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Abstract—Epilepsy is one of the most common neurological
conditions, affecting 2.2 million people only in the U.S., causing
seizures that can have a very serious impact in affected people’s
lives, including death. Because of this, there is a remarkable
research interest in detecting epilepsy as it occurs, so that it
effects and consequences can be mitigated immediately.

In this paper, we describe and implement an energy-based
seizure detection algorithm which runs over electroencephalog-
raphy (EEG) signals. Because this technique comprises different
parameters that significantly affect the detection performance, we
will use genetic algorithms (GAs) to optimize these parameters
in order to improve the detection accuracy. In this paper,
we describe the GA setup, including the encoding and fitness
function.

Finally, we evaluate the implemented algorithm with the
optimized parameters over a subset of the CHB-MIT Scalp EEG
Database, a public data set available in PhysioNet. Results have
shown to be very diverse, attaining almost perfect accuracy for
some patients with very low false positive rate, but failing to
properly detect seizures in others. Thus, the limitations found
for energy-based seizure detection are discussed and some actions
are proposed to address these issues.

I. INTRODUCTION

Epilepsy is a neurological condition characterized by “un-
controlled excessive activity of either part or all of the central
nervous system” [1]. A person suffering epilepsy has attacks,
also called seizures, resulting from the disruption of the
electrical communication between neurons. According to the
Epilepsy Foundation [2], epilepsy is the fourth most common
neurological condition, only outnumbered by migraine, stroke
and Alzheimer’s disease. Its incidence (i.e., people developing
epilepsy each year) in the U.S. is estimated at 48 for every
100,000 people. The prevalence of epilepsy is estimated at 2.2
millions in the US, or 7.1 for every 1,000 people; and up to
16.5 per 1,000 Americans have reported to had suffered from
epilepsy at some point in their lives. The work from Helmers
et al. [3] also study the incidence and prevalence of epilepsy
in the U.S. based on claims databases from two major health
insurance companies, resulting in an estimated prevalence of
8.5 cases per 1,000 people. While these authors also compute
incidence rates, they remark that these data might not be
reliable. Also, they conclude that incidence shows higher rates
for children under 5 years and adults over 60 years. The work
from Camfield and Camfield [4] explores the incidence and
prevalence of epilepsy in children from a global perspective,

concluding that they are higher in underdeveloped countries,
and especially in rural areas.

Also, the impact of epilepsy has been thoroughly addressed
in the medical literature. The Epilepsy Foundation [5] high-
light the main related conditions to be low scholar perfor-
mance, cognitive or learning difficulties, depresion, anxiety or
other mood changes, sleeping problems, unexplained injuries
or falls, osteoporosis, reproductive problems or even death.
The impact of this medical condition goes beyond the direct
effect of seizures, and its consequences on quality of life have
been recently addressed by Vaurio et al. [6] or Heersink et al.
[7]; and include diminished social support and stigmatization,
which can lead to lower employment rates and annual incomes.

While reducing the impact of epilepsy in the affected
people’s life is an important step, in this paper we are mostly
concerned with the direct consequences of epileptic seizures.
Some of these consequences are explored by Fisher et al.
[8] by surveying affected people, and include major injuries
resulting from seizures such as head injuries, broken bones,
shoulder dislocation, burns or even a car crash; and more
minor injuries such as falls, dropping objects, incontinence,
scrapes or hallucinations. A very recent paper by Devinsky et
al. published by The Lancet Neurology [9] explores a more
serious consequence, namely sudden unexpected death taking
place after a seizure.

Because of the high incidence and prevalence of epilepsy,
the high negative impact it poses on affected people’s lives and
the forementioned potential risk during seizures occurrence,
there is a high research interest on being able to detect such
occurrences. Being able to detect that a seizure is taking place
is useful to provide early assistance to the affected person,
reducing the risk and impact of the seizure.

In this paper we present an energy-based seizure detection
technique that runs over electroencephalography (EEG) sig-
nals. Because there are several parameters which are critical
to the detection performance, these are optimized using genetic
algorithms. Once optimized, this technique is evaluated using
a subset of the CHB-MIT Scalp EEG Database, which is
publicly available in PhysioNet.

