxij 6 R 8i ð5Þ

XJ

j¼1

xij ¼ 1 8i ð6Þ

XJ

i¼1

xij 6 Myj 8j ð7Þ

xjj ¼ yj 8j ð8Þ
XJ

j¼1

yj 6 K ð9Þ

xij; yj 2 f0;1g 8i; j ð10Þ

Here, M is a large non-negative number. The objective function (4)
can use the linear, convex and concave functions. (We allow only
one type at a time, however.) The constraints (5) impose the max-
imum service radius restriction. Each node i is assigned to one
and only one facility by (6). A node i can only be assigned to a facil-
ity at node j if such a facility exists; constraint (7) ensures this. Con-
straint (8) requires that, if a facility is located at node j, node j will
be served by that facility. Constraint (9) restricts the maximum
number of undesirable facilities that can be established. All location
and allocation decision variables are restricted to be binary vari-
ables in (10).
2.6. Mathematical model with closest assignment restriction

For certain classes of facilities, customers may generally wish to
use the nearest facility. In this case, the nodes should be assigned
to the nearest facility. The following program will suffice to mini-
mize the total cost associated with the NIMBY phenomena:

Minimize ð4Þ

Subject to
XJ

k¼1

dikxik 6 dij þMð1� yjÞ 8i; j ð11Þ

ð6Þ; ð7Þ; ð9Þ; ð10Þ

Here, constraint (11) enforces the restriction that each node will
be served by the closest open facility. Constraint (8) is removed; it
is implied by (11).

Note that closest assignment constraints have been used since
they were introduced by Rojeski and Revelle (1970). In their paper,
they located public facilities such as medical clinics and surplus
food distribution warehouses. They used closest assignment for
minimizing total population distance. Dobson and Karmarkar
(1987) also used closest assignment constraints. They located facil-
ities on a network in the presence of competition; customers are
assumed to visit the closest facility.
3. Solution procedure

3.1. Genetic algorithm

Genetic algorithms were first introduced by Holland (1975) and
currently enjoy wide use as an alternative procedure for generating
optimal or near-optimal solutions for location problems. They are
inspired by genetic mutation in the theory of the evolution of life
and employ a ‘‘chromosome’’ representing the problem solutions
that are subject to random mutation and evolution based on the
quality of a chromosome. In 2006, Arostegui, Kadipasaoglu, and
Khumawala (2006) suggested a genetic algorithm for a location
problem, and showed an empirical comparison with tabu search
and simulated annealing. Jia, Ordonez, and Dessouky (2007) ap-
plied their genetic algorithm on a large-scale emergency problem
and showed that it generates good solutions in a reasonable time.

Genetic algorithms can also be used as a tool to solve nonlinear
problems. Gallagher and Sambridge (1994) introduce and recom-
mend genetic algorithms as a powerful tool for large-scale nonlin-
ear optimization problems. Deb (2001) also solved a multi-
objective nonlinear problem using genetic algorithms. See Practical
Genetic Algorithms (2004) for more information about genetic
algorithms and applications.

The overall procedure of proposed genetic algorithm is as
follows;



B.D. Song et al. / Computers & Industrial Engineering 65 (2013) 475–484 479
STEP 1: Set generation index i = 0 and current best fitness
value =1.
STEP 2: Generate initial population (set of chromosomes) of ith
generation.
STEP 3: For each chromosome, allocate the non-established
nodes to the facilities using our allocation algorithm.
STEP 4: Calculate fitness value of each chromosome using
fitness function in Section 4.1.3. If the best fitness value of ith
generation is smaller than the current best fitness value, update
the current best fitness value and save the corresponding
chromosome.
STEP 5: If i is less than the predetermined number of genera-
tions, create the next generation of the population by selection,
crossover and mutation operations. Otherwise, go to STEP 7.
STEP 6: i i + 1 and go to STEP 3.
STEP 7: Finish the GA process.

3.1.1. Chromosome structure
In our proposed genetic algorithm, a chromosome is a binary

J-tuple. That is, a chromosome c = (c1, . . . ,cJ) is an element of
C = {0,1}J; refer to Fig. 4. Its length J is thus the number of nodes
in our system. Each element of such a vector is called a gene.

