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Résumé

L’analyse biomécanique de la nage a toujours été confrontée
à des facteurs entravant la prise de mesures dans l’environne-
ment aquatique. Nos connaissances actuelles de la locomo-
tion en natation sont très documentées en raison de l’emploi
de caméras vidéo pour capturer la cinématique du corps.
Néanmoins, des récentes améliorations dans la technologie
par l’utilisation de capteurs inertiels portables et dans le trai-
tement du signal nous offrent une toute nouvelle gamme de
possibilités de mesures qui n’étaient pas réalisables aupara-
vant. L’objectif principal de cet article est de présenter les
systèmes de capteurs inertiels qui sont utilisés dans l’étude de
la biomécanique de natation. Dans ce manuscrit, nous pré-
sentons brièvement les autres technologies existantes utilisées
dans l’analyse de la natation et le besoin d’un outil facile à
utiliser, fiable et abordable. Par la suite, nous présenterons
l’application des capteurs inertiels dans l’estimation des
phases temporelles de la natation et aussi dans l’estimation
des indicateurs de performance. Les résultats des applications
de capteurs inertiels dans les études de natation sont finale-
ment discutés. Nos conclusions préconisent l’utilisation des
capteurs inertiels comme un outil idéal pour les entraîneurs
afin de concevoir un plan d’entraînement personnalisé et
même d’apporter des correctifs à d’éventuelles fautes tech-
niques en natation.

Abstract

The biomechanical analysis of swimming always faced im-
peding factors of measurement in the aquatic environment.
Our current knowledge of swimming locomotion is very
much owing to employing video cameras to capture the body
kinematics. Nevertheless, the recent improvements in wear-
able inertial sensor technology and signal processing tech-
niques offer us a whole new range of measurement setups that
were not realizable beforehand. The principal aim of this pa-
per is to present the inertial sensor based systems that are
used in the study of swimming biomechanics. In this manu-
script we briefly introduce the other existing technologies
used in analysis of swimming and the necessity of having an
easy to use, reliable and affordable system. Then we highlight
the application of inertial sensors in estimation of temporal
phases of swimming and also estimation of performance met-
rics. The perspective of the inertial sensors applications in
the swimming studies is eventually discussed. Our conclud-
ing remarks advocate the potentials of inertial sensors as a
tool for coaches to design the optimal personal training plan
for trainees.
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Introduction

Sport performance can be regarded as the interplay between
morphology, maximal deliverable metabolic power, skill and
race strategy. As sport science is taking more and more im-
portance in the athlete’s preparation, developing the systems
that conform to the necessary measurement setup for exper-
imental studies is crucial. Such a need is more pronounced
by reviewing the shrinking gap between the top records in
swimming. Reviewing the results of men’s 50 meter freestyle
semifinals at the 2012 summer Olympics it can be immedi-
ately noticed that the last ranked swimmer (16th) finished 76
hundredth of second after the first one. In order to unravel the
technical difference in such a neck and neck event, the study
of performance determinants should be upto a fine grained
piece of information. At the same time, the improvement in
accuracy, ergonomy and cost of wearable self-monitoring de-

vices in different on-land sport disciplines broadened the
spectrum of individuals using these devices. Examples are
Nike plus shoe worn sensor (Nike, Beaverton, OR) connected
to an Apple iPod (Apple, Cupertino, CA) (Hanson, Berg,
Deka, Meendering, & Ryan, 2011) and Polar heart rate mon-
itoring belt (Polar Electro, Kempele, Finland) (Buchheit et
al., 2009) for running.

An enhancement in the performance can be expected just
after characterizing and then improving the efficiency of the
motor pattern of the athletes. Sports biomechanics vastly ben-
efited from classical movement analysis measurement sys-
tems such as optical motion capture, force and pressure mea-
surement sensors, global positioning system (GPS) etc.
However, when looking at movement in the water, difficulties
arise rapidly as the water element hinders a straightforward
deployment of those techniques. In consequence, the biome-
chanics of swimming has not been adequately explored.
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The flourishing use of Inertial Measurement Unit (IMU) in
out-of-laboratory studies of the human locomotion (Bergam-
ini et al., 2012; Duc, Salvia, Lubansu, Feipel, & Aminian,
2013; Zeng & Zhao, 2011) suggested it as a powerful meas-
urement system for swimming kinematics investigation. The
aim of this article is to present the evolution in the application
of IMUs in swimming studies used for motor pattern and
performance related metrics assessment. Nevertheless, to re-
alize the shortcomings that foster the application of IMUs, a
review of other existing technologies used in the swimming
biomechanics studies is inevitable.