This paper is structured as follows: first, section II provides
the biomedical background required to properly understand
this paper’s contribution, including the structure of EEG data
and how it can be used to perform energy-based seizure
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Fig. 1: 20 seconds of six different EEG channels (in µV ).

detection. Later in section III, we place this paper into its
context by presenting related work, including the state of
the art in seizure detection. A thorough description of the
energy-based seizure detection algorithm used in this work
is presented in section IV, whereas in section V we explain
the process for optimizing the parameters of such technique
using genetic algorithms, delving into its encoding and fitness
function. Since a preliminary evaluation is carried out to
validate our proposal, its setup, methodology and results are
described in section VI. Finally, in section VII we present
some conclusive remarks to summarize the paper and highlight
its main accomplishments, while at the same time proposing
some future work to keep exploring this research line.

II. BIOMEDICAL BACKGROUND

First of all, it is worth noting that EEG is the name given to
both the collection of the waves measured in the brain and the
technique used for measuring those waves. We are going to
use both terms indistinctly along this paper. With respect to the
acquisition technique, the EEG data used in this paper follows
the international 10-20 system, which defines the location of
scalp electrodes [10]. An example of EEG signals is depicted
in figure 1, where the first 20 seconds of the first patient’s third
session from the CHB-MIT Scalp EEG Database are shown
for six different channels.

Brain waves measurements come from the change in po-
tential from neurons. However, it is impossible to record the
activity of a single neuron with a surface EEG and therefore its
final measurement will correspond to the depolarization and
repolarization of thousands or millions of neurons. Notice that
neurons must fire synchronously. Hence, the final measure-
ment of the EEG will be the level of excitability of different
parts of the brain and the intensity and form of the brain wave
will be determined by the number of neurons acting together.

Between the EEG signals it is possible to distinguish dif-
ferent rhythmic activities depending on their frequency. EEG
rhythms have been established as follows: Delta Waves (0.5–
4Hz) appear during deep sleep and sometimes during some
severe organic brain diseases, Theta Waves(4–8Hz) are related
with some activity in children but also with emotional stress
in adults and they may appear in some neurological diseases
as degenerative ones, Alpha Waves (8–13Hz), which are found

Fig. 2: EEG rhythms corresponding to an EEG channel.

Fig. 3: Normal vs. seizure brain activity in the EEG signal.

in normal adults when they are awake but relaxed and Beta
Waves (13–30Hz), related with any type of mental activity.
Gamma Waves (over 30Hz) have been traditionally included in
the range of Beta Waves but still now there is no an agreement
about their function. These frequency bands are not arbitrary,
but rather arose from some specific distribution over the scalp.
Figure 2 shows the different rhythms for the first channel
shown in figure 1 (FP1-F7) during 20 seconds.

When a seizure occurs, it is often reflected in the EEG
signal with a higher electric activity. An example of this
effect is shown in figure 3, which plots a portion of an EEG
channel where a seizure occurs. The seizure onset and ending
is depicted in red, and it is visible how brain activity is much
higher during the seizure.

A simple yet effective way of detecting a seizure given
the EEG is to compare the energy of a small window (called
foreground) with the energy of a much larger window (back-
ground). Seizures often last a few seconds, and in most cases
they last less than two or three minutes. If the foreground’s
energy is significantly larger than the background’s, then it is
likely that the foreground window is part of a seizure. The
background window should be long enough to ensure that a
seizure is not taking place during all the window’s duration.

The energy of a window can be computed as described in
Equation 1, where L is the window length, t is the time in the
middle of the window and x(i) is the signal value at time i.

E(t) =
1

L

i=t+L/2∑
i=t−L/2

x2(i) (1)
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(a) Normal activity (b) Seizure

Fig. 4: Topographic map plotting EEG signal energy in two
different scenarios for the same patient. Blue means lower
energy values; red means higher.

Fig. 5: Energy of foreground (1 sec) and background (10 min)
EEG windows.

The topographic map in figure 4 plots the energy during
normal brain activity (figure 4a) and during a seizure (figure
4b) over the scalp surface. The difference of energy during
normal brain activity and during a seizure can be easily
observed in the color code.

Finally, figure 5 compares the energy of a 1-second fore-
ground window and a 10-minutes background window. It can
be seen that the background window is unaffected by the
seizure, as it comprises a much larger timeframe than the
seizure itself, which is declared to last 40 seconds. It is for
this reason that comparing the ratio between the two windows
is an effective procedure for seizure detection.

However, it can be seen that the end of the seizure is not
that clear just looking at the energy values. This is because
immediately after the seizure there is often a short period
called “postictal period” in which the patient may experiment
confusion, before the normal brain activity is recovered. This
is not a significant handicap for this work, since it is not an
issue if the detection algorithm considers the seizure to be
longer than it actually is.