The jth binary element cj of this vector will indicate whether an
undesirable facility will be established at node j or not. If cj = 0, no
undesirable facility will be located at node j. If cj = 1, an undesirable
facility will be established at the node j.
3.1.2. Initial population
The initial population P is composed of m chromosomes,

P = (c(1),c(2), . . . ,c(m)). In each such chromosome, the individual bin-
ary gene values ci, i = 1, . . . , J, are generated randomly with equal
probability of 0.5.
3.1.3. Fitness function
A fitness function is used to evaluate the quality of each chro-

mosome with respect to the original objective function of the
mathematical program. Our fitness function, which depends on
the chromosome and an allocation X (to be derived from C later), is

FFðcÞ ¼
XJ

j¼1

NJðcj; x1j; . . . ; xJjÞ þ
XJ

i¼1

p1 1�
XJ

j¼1

xij

�����
�����þ p2

Xj

J¼1

cj � K

( )þ

ð12Þ

where {�}+ = max{�,0} and p1, p2 > 0 are penalties. The first of the
three terms enables FF(c) to characterize the objective function of
our mathematical program. The second term penalizes infeasible
solutions that do not assign exactly one facility to each node as in
constraint (6). The third term penalizes locating more than K facil-
ities in violation of constraint (9).

Here, an allocation X must also be given. This will be deter-
mined for a given chromosome by a method described in Sec-
tion 4.2. With the allocation xij, for a given chromosome c, FF(c)
may be obtained.
Fig. 4. An example of our chromosome structure.
3.1.4. Selection
To generate a new chromosome (new candidate solution), ge-

netic algorithms typically select two existing chromosomes at ran-
dom and then apply a crossover and mutation scheme to generate
a new candidate solution. The procedure we use to select the chro-
mosomes that will be subject to crossover and mutation is now
described.

While it is important to randomly select the chromosome, it
may be beneficial to select chromosomes with a small fitness func-
tion value. This may increase the probability of generating a good
child. We therefore increase the probability of selecting a chromo-
some with small fitness function value using the roulette wheel
selection scheme. The details follow.

Let P = {c(1),c(2), . . . ,c(M)} denote a population of M chromosomes
and use FFMAX(p) = Max{FF(c(1),x(1)), . . . ,FF(c(M),x(M))}, where x(m) is
the allocation we will derive from c(m) in Section 4.2. FFMAX(p) is
the maximum value of the fitness function over all chromosomes
in the population P. Select a chromosome as follows:

STEP 1: Let G(C(m)) = [FF(c(M),x(M)) � FFMAX(p)]2.
STEP 2: Select a single chromosome from the population P,
where the probability of selecting chromosome c(m) is
GðCðmÞÞ

PM
m¼1GðcðmÞÞ

.
.

Let cs denote the selected chromosome. Repeat this procedure
again using population P to obtain a second chromosome. These
two are the parents we will use for crossover.

3.1.5. Crossover
Crossover is a genetic algorithm operator that seeks to generate

a good child (new chromosome). The crossover operator combines
two parent chromosomes selected via the previously described
procedure. The crossover, to be detailed next, is applied with pre-
determined probability px (we use px = 70% here). Otherwise the
chromosome in the same index as in the previous population is
copied as its own child.

We use a two-point crossover scheme. The overall procedure
follows. For convenience, let c(1) = {c1

(1), . . . ,cJ
(1)} and c(2) = {c1

(2), -
. . . ,cJ

(2)} denote our selected parent chromosomes.

STEP 1: Generate two random integers uniformly within
{1, . . . , J}. Call them R1 and R2 with R1 6 R2.
STEP 2: Create a child, denoted as c(x), as follows:

cðxÞ ¼ cð1Þ1 ; . . . ; cð1ÞR1 ; c
ð2Þ
R1þ1; . . . ; cð2ÞR2 ; c

ð1Þ
R2þ1; . . . ; cð1ÞJ

n o
for R1

< R2: If R1 ¼ R2; cðxÞ ¼ cð1Þ

If the same chromosome was picked twice in the selection stage
as parents, the result of crossover operation will be the parent it-
self. Fig. 5 shows an example of our two point crossover mecha-
nism with R1 = 5 and R2 = 14.