Standard technologies in assessment
of swimming locomotion

The omnipresent engineered systems to objectify swimmers’
performance are chronometric devices that track the timing
information and average velocity of the swimmers. In 1967,
the Swiss-based watch manufacturer, OMEGA, developed
the first electronic timing system for swimming with an ac-
curacy of 0.01s (Smith, 2009). This new system placed touch
pads at each lane of the pool, calibrated in such a manner that
the incidental water movement could not trigger the pad sen-
sors; the pad was only activated by the touch of the swimmer
at the end of the race. As the length of the pool is known, the
average velocity of swimming can be determined. Yet, it is
not possible to retrieve any quantitative information about the
athlete stroking technique during the course of training or
competition.

Traditionally, quantitative assessment of swimming stroke
has been carried out by analyzing the video sequence of mo-
tion. A big share of our understanding about swimming bio-
mechanics has been formed using this technique especially
as watching the video footage could be self-explanatory.
Camera can be mounted on a trolley system to follow the
swimmer (Seifert, Toussaint, Alberty, Schnitzler, & Chollet,
2010) or it can be fixed to focus on a specific phase e.g. dive
or turning (Puel et al., 2012; Sanders & Psycharakis, 2009).
The portable camera system is generally used for detecting
the temporal descriptors of technique such as beginning and
end of stroke phases (Chollet, Chalies, & Chatard, 2000;
Chollet, Seifert, Leblanc, Boulesteix, & Carter, 2004), though
it is not possible to reconstruct the trajectory of body seg-
ments. In the fixed setup, the 3D coordinates of key points on
the body can be extracted using the Direct Linear Transform
(DLT) method (Abel-Aziz & Karara, 1971). DLT determines
the relationships between the object-space reference frame
and the camera (image) reference frame. This requires a
group of control points whose Cartesian coordinates are al-
ready known. The control points must form a volume called
the control volume (not co-planar). These control points are
typically fixed to a calibration frame (Kwon, Lindley, Sand-
ers, & Hong, 1999) as illustrated in Figure 1. Using a small
calibration frame that cannot well include the space of motion
risks an extrapolation of coordinates and consequently, inac-
curate coordinate computation. The trajectory reconstruction
error for the typically used equipments is less than 1 cm (Cal-
laway, Cobb, & Jones, 2009; Ceccon et al., 2013). Nonethe-
less, the video processing is problematic to be fully automat-
ed and therefore a common drawback of video-based systems
is the manual post processing that needs exorbitant computa-
tion time. Recently a markerless 3D analysis method was pro-
posed (Ceseracciu et al., 2011) based on extraction of swim-

mer’s silhouette that reduces the video processing time. The
application of all video-based methods is severely restricted
by factors such as light refraction in water or bubbles gener-
ated around swimmers body (Callaway, et al., 2009). On top
of that, the limited capture volume of fixed systems can cap-
ture a very limited number of cycles (Fig.1) that probably is
not representative of the variability of motor pattern, the key
to understand individual differences.

Since the ultimate goal of a competitive swimmer is to
travel a given distance within the shortest time, the swim-
ming velocity is the most intuitive index of swimming per-
formance (T. M. Barbosa et al., 2010). Besides, it has been
shown that variation of velocity adds up to the energy needed
to swim a given distance at a constant velocity (Nigg, 1983).
The tethered monitoring systems were devised to measure the
velocity and its variations. Velocity is calculated by measur-
ing the displacement of a nylon line attached to the swimmer
waist. The line is tethered to a poolside shaft-encoder (Just-
ham et al., 2008; Schnitzler, Seifert, Ernwein, & Chollet,
2008). Although instantaneous displacement, velocity and
acceleration in direction of swimming can be monitored, the
device disturbs the swimmer’s technique when the cord
touches swimmer’s legs and measures the velocity only in one
direction. Another shortcoming is the extra force that should
be constantly applied to the swimmer in order to alleviate the
nylon line’s slack during the decelerations of the swimmer
(Tella et al., 2008).