III. RELATED WORK

Due to the impact of epilepsy seizures in society, many
studies have been developed in an attempt to perform auto-
matic seizure detection or even more, to predict them. Some
of the earliest approaches go back to the 90s with Gotman
[11] describing improvements to previous seizure detection
algorithms. These improvements considered a larger temporal
context and enhanced specificity.

In the recent years, due to the high interest in this research
field and the medical advantages it poses, the number of

works in automatic seizure detection has grown significantly.
When reviewing the literature, it is found that most works
use wavelets transforms to carry out this task. Some relevant
examples are those by Guo et al., where an artificial neural
network is used with entropy features [12] or line length
features [13] derived from multiwavelet transforms of the EEG
signal; Zandi et al. [14], where wavelet packet transform is
computed to quantify the separation of seizure and non-seizure
states; Faust et al. [15], where wavelets, non-linear dynamics
and neural networks are combined for seizure detection; Chen
[16] and [17], where dual-tree complex wavelet transform
with Fourier features is explored; Chen et al. [18], where the
magnitud of Fourier coefficient with different wavelet scales
are used as features and different classification algorithms are
tested; Ahammad et al. [19], were wavelet-based features are
used for both event and onset detection using a linear classifier;
or Abbasi and Esmaeilpour [20], where multi-layer perceptron
is used for seizure detection from statistical characteristics
obtained from the discrete wavelet transform of the EEG
signal.

In other cases, classical machine learning techniques have
been used to face the problem of seizure detection. For
example, Fergus et al. [21] extract different statistical features
from the EEG signal and evaluate their convenience using
different rank methods (e.g. principal components analysis
or linear discriminant analysis) and classifiers. Shoeb and
Guttag [22] have also worked in this problem using spectral,
spatial and temporal features. They eventually proposed an
application for a vagus nerve stimulation device [23] and
an approach to classification using support vector machines
(SVM). Also, Temko et al. [24] and Mathieson et al. [25]
used SVM to perform onset detection on neonatal patients
with features extracted from the power spectrum density of the
EEG Fourier transform. Also, Bogaarts et al. [26] used this
technique with median decaying memory for EEG dynamic
normalization. Finally, Baldassano et al. [27] have proposed
the use of hidden Markov models with data from intracranial
EEG and tested it in dogs.

Some works have also described approaches where signal
energy is key for seizure detection. For example, Correa et
al. [28] used a sliding window to compute some energy-based
features of the signal. Meanwhile, Fu et al. [29] used Hilbert
marginal spectrum analysis to obtain, among others, energy
features which are later fed to a support vector machine.

While most of the research works perform seizure detection
using EEG signals, some authors have worked in seizure detec-
tion using other signals or sources. For example, Lockman et
al. [30] propose the use of a wristband with an accelerometer
for detecting rhythmic movements, obtaining good accuracy
but many false positives. Arends et al. [31] propose a system
for detecting seizures using audio recordings, which worked in
half of the patients with an intellectual disability. Moreover,
Andel et al. [32] compare different non-EEG-based devices
for seizure detection, concluding that two of them provide
a good tradeoff with high accuracy and low positive rate: a
mattress-based detector and a wrist-based detector. A review

2340



of both research and commercial systems for non-EEG seizure
detection is provided by Vel et al. [33].

Finally, while seizure detection is a highly interesting re-
search field, there is a much higher interest, yet less advances,
in seizure prediction. In 2006, Mormann et al. [34] described
the state-of-the-art in the field, pointing out that most promis-
ing works up to that moment yielded non-reproducible results,
remarking the unpredictable nature of seizures. Ten years later,
Mormann and Andrzejak [35] commented on the advances
over that decade and Freestone et al. [36] provided some hints
for the future. Prior to 2016, Gadhoumi et al. [37] provided a
survey of different seizure prediction works in the last decade.
Recently, Namazi et al. [38] studied the Hurst exponent and
fractal dimension for seizure forecasting, Parvez and Paul
[39] proposed a seizure prediction method using undulated
features from intracranial EEG signals and Yoo [40] worked
on prediction using power spectral densities as features and
support vector machines as classifiers.

Despite of the many successful attempts of performing
seizure detection, after an extensive review of the state of
the art we have found a lack of proposals using EEG energy.
This is why in this paper we will focus in a different method
for tackling this problem using EEG energy and evaluate its
performance.