3.1.6. Mutation
The child c(k) is now subject to a process called mutation. Each

gene of the child, cðkÞj , will remain unchanged with probability
1 � pm Otherwise, with probability pm the gene cðkÞj will be replaced
with a 0 or a 1, each equally likely. All gene mutations are indepen-
dent. Here, we use pm = 0.03.

3.2. Allocation method

The chromosome of the proposed genetic algorithm describes
the location of undesirable facilities. However, a solution to our
problem also requires an allocation of nodes to the established
facilities. The following algorithm is used in our genetic algorithm



Fig. 5. An example of the two point crossover scheme.

Table 1
Parameters of proposed mathematical model.

Basic degree of NIMBY phenomena when located
undesirable facility serve only that node

aj Rand
(30,55)

Linear slope of degree of NIMBY phenomena in linear
mathematical model case

bj Rand
(35,45)

Maximum distance restriction of undesirable facility* R 200
p

5
Parameter for determining number of random order

assignments
a 0.2

Scaling parameter for convex mathematical model b 0.5
Scaling parameter for convex mathematical model c 3
X-coordinate Rand

(0,1000)
Y-coordinate Rand

(0,1000)
Number of population 150
Number of generation 150
Crossover probability 0.7
Mutation probability 0.03

* R is a 10% of max Euclidean distance.
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to obtain an allocation x for a given chromosome c (note that y = c
in the notation of our location problem).

Throughout, nodes on which a facility is located are assigned to
that facility. Hereafter, we only address the allocation of nodes
without a co-located facility.

3.2.1. Mathematical model with maximum distance restriction
For the maximum distance restriction model, we develop an

efficient method to generate a good allocation among fixed facility
locations.

3.2.1.1. Linear trend. For the linear objective function, each non-
established node selects that undesirable facility within the maxi-
mum distance restriction whose linear cost slope bj is smallest.
Precisely xij = 1 if j = argmin{bk:dik 6 R}; otherwise, xij = 0. In the
case where multiple nodes achieve the minimum, the closest is se-
lected (arbitrarily if there is more than one closest). Nodes that are
not within a range R of an established facility are not assigned. In
this case, by the fitness function in formulation (12), a penalty will
be charged to induce evaluation away from such infeasible situa-
tions. Note that assignment is independent of the order in which
the nodes are assigned (we will use an order dependent approach
later for our other cost functions).

Lemma 1. For the linear objective function, ignoring nodes not
covered in the radius R of any facility, the proposed assignment
algorithm guarantees an optimal assignment with fixed locations.
Proof. Let P1 be the set of established undesirable facilities given
in the vector y. Let P2 be the set of non-established nodes, with
P1 [ P2 = {1, 2, ... , J}, P1 \ P2 = Ø. Since we ignore isolated nodes,
assume that every location in P2 is located within a distance R from
at least one undesirable facility in P1. Let Sj, j e P2 be the set of
undesirable facilities that can serve j e P2. Let lj denote the marginal
cost associated with the allocation of j e P2, lj = minkesj{bk}. There-
fore, the total cost associated with the NIMBY phenomena is

XJ

j¼1

Njðy; xÞ ¼
X
j2p1

aj þ
X
j2p2

lj ¼
XJ

j¼1

ajYj þ lj

XJ

i¼1

ðxij � 1Þ
( )

ð13Þ

The term
P

j2P1aj is the basic degree of NIMBY phenomena caused
by the fixed location of the facilities. The term

P
j2P2lj is the sum

of minimum possible slope values. As a result, proposed assignment
method guarantees an optimal assignment with fixed locations.h
3.2.1.2. Convex and concave trend. For convex and concave Nj(yj,
x1j, . . . ,xJj), we expect that the allocation order will affect the over-
all cost; unlike the linear model. Therefore, two allocation methods
are suggested. In the first, each non-established node is allocated to
an available facility in order from node 1 to node J. In the second, a
non-established and not yet assigned node is selected at random. It
is then assigned a facility and the procedure repeats.