Highest performance in all forms of human locomotion
including swimming, depends on the maximal metabolic
power of the athlete (P. E. Di Prampero, 1986). The maximal
metabolic power in swimming, can be estimated based on the
aerobic, anaerobic lactic and anaerobic alactic energy contri-
butions (Figueiredo, Zamparo, Sousa, Vilas-Boas, & Fer-
nandes, 2011). The aerobic contribution in many studies was
assessed by using Douglas bags or mixing chamber gas ana-
lyzer (Chatard, Collomp, Maglischo, & Maglischo, 1990;
Pendergast, Di Prampero, Craig, & Rennie, 1978). The recent
developments in breath-by-breath cardiorespiratory profiling
allowed collection of gas exchange to calculate the aerobic
contribution using a respiratory snorkel connected to a gas
exchange indirect calorimetry module (T. Barbosa et al.,
2006; P. Di Prampero, Pendergast, & Zamparo, 2011). The
anaerobic lactic part is calculated by taking capillary blood
samples to measure the lactate accumulation in blood (Figue-
iredo, Barbosa, Vilas-Boas, & Fernandes, 2012). The anaer-
obic alactic contribution is the energy produced by splitting
phosphocreatine in the muscles (416 J.kg-1. s-1) and increases
with exercise duration with an empirical time constant of
23.4s (P. Di Prampero, et al., 2011). Keeping in mind that this
framework is the only practical method of measuring the en-
ergy expenditure for the past decade, a big disadvantage is

Figure 1: The calibration frame and reference points in a typical setup for
3D reconstruction of body key points in video-based analysis of swimming
biomechanics. 3 to 4 cycles can be generally captured.
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that the swimmers should modify several aspects of their
technique, e.g. the breathing movement, tumble turning and
underwater gliding are not possible anymore. Another down-
side is that the capillary blood sample collection is relatively
invasive and athletes are usually disinclined to undergo the
test.

The previous paragraphs suggest different areas of further
development with two common characteristic: 1) the system
should be easy-to-use and user-centric signifying that sever-
al athletes can be measured at a time without interfering the
other athletes’ measurements; 2) the measurement capacity
should be ubiquitous to allow assessing the variability of lo-
comotion.

Wearable IMUs for assessment of
swimming technique

The improvements in accuracy, size and cost of Micro-Elec-
tro-Mechanical-Systems (MEMS) introduce the IMUs as a
credible option in the study of sport biomechanics such as
running (Hanson, et al., 2011) and ski jump (Chardonnens,
Favre, Cuendet, Gremion, & Aminian, 2013). IMU can en-
capsulate either of accelerometer, gyroscope and magnetom-
eter. By reviewing the application of IMU-based systems in
the study of swimming biomechanics, two prominent lines of
developments can be noted: 1) assessment of temporal and
coordinative parameters; 2) estimation of performance relat-
ed parameters.

Assessment of temporal and coordinative descriptors of
swimming stroke

In all the studies using IMU to extract the temporal events of
a swimming cycle, a starting point is that there are common
features in the stroke pattern that give rise to the extraction
of stroke phases from inertial signals. In (Davey, Anderson,
& James, 2008) and (Slawson et al., 2008) a sacrummounted
3D accelerometer was used to automatically extract metrics
such as lap time (based on wall push-off pattern on the accel-
eration signal) and stroke frequency (by detecting the signal
peaks at every cycle). Their result suggested the improvement
on the timing in comparison to the manual recording of the
lap time. An IMU comprising a 3D accelerometer, 2D gyro-
scope and RF transceiver was used in (Chakravorti, Le Sage,
Slawson, Conway, &West, 2013) to detect swimming phases
i.e. glide phase, first stroke initiation and turn initiation in real
time, though they did not provide any data on the system ac-
curacy. The first automatic assessment of kick count and rate
in front crawl was performed in (Fulton, Pyne, & Burkett,
2009) attaching a 3D gyroscope to thigh and shank where
they found a typical error of approximately 4% for both pa-
rameters. SWiSS was a hybrid system composed of a 3D ac-
celerometer on the back of the swimmer’s head and an under-
water camera to visualize the acceleration at each stroke in
offline processing (Khoo, Lee, Senanayake, &Wilson, 2009).
Nevertheless, without knowing the sensor orientation the
gravity component cannot be separated from sensor readings
to determine the movement acceleration.

Since around 90% of propulsive force in front-crawl is
provided by arm strokes (Deschodt, Arsac, & Rouard, 1999),
the investigation of arm stroke motor pattern can be demon-
strative of race strategies and skill level (Alberty, Sidney,
Pelayo, & Toussaint, 2009; Seifert et al., 2010). Using visual