IV. METHODOLOGY

This section describes the seizure detection algorithm,
which performs a sequence of stages given an EEG channel. It
should be noted that, except for the channel aggregation stage,
this process is repeated for each channel. The pseudocode for
the seizure detection system is shown in algorithm 1.

A. Filtering

The first step involves filtering the signal. A low-pass filter
of flo Hz and a high-pass filter of fhi are applied to the signal.
By doing this, only a subset of the signal frequencies are
considered. Depending on the values of flo and fhi, this could

Algorithm 1 Pseudocode for the seizure detection system.

procedure DETECT(S, flo, fhi,Wfg,Wbg, τe, d, lmin, τc)
seizures← EMPTYSET()
for each ch ∈ S do

ch← LOWPASSFILTER(ch, flo)
ch← HIGHPASSFILTER(ch, fhi)
fg ← SEGMENT(ch,Wfg)
bg ← SEGMENT(ch,Wbg)
er ← ENERGY(fg)/ENERGY(bg)
ss← GETSEIZURESBYTHRESHOLDING(er, τe)
ss← GROUPSEIZURES(ss, d)
ss← FILTEROUTSHORTSEIZURES(ss, lmin)
seizures.ADDTOSET(ss)

end for
seizures← AGGREGATECHANNELS(seizures, τc)
return seizures

end procedure

leave one or several frequency bands such as those shown in
figure 2 (delta, theta, alpha, etc).

B. Segmentation

The second steps involves segmenting the EEG signal into
windows. As described in section II, in this segmentation
process we will obtain windows of two different sizes. The
foreground comprises smaller windows will have length Wfg ,
while the background is composed of larger windows with
length Wbg , where Wbg �Wfg .

C. Energy Computation

In this step, the energy is computed in every foreground and
background window following Equation 1. Then, the energy
ratio is obtained by dividing the foreground energy by the
corresponding background window energy.

D. Thresholding

After energy computation, we end up with a time series of
energy ratios resulting from the division of the foreground
and the background. This time series can be treated as a
distribution, where some values are much higher than the
average or the median. In this case, we will consider that all
ratios that are higher than the τe% of the values (i.e., those
ratios over the τe-th percentile) are part of a seizure.

E. Grouping

After thresholding, we have identified ratios in the time
series that are part of a seizure. The next step involves
grouping all those parts of the time series that are part
of a seizure and are closer than d seconds among them.
This process is basically building seizures from the different
windows, considering that two windows are part of the same
seizure if they are located less than d seconds apart one from
the other.

Once the windows are grouped, we will remove those
seizures that are shorter than lmin seconds. This filter is ap-
plied in order to remove noise or artifacts virtually increasing
the energy, thus leading to false positives.

F. Channel Aggregation

The previous steps are performed for each channel individ-
ually. Upon completion, the algorithm has detected a set of
seizures for each channel. The final set of detected seizures
will result as an agreement between the different channels. To
do so, a seizure will only be considered for the final set it
has been detected in at least τc channels. In that case, if the
boundaries of the seizure are different in each channel, then
the median boundaries (onset and ending) are chosen.

V. GENETIC OPTIMIZATION

In the previous section we have described the different
stages for seizure detection, which comprise different parame-
ters whose values are not known in advance. In this section, we
will explain how the different parameters affect the detection
performance and describe a genetic algorithm for optimizing
their values. The pseudocode for the genetic algorithm is
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Algorithm 2 Pseudocode for the genetic algorithm.

procedure GENETICALGORITHM(P, t, rm)
p← GENERATERANDOMPOPULATION(P )
while stopCondition = false do

COMPUTEFITNESS(p)
pn ← EMPTYSET
while SIZE(pn) < P do

p1 ← SELECTBYTOURNAMENT(p, t)
p2 ← SELECTBYTOURNAMENT(p, t)
os1, os2 ← REPRODUCE(i1, i2)
os1 ← MUTATE(os1, rm)
os2 ← MUTATE(os2, rm)
pn.ADDTOSET(os1, os2)

end while
p← pn

end while
return GETBESTINDIVIDUAL(p)

end procedure

shown in algorithm 2, and the values for its parameters are
described in the experimental setup in the next section.