For each non-established and not yet assigned node (once it is
determined that it is their turn for allocation), all facilities within
a radius R are polled to determine how much their cost will in-
crease if our node is assigned to them. We then assign our node
to that undesirable facility which will provide the smallest increase
(or any nearest in the event of ties; each equally likely). These pro-
cedures are repeated until every non-established node is assigned.
In our algorithm, each chromosome generates a�J, 0 < a 6 1, ran-
dom order allocations using the method above. The best of these
allocations is selected as the final allocation. (The constant a will
be specified later).
3.2.2. Mathematical model with closest assignment restriction
In the closest assignment restriction model, the closest assign-

ment restriction dictates that every non-established node is as-
signed to the closest open undesirable facility. If there are more
than two facilities of equal distance, the non-established node is
assigned to an undesirable facility which will provide the smallest
cost increase. This procedure is conducted from smallest to largest
node number.



Table 2
Result of linear mathematical model with maximum distance restriction.

J K Cplex Genetic algorithm Gap (%)

Average solution value Standard deviation Average CPU
time (second)

Average solution value Standard deviation Average CPU
time (second)

10 3 379.65 12.46 0.08 379.65 12.46 0.72 0.00000
30 9 1058.95 14.88 0.17 1058.95 14.88 3.2 0.00000
50 15 1748.6 15.09 0.23 1748.7 15.15 7.68 0.00570

100 30 3459.8 17.89 0.25 3460.05 17.88 27.82 0.00720
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4. Numerical example

In order to evaluate the proposed mathematical models, exam-
ple problems are solved with the parameters shown in Table 1 for
the cases of nodes 10, 30, 50 and 100 nodes.
4.1. Mathematical model with maximum distance restriction

4.1.1. Linear trend objective function
In the linear model, our proposed genetic algorithm is solved

and compared with Cplex 12.1 using the exact same model param-
eters. For each problem size, Cplex and the genetic algorithm were
implemented on twenty random problems with different parame-
ters as indicated in Table 1 (e.g., different location information, aj,
bj). As shown in Table 2, Cplex solved every problem in less than
1 s. The suggested genetic algorithm provides the Cplex optimal
or near optimal solution for various sizes of problems with reason-
able computation time. For small size problems, the GA finds the
Cplex optimal value. However, as problem size increases, the GA
does not provide the Cplex optimal solution in several cases among
the twenty trials. This is because, as the problem size increases, the
solution space also increases. For a large space, the GA may not ex-
plore it fully.

Cplex is state-of-the art optimization software. However, our
suggested mathematical models contain (nonlinear) convex and
concave terms in the objective function. Unfortunately, Cplex does
not provide a mechanism for nonlinear integer optimization.
Therefore, our genetic algorithm whose quality we have verified
using the linear objective function will be implemented to opti-
mize the nonlinear integer problems.
Table 4
Result of concave mathematical models with maximum distance restriction.

J K Repeated random orders
assignment

One directional
assignment

Gap
(%)

Sol.
value

CPU time
(second)

Sol.
value

CPU time
(second)

10 3 458 1.35 458 0.83 0.00
30 9 720 21.06 720 3.9 0.00
50 15 852 87.61 879 9.02 �3.17

100 30 1146 624.63 1185 31.88 �3.40
4.1.2. Convex trend objective function
We suggested two allocation order methods for the convex

trend objective function: repeated random order assignment and
one directional assignment method. The results of both assign-
ments are compared to determine the significance of assignment
order.

Table 3 compares the results of these two assignment methods
embedded in the GA. Both methods give similar solution values.
Because the repeated random order assignment method generates
a�J random order allocations for a chromosome, it requires more
computation than the one directional assignment method. It is
Table 3
Result of convex mathematical models with maximum distance restriction.