scrutiny of video captured from front crawl, Chollet and
co-workers (Chollet, et al., 2000), divided arm stroke into
five distinct phases: 1) entry 2) catch 3) pull 4) push 5) recov-
ery. Only, during the pull and push phases arm is propulsive.
Therefore, by determining the beginning of pull phase and
end of push phase the propulsive and non-propulsive phases
of arm action can be determined. By calculating the lag time
between the arms propulsive phases (Chollet, et al., 2000)
quantified inter-arm coordination called the index of coordi-
nation (IdC). Similarly in breaststroke, a complete cycle
of the arm and leg action can be divided into three main
phases i.e. glide, propulsion and recovery (Seifert & Chollet,
2005). The coordination is defined based on the time gap
between propulsive action of legs and arms shows the pro-
pulsive discontinuity that is called total time gap (TTG).
Ohgi (Ohgi, 2002) was probably the first who used a wrist-
worn IMU including a 3D accelerometer and a 3D gyroscope
to characterize front crawl and breast stroke arm phases . He
tried to qualitatively discriminate the stroke phases by
matching some features from inertial signals with synchro-
nized video footage of swimming trials. The study did not
provide the statistical result to show how well the suggested
features match the real events based on the video observa-
tion. Lee and co-workers (Lee, Burkett, Thiel, & James,
2011) used a wrist-worn IMU to detect when the arm entered
or exited the water in the front-crawl, yet they simulated the
movement on the swim-bench which considerably alters the
normal swimming kinematics.

A missing point in the abovementioned studies is that in
order to capture the common features in the studied popula-
tion from IMUs’ signals, the measurements should be insen-
sitive to the placement of the IMUs on the body of different
participants. Dadashi et al. (Dadashi, Crettenand, et al., 2013)
introduced a novel approach for automatic temporal phase
detection and IdC estimation in front crawl using two IMUs
on the forearms and an IMU on the sacrum area (each IMU
composed of a 3D accelerometer, 3D gyroscope as depicted
in Fig. 2a). To guarantee that the method is not sensitive to
the sensor placement, a functional calibration procedure was
performed to align the sensors’ axes to the body anatomical
axes (Fig. 2b). The method was validated by comparison
against a manual video analysis where a difference of
0.2±3.9% between the two methods in assessment of the IdC
was observed. The same group introduced a machine learn-
ing method for automatic detection of the breaststroke phases
by using an IMU worn on the forearm and another IMU on
the shank (Dadashi, Arami, et al., 2013). The method was
validated against video footage and an average correct clas-

Figure 2: (a) The IMU used in (Dadashi, Crettenand, et al., 2013) and its
dimensions. (b) The rotation matrix BAF

IMFR transforms the sensor measurement
to the segment movement that is computed using functional calibration. The
functional calibration is composed of two uni-axial movements that allow
aligning the IMU frame (IMF) to the bone anatomical frame (BAF).
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sification of 93.5% for the arm phases, 94.4% for the leg
stroke phases was obtained.

Assessment of swimming performance metrics

Velocity of swimming is the most intuitive hallmark of the
performance. Other information such as variability of pro-
pulsion, duration of glide and stroke phase and symmetry of
strokes can be acquired from instantaneous velocity monitor-
ing. Besides, the study of other kinematics is a key to explain
the difference of performance between skilled and less-
skilled swimmers. Pansiot et al. (Pansiot, Lo, & Yang, 2010)
used a 3D accelerometers attached to the swimming goggles
strap to extract breathing pattern and stroke symmetry in
front-crawl based on estimation of head orientation (Euler
angles). Bächlin and Tröster (Bächlin & Tröster, 2012) used
four 3D accelerometers on both wrists and upper and lower
back to provide both swimming phase timing e.g. the wall-
push-off, the wall-turns and the wall-strike events as well as
body pitch and roll angle. They also proposed an audio-visual
feedback to the swimmer through LEDs attached to the
swimmer goggles and a piezo-electric beeper, though these
feedbacks were not implemented in their system. Stamm et
al. (Stamm, James, & Thiel, 2013) published a method using
a 3D accelerometer on the lower back to measure the front
crawl velocity. The main pitfall of all these methods that just
use the 3D accelerometer is that the orientation information
in the global frame of movement cannot be retrieved. Indeed,
the projection of gravity on the acceleration in direction of
movement is inseparable from movement acceleration that
leads to serious inaccuracies. The instantaneous velocity of
front-crawl swimming was estimated using a sacrum-worn
IMU comprising a 3D accelerometer and a 3D gyroscope by
applying the strap-down estimation of the IMU orientation
using the angular velocity data (Dadashi, Crettenand, Millet,
& Aminian, 2012). However, estimation of the velocity from
the kinematics equation of motion requires an integration
operation of IMU signals that leads to drifted velocity pat-
terns due to intrinsic sensor noises. The proposed method
attenuates the velocity drift by using a biomechanical con-
straint of front-crawl and prior knowledge about the pool
length. The method was validated against a tethered reference
system where an RMS error of 11.3 cm/s in instantaneous
velocity estimation was observed that is in the range of the
tethered system precision. Instantaneous velocity pattern can
be used by coaches for subject-tailored training design. For
instance, the velocity of the wall push-off exit, the velocity at
first stroke initiation and also travelled distance at first stroke
initiation can be calculated and then can be optimized as a
race strategy for sprint events during training sessions
(Fig. 3). Besides, the velocity variation around the average
velocity can be assessed, that is an important classical deter-
minant of swimming energy cost (Vilas-Boas, Fernandes, &
Barbosa, 2010).