A. Parameters Sensitivity

The parameters that will be optimized using a genetic
algorithm are the following:

• flo: the cutoff frequency of the low-pass filter. Some low
frequencies might be irrelevant for seizure detection, but
we will work under the assumption that the impact of this
value regarding the detection performance is unknown in
advance.

• fhi: the cutoff frequency of the high-pass filter. Again,
we will not make any prior assumptions on how this
parameter affects detection performance.

• Wfg: the length of the foreground window. There is not
a rule of thumb for estimating the best value for this
parameter.

• Wbg: the length of the background window. Again, there
is not a general rule to know the best value for this pa-
rameter, yet it should be much larger than Wfg , as small
values lead to windows very sensitive to the existence of
seizures.

• τe: the threshold for considering an energy ratio to be part
of a seizure. Very large values will decrease the number
of detected seizures (thus increasing the number of false
negatives), whereas small values will lead to an increase
of false positives. In an extreme case, a value of 0 would
consider the whole channel to be a seizure.

• d: the maximum distance (in seconds) for two energy
ratios in the time series to be part of the same seizures.
Large values might consider two different seizures to be
the same. However, small values might have the opposite
effect: to consider one seizure to be more than one. This
last scenario can cause an additional issue, as if these
sub-seizures are not as long as lmin, then the seizure will
not be considered.

• lmin: the minimum seizure duration. When this value
grows, smaller seizures will not be detected, leading to
false negatives. On the other hand, smaller values may
cause false positives by considering short artifacts as
seizures.

• τc: the number of channels in which a seizure must be
present in order to be considered a seizure. Increasing
this value will reduce the number of detected seizures,
with the risk of incurring in false negatives.

Many of these parameters establish a tradeoff between false
positives and false negatives. For this reason, it is interesting
to search for a combination which increase the detection
accuracy, for which we will use genetic algorithms.

B. Encoding

The genetic algorithm’s chromosome comprises a binary
string with Gray encoding [41], which is convenient as small
changes in the genotype are translated into small changes in
the phenotype. The chromosome has 41 bits, which encodes
the seizure detection parameters as follows:

• flo is represented using 6 bits, thus flo ∈ [0, 63] Hz.
• fhi is represented using 6 bits and the resulting value is

subtracted from 256 (which is the frequency of the EEG
signals in this work), thus fhi ∈ [193, 256] Hz.

• Wfg is represented using 4 bits, and the parameter value
is computed as 0.5 + x/2, where x is the decimal
translation of the 4-bit Gray string; thus Wfg ∈ [0.5, 8] s
with a step of 0.5 s.

• Wbg is represented using 5 bits, and the parameter value
is computed as 60∗ (1 + x), thus Wbg ∈ [1, 32] min with
a step of 1 min.

• τe is represented using 6 bits, and the parameter value is
computed as 100 − x/10, thus τe ∈ [93.7, 100] % with
a step of 0.1 %. In a preliminary analysis, we realized
that values lower than ∼ 94 % significantly increased the
number of false positives.

• d is represented using 5 bits, and the parameter value is
computed as 1 + x, thus d ∈ [1, 32] s with a step of 1 s.

• lmin is represented using 5 bits, and the parameter value
is computed as 1 + x, thus lmin ∈ [1, 32] s with a step
of 1 s.

• τc is represented using 4 bits, and the parameter value is
computed as (1 + x) /16, thus τc ∈ [1/16, 1] % with a
step of 1/16 %.

C. Genetic Operators

The implemented genetic algorithm evolves a population
of P individual, and carries out a tournament of size t as
the selection operator, single-point crossover using a random
point as the reproduction operator and random bit flipping as
the mutation operator with a probability of rm. Elitism of 1
individual is introduced to keep the best individual found at
each generation in the next population.
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D. Fitness Function

When describing the fitness function, it is important to first
explain which is the goal to be optimized. It is clear that we
want to improve the detection accuracy, but this accuracy can
be explained with two different objectives.

In the first place, we want to reduce as much as possible
the false positives (FP ) and the false negatives (FN ). In
this work, we have not prioritized false positives over false
negatives, as in that case we could end up with many false
positives resulting from detecting noise or artifacts as seizures.

In the second place, given the same number of FP+FN we
want to increase the boundaries accuracy, i.e., that the detected
seizure onset and ending are as accurate as possible compared
with the actual seizure.

To compute the fitness function, we need two sets: the set of
real seizures and the set of detected seizures. We will establish
a mapping between those, where two seizures will match if
they overlap. Then, unmatched seizures will be counted as
false positives (if they are detected but not real) or false
negatives (if they are real but not detected).