J K Repeated random orders
assignment

One directional
assignment

Gap
(%)

Sol.
value

CPU time
(second)

Sol.
value

CPU time
(second)

10 3 410 1.24 410 0.85 0.00
30 9 952 19.13 953 4.14 �0.11
50 15 1691 82.18 1622 10.11 4.07

100 30 3381 610.59 3311 35.95 2.07
clear that with the nonlinear objective function, assignment order
affects the solution value. However, due to the evolutional charac-
teristic of the genetic algorithm, there is a little difference between
the two assignment methods at the conclusion of the GA.
4.1.3. Concave trend objective function
In the concave trend objective function case, the solution value

and computation patterns are similar with the convex case; see
Table 4. The repeated random order assignment method gives sim-
ilar or slightly smaller solution value than the one directional
assignment method. However due to the evolutional procedure
of the genetic algorithm, the differences are small. On the other
hand, the repeated random order assignment method requires
many times more computation than the convex model. Also in this
concave trend case, we observed the effect of the economies of
scale. As there are just small increments in solution values when
an undesirable facility tries to cover another node, the solutions
tend to have many nodes assigned to few locations.
4.2. Mathematical model with closest assignment restriction

4.2.1. Linear trend objective function
For the linear model, our GA is compared with Cplex 12.1; see

Table 5. Our GA gives similar solutions as Cplex for the closest
assignment restriction linear model. They give Cplex optimal or
near optimal solutions for various problem sizes. As for the maxi-
mum distance restriction model, we will use our genetic algorithm
to cover the limitations of Cplex. We expect our genetic algorithm
will give good solutions in nonlinear integer problems based on its
performance quality here.
Table 5
Result of linear mathematical model with closest assignment policy.

J K Cplex Genetic algorithm Gap
(%)

Sol.
value

CPU time
(second)

Sol.
value

CPU time
(second)

10 3 363 0.05 363 0.82 0.00
30 9 1063 0.06 1063 4.48 0.00
50 15 1763 0.67 1763 12.18 0.00

100 30 3496 8.92 3551 47.47 1.57



Table 6
Result of nonlinear mathematical model with closest assignment constraints.

J K Convex mathematic model Concave mathematic model

Solution
value

CPU time
(second)

Solution
value

CPU time
(second)

10 3 424 0.84 324 0.81
30 9 982 4.76 336 4.46
50 15 1833 12.33 382 11.66

100 30 3744 47.14 444 45.56

Table 7
Parameters for sensitivity analysis of two different scenarios.

J K R aj bj b c

Scenario 1 50 15 20,000 Rand (10,35) Rand (50,60) 0.8 5
Scenario 2 50 15 20,000 Rand (50,75) Rand (20,30) 0.2 1

Table 9
provides the parameters for this sensitivity analysis.

J K R aj b c Number in initial
population

Number of
generations

50 15 20,000 Rand
(30,55)

0.5 3 1 1
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4.2.2. Convex and concave trends objective function
We now study the convex and concave mathematical models

with our closest assignment genetic algorithm. The proposed algo-
rithm solved these nonlinear models quickly; a 100-node nonlin-
ear problem in less than a minute.

We next compare the concave and convex models; see Table 6.
Contrary to the convex model, the solution value does not much
change in the concave model as the problem size increases (for
fixed cost parameters). This is because the concave trend objective
function tends to give few established undesirable facilities that
cover many nodes because of the economies of scale.
5. Sensitivity analysis

We conducted sensitivity analysis to observe the result of
changes to decision values in various situations.
5.1. Sensitivity analysis on the behavior of residents

The NIMBY syndrome is highly dependent on resident’s emo-
tion and behavior. Here we consider two scenarios.

Scenario 1) Residents are aware that the undesirable facility is a
necessity. Therefore, they agree to build an undesirable facility in
their locale. However, they do not want to sacrifice for residents
of other locales. They are reluctant to allow other residents to
use the undesirable facility located in their region. In this situation,
the basic degree of NIMBY phenomena aj itself is relatively low.
However, if other residents are assigned to use their undesirable
facility, the degree of NIMBY phenomena will increase steeply.
Therefore, bj, b, c will be relatively high.

Scenario 2) Residents desperately oppose to establish undesir-
able facilities in their locale. Therefore, the basic degree of NIMBY
phenomena aj is extremely high. However, if government negotiate
Table 8
Comparison of two scenarios.

Linear Convex

Solution
value

Established
facilities

Average assigned
node

Solution
value

Est
fac

Scenario 1 1986 15 3.33 1428 15
Scenario 2 1190 4 12.5 1309 10
with residents and persuade them, it is relatively easy to open the
undesirable facility for residents of other locales. Thus, bj, b, c will
be relatively low.