However, using the pool length for the velocity pattern off-
set correction restricts the application of the method to the
full lap indoor conditions. A Gaussian regression framework
in (Dadashi, Millet, & Aminian, 2013) was used to estimate
the average cycle velocity of the front-crawl using a single
sacrum worn IMU. The RMS error of the proposed system
was 9.0 cm/s when compared with a commercial tethered
reference. This system does not have limited capture volume
and can be used even in open water. Potentially, once the
model parameters are learnt, the model can be implemented

on a microprocessor for real-time velocity estimation. Re-
al-time monitoring of cycle velocity can be effectively used
to detect velocity anomaly as a sign of adverse condition that
is a paramount to improve open-water safety.

Future perspective of IMUs
in swimming biomechanics studies

By employing the wearable IMUs as explained in previous
sections the study of technique variability becomes possible.
In an attempt to sketch the future IMU-based developments
for the study of swimming, two main research lines should
be further investigated.

Firstly, skill progression can be effectively monitored
through the study of both temporal and spatial inter-segmen-
tal coordination. Using underwater cameras, Seifert and
co-workers (Seifert, Leblanc, Chollet, & Delignières, 2010)
showed the application of continuous relative phase (CRP) to
assess the inter-segmental coupling for evaluation of swim-
ming technique. Although the recent works can pervasively
track the temporal coordination (Dadashi, Arami, et al., 2013;
Dadashi, Crettenand, et al., 2013), more developments in or-
der to estimate inter-segmental kinematics are crucial. Esti-
mation of inter-segmental angles using gyroscope signals
suffers from integration drift. By, using movement constraints
and/or complementary sensors like magnetometer in IMU
this problem can be remedied.

Secondly, the estimation of energy expenditure using wear-
able IMU for different activities on-land has attracted sever-
al groups in the past decade (Sabatini, Martelloni, Scapellato,
& Cavallo, 2004; Vathsangam, Emken, Schroeder,
Spruijt-Metz, & Sukhatme, 2011). A recent work by our group
showed the practicality of using wearable IMUs for the esti-
mation of energy expenditure in front crawl (Dadashi, Millet,
Crettenand, & Aminian, 2013). Three IMUs worn on the
forearms and sacrum was used to extract IdC, velocity and
velocity variability metrics to estimate the energy expendi-
ture. The result was compared against the energy expenditure
calculated based on using K4b2 telemetric gas exchange sys-
tem (Cosmed, Italy) and taking blood lactate samples. The
high relative precision of 9.7% is comparable to application
of IMU for jogging and brisk walking (Panagiota, Layal, &
Stefan, 2012). Yet, considering the contribution of leg kicks

Figure 3: A typical instantaneous velocity profile provided by method in
(Dadashi, et al., 2012). Different parameters extracted from the curve can
be used to pinpoint the technical mistakes of the swimmer.
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to the energy expenditure can improve the results. Moreover,
the methodology should be modified for other strokes.

Conclusion

The technical developments for assessment of swimming bi-
omechanics are either too rudimentary or too complicated to
deal with for a pervasive measurement of the athlete kine-
matics. The setup time, capturing volume, data processing
time, resolution of measurement and number of swimmers
that can be monitored at a time are the most critical problems
that we face using the standard measurement systems in the
pools. Wearable IMUs offer a user-centric and accurate solu-
tion to estimate temporal, coordinative and performance re-
lated parameters in swimming. Ensemble estimation of en-
ergy expenditure, coordination and velocity of the swimmer
using wearable IMUs offers a convenient package to monitor
the variability and also degradation of technique due to fa-
tigue.

The bottom line is that wearable measurement systems are
targeted to aid the coaches in designing an optimal personal
training plan for athletes to improve their performance. More
efficacious way to assist the coach intuition is designing an
interface to superpose the parameters extracted from weara-
ble IMU(s) (details of technique at stroke resolution) on the
video recordings of the training sessions for a fast and com-
prehensible visualization.
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