For matched seizures, the boundaries error is computed as
e =

∑
(|ro − do|+ |re − de|), where ro, do, re and de are

the real and detected onsets and endings respectively.
Finally, the fitness function for the genetic algorithm, which

must be minimized, is described in Equation 2. The multiplier
104 is defined as a large constant factor in order to give more
importance to the false positives and false negatives over the
boundaries error.

f = 104 × (FP + FN) + e (2)

A perfect fitness score would be that of f = 0, meaning that
there are no false positives or false negatives and the matching
between the detected seizures and real ones is perfect.

VI. EVALUATION

After implementing the seizure detection algorithm and
optimizing its parameters, we have carried out experiments
to evaluate the detection accuracy obtained by using it. In this
section we describe the data set used, the experimental setup
and the results obtained, discussing and comparing them with
other works in the literature.

A. Data

In this paper we have used the CHB-MIT Scalp EEG
Database [42] available for free in PhysioNet [43]. This
database comprises EEG recordings from 22 pediatric subjects
(5 males aged from 3 to 22 and 17 females aged 1.5 to 19)
suffering from intractable seizures, collected at the Children’s
Hospital of Boston. These recordings were performed days
after subjects stopped the intake of anti-seizure medication, in
order to check their adequacy for surgical intervention.

There is a total of 24 cases, comprising a total of 664
recordings stored as EDF (European Data Format) files, from
which 129 contain at least one seizure. Most of them contain
23 EEG signals, yet some might have a few more. Recording

TABLE I: Results of the seizure detection algorithm: true
positives, false negatives and false positives for each patient,
along with total records duration per patient

Patient TP FN FP Hours Patient TP FN FP Hours
chb 01 7 0 0 40.55 chb 13 0 9 0 33.00
chb 02 1 1 1 35.27 chb 14 0 7 0 26.00
chb 03 4 3 0 38.00 chb 15 2 18 1 40.01
chb 04 4 3 0 38.00 chb 16 0 10 2 19.00
chb 05 5 0 1 39.00 chb 17 2 1 1 21.01
chb 06 0 9 7 66.74 chb 18 2 3 4 35.63
chb 07 2 0 2 67.05 chb 19 1 1 0 29.93
chb 08 2 3 0 20.01 chb 20 2 6 2 27.60
chb 09 3 0 8 67.87 chb 21 0 4 0 32.83
chb 10 4 2 2 50.02 chb 22 0 3 0 31.00
chb 11 0 2 0 34.79 chb 23 4 3 0 26.56
chb 12 0 33 1 23.69 chb 24 1 14 0 22.00

was performed with a sample frequency of 256 Hz and with
16-bit resolution.

Since we want to learn a suitable set of parameters for
the proposed energy-based seizure detection algorithm, in this
evaluation we will use the first three cases as the training
set. The recordings belonging to these cases will be used
for fitness computation. The seizure detection performance
will be evaluated over the remaining 21 cases. Testing the
performance over a test set different from the training set is a
common approach for solving machine learning problems, in
order to avoid biased results from overfitting the training data.

B. Experimental Setup

The genetic algorithm was run with the next setup: the
population size was P = 100, the tournament size was t = 3
and the mutation rate was set to rm = 2%. The stop condition
was set when the GA best individual did not change over 50
generations.

To speedup the fitness computation, Apache Spark [44] was
used. The process was parallelized to run in one physical
server with 8 CPU cores, with the recording being the unit
of parallelism.

C. Results and Discussion

After evolving the parameters, the genetic algorithm has
found the next best combination: flo = 5 Hz, fhi = 201 Hz,
Wfg = 3 s, Wbg = 12 min, τe = 95.1 %, d = 6 s, lmin = 22
s, and τc = 50 %.

Some of these parameters are quite interesting. For instance,
by removing the frequency band under 5 Hz (delta rhythm),
we are ignoring those frequencies; which is consistent with the
medical knowledge in the literature stating that seizures rarely
occur during deep sleep. Also, we will be considering only
seizures longer than 22 seconds: while there are some seizures
shorter than this threshold, most conform to this condition.