We use the parameters in Table 7 to compare these two con-
flicting scenarios.

Table 8 provides the results for the two different scenarios. In
Scenario 1, our GA constructed many undesirable facilities and
each undesirable facility served a relatively small number of other
nodes. This is as expected since in Scenario 1, establishing an unde-
sirable facility is relatively easy but expanding it is relatively diffi-
cult. On the other hand, in Scenario 2, our GA constructs a small
number of undesirable facilities and opens those facilities for many
other residents. Our GA provides the results intuitively expected.
Further, it should give near optimal location and allocations for
the parameters provided.

5.2. Comparison of assignment methods

In this section, we will investigate the sensitivity of the re-
peated random order assignment method to the parameter a.
Using a single fixed location vector y throughout, the repeated ran-
dom order assignment method is used with various a values. The
assignment algorithm is implemented twenty times for each a va-
lue. The average solution value of the twenty different implemen-
tations is used to evaluate the effect of the repeated random order
assignment algorithm.

Table 9 provide parameters for sensitivity analysis of the re-
peated random order assignment method.

Fig. 6 shows the relationship between the solution values and
various a values.

Details including CPU time are given in Table 10. In both the
convex and concave case, higher a values give good and stable
solutions. This is obvious; high a values generate more random or-
der assignments and select the best one. The one directional
assignment algorithm is also implemented for comparison. Every
implemented random order assignment algorithm gives a better
solution value than the one directional assignment.

In this analysis, we did not modify the chromosome for loca-
tions so that we can clearly evaluate the effect of the assignment
algorithms. Therefore, the evolutional characteristic of our genetic
algorithm does not appear. However, if we repeat our algorithms,
the average solution value between the two assignment algorithms
is expected to be similar as we showed in the numerical example
section previously. Computation time also increased as the a value
increased.
Concave

ablished
ilities

Average assigned
node

Solution
value

Established
facilities

Average assigned
node

3.33 528 7 7.14
5 693 3 16.67



Fig. 6. Solution values decrease with increasing a: convex space (left) and concave space (right) cases.

Table 10
Comparison of random order assignment and one directional assignment in convex and concave cases.

a Convex case Concave case

Average solution value Standard deviation CPU time Gap (%) Average solution value Standard deviation CPU time Gap (%)

Random order assignment
0.2 2222.55 23.2 0.005 �0.25 1512.15 58 0.005 �1.84
0.4 2216.75 22.56 0.009 �0.51 1498.3 38.44 0.009 �2.78
0.6 2208.3 18.01 0.012 �0.66 1488.75 37.18 0.013 �3.44
0.8 2205.55 14.19 0.015 �1.02 1474.85 33.93 0.016 �4.44
1 2201.85 11.49 0.018 �1.19 1466.85 30.39 0.022 �4.99

One directional assignment
2228 1540
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6. Concluding remarks

Undesirable facilities provide necessary services for people.
However at the same time, these facilities may have negative con-
sequences for the local neighborhood. Therefore, when establish-
ing an undesirable facility, decision makers may face strong
opposition from local residents. This is the so called ‘‘not in my
backyard’’ (NIMBY) phenomenon. In this research, two alternative
mathematical models are suggested for locating undesirable facil-
ities to minimize the total degree of NIMBY phenomena. The pro-
posed models are linear and nonlinear integer programs. A
genetic algorithm and assignment methods are developed to seek
optimal or near optimal solutions. To validate the mathematical
models and assignment algorithms, the results are compared with
Cplex in the linear case. For the nonlinear case, assignment algo-
rithms are compared. Sensitivity analysis on resident behavior
and assignment algorithms are conducted. It is observed that our
algorithms provide optimal or near optimal solutions in reasonable
time in the linear case. In the nonlinear case, the proposed assign-
ment algorithms show a potential to minimize the degree of NIM-
BY phenomena.

In future studies, it is recommended to consider capacity
restrictions in the linear and nonlinear optimization model. In
addition, various terms can be included in the objection function,
as for other multi criteria undesirable facility location problems.
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