The results of the seizure detection algorithm for each
patient are shown in table I. In order to compute the false
positive and false negative rates per hour, the table also
displays the total patient’s recording duration of the EEG
signal. It can be seen how the detection algorithm performance
largely depends on the patient. For instance, in some patients
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the detection accuracy is perfect, having few or none false
positives, such as for patients 1, 5 or 7. In contrast, some
patients are yielding very low performance: it is remarkable
how for patients 6, 12, 15 or 16 no seizures are detected at
all, despite the patient suffering from more that 10 seizures
in all cases. Besides, the method is detecting very few false
positives, with an average of 0.39 per 24 hours, which is better
than most of the works in the state of the art.

A closer look at these results may shed some light towards
finding the issue: energy-based seizure detection is not a good
approach when the patient is having many seizures in a short
period of time. This would happen because, given that seizures
are the norm rather than the exception in theses cases (with up
to 33 episodes in less than 24 hours), the background window
is affected by this high energy, blurring the distinction between
background and foreground.

There are different potential solutions for tackling this
problem. First, the training patients did not have this problem,
as seizures occur less often than in most of the problematic
patients. Then, incorporating a more diverse set of patients to
the training set might lead to a more refined configuration of
parameters, better fitting all patients with less extreme cases.
This makes sense as, because of how the background and
foreground windows are affected when seizures occur with
high likelihood, a different value for some parameters such as
the energy threshold may have a big impact in the results.

Another possible solution would be to change the fitness
function to give more importance to false negatives than false
positives. This way, we would increase sensitivity at the cost
of decreasing specificity. This is an acceptable tradeoff, as
increasing the detection accuracy shall be the first concern.

Finally, another solution could be to learn different param-
eters for different ‘types of patients’. In this approach, we
can first cluster patients so that similar ones are grouped
together, obtaining different groups. Then, a training set is
defined as a random subset within each of these groups, and
the genetic algorithm is used to optimize the parameters for
each of these groups. This, however, imposes an additional
requirement since a metric for establishing the similarity of
patients must be defined, this being a critical step for success.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have presented an approach for energy-
based seizure detection using EEG signals, whose parameters
have been optimized using genetic algorithms.

To start with, we have explored how seizures affect the
energy of EEG signals, showing that a significantly higher
energy is achieved during a seizure, which contrasts with
a long-term window of the signal, which we identify as
the background. This fact suggests that energy can be used
for automatic seizure detection, and an algorithm has been
developed which compares two windows, a short foreground
with a much larger background, in order to detect a seizure
in the foreground based on the difference of energy between
both windows.

However, this algorithm has eight parameters whose values
are difficult to estimate by hand, and there are no medical rule-
of-thumb for assigning a value to all of them. For this reason,
we have decided to encode all these parameters in a binary
chromosome with Gray encoding so that genetic algorithms
can evolve the individuals, eventually achieving a parameters
setup which is suitable for proper seizure detection.

After evolving the seizure detection parameters, the algo-
rithm is evaluated over the CHB-MIT Scalp EEG Database, a
public data set available in PhysioNet comprising 24 pediatric
patients. Results show that the algorithm performance is very
diverse, ranging from perfect accuracies in some patients to no
seizures detected at all for others. In some cases, poor results
can be explained as a result of seizures being the norm rather
than the exception, blurring the energy boundaries between
‘normal’ state and seizures. On the other hand, the number
of false positives is very small, around 0.39 per 24 hours in
average, less than most state-of-the-art works.

These results suggest that energy-based seizure detection
may not be adequate for certain patients. Still, some potential
solutions are described in the paper, which are left for future
work. These include including a more diverse set of patients
in the training set, learning different parameters for different
groups of patients (after a preliminary clustering stage) or
giving a higher weight to false negatives over false positives
in the fitness function.

Additional future work to extend this research would be to
use evolutionary strategies to evolve the algorithm parameters,
encoding them directly as a vector of real values. More
interestingly, multiobjective evolutionary algorithms could be
used to optimize different objectives. These objectives could
be, in order of importance: increasing the accuracy (thus
reducing false negatives), reducing false positives and reducing
onset errors. Exploring the Pareto front could enable to decide
on a tradeoff between the first two objectives. In either case,
the fitness function used for computing these metrics could
be affected by the suggestions proposed before to improve the
performance of energy-based seizure detection.

Finally, as stated in the paper, there is a significant research
interest in the prediction of seizures before they occur, with
few advances as it turns out to be a difficult medical problem.
Once reliable seizure detection algorithms are achieved, most
research efforts should be aimed towards addressing this prob-
lem, thus making possible prevention and adequate assistance
of seizures that are known to occur some minutes ahead.
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