
Physica C 503 (2014) 136–139
Contents lists available at ScienceDirect

Physica C

journal homepage: www.elsevier .com/locate /physc
Extension of the Ginzburg–Landau approach for ultracold Fermi gases
below a critical temperature q
http://dx.doi.org/10.1016/j.physc.2014.03.030
0921-4534/� 2014 Elsevier B.V. All rights reserved.

q This work was presented at the 8th International Conference ‘‘Vortex Matter in
Nanostructured Superconductors’’, September 12–26, 2013, Rhodes, Greece.
⇑ Corresponding author. Tel.: +32 3 2652468.

E-mail addresses: sergei.klimin@ua.ac.be (S.N. Klimin), jacques.tempere@
uantwerpen.be (J. Tempere).
S.N. Klimin a,⇑, J. Tempere a,b, J.T. Devreese a

a Theorie van Kwantumsystemen en Complexe Systemen (TQC), Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
b Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 16 December 2013
Accepted 20 March 2014
Available online 16 April 2014

Keywords:
Ginzburg–Landau approach
Vortices
Multiband superfluidity
Ultracold Fermi gases
In the context of superfluid Fermi gases, the Ginzburg–Landau (GL) formalism for the macroscopic wave
function has been successfully extended to the whole temperature range where the superfluid state
exists. After reviewing the formalism, we first investigate the temperature-dependent correction to the
standard GL expansion (which is valid close to Tc). Deviations from the standard GL formalism are par-
ticularly important for the kinetic energy contribution to the GL energy functional, which in turn influ-
ences the healing length of the macroscopic wave function. We apply the formalism to variationally
describe vortices in a strong-coupling Fermi gas in the BEC–BCS crossover regime, in a two-band system.
The healing lengths, derived as variational parameters in the vortex wave function, are shown to exhibit
hidden criticality well below Tc .

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

The Ginzburg–Landau (GL) approach is a powerful tool for the
description of superconductors in the close vicinity of the critical
temperature Tc. Recently, the GL method was re-derived in the
context of superfluid ultracold Fermi gases [1–4]. The GL approach
was also applied to explain the phenomenon of the ‘‘1.5-type’’
superconductivity. However, the validity of the GL approximation
far below Tc is still under discussion [5]. In this connection, much
efforts were undertaken to extend the GL approach to a wide range
of temperatures (see, e.g., Refs. [6–11]).

In Ref. [12], we formulated an extension of the GL theory for a
two-band superfluid fermion system solvable for the whole range
0 < T < Tc assuming slow variation of the order parameter in time
and space, without any assumption on the magnitude of the order
parameter. The theory is mainly focused to the strong-coupling
ultracold atomic Fermi gases in the BCS–BEC crossover. In the pres-
ent work, we briefly review the method and the description of vor-
tices in a two-band system at temperatures T K Tc , where the
standard GL technique is apparently inapplicable.

The formalism developed in Ref. [12] is aimed mainly at the
investigation of localized deviations of the order parameters Wj
from a uniform equilibrium background Dj. These deviations can
be, for example, vortices or solitons [13–19]. A frequently used the-
oretical method to study these localized deviations at tempera-
tures far below Tc is a Bogoliubov–deGennes (BdG) equation set.
Re-formulations of the BdG method for ultracold atoms can be
found, e.g., in Refs. [20–23]. The present method can be used as a
complementary tool to the BdG equations and is straightforward
to implement numerically. Moreover, the BdG equations are
restricted to the mean-field approach, while the present method
can be used beyond the mean-field approximation accounting for
fluctuations about the saddle point.

2. Formalism

The starting point of our treatment is the partition function of a
two-band fermion system in the path-integral representation,
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Fig. 1. The coefficient C calculated, as a function of temperature, within the
extended TDGL formalism (solid curves) and within the TDGL theory of Ref. [24]
(dashed curves).
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accounting for both spin and band imbalance of the fermion system
– through unequal masses mj and chemical potentials lj. The
fermion–fermion interaction U is given by:

U ¼
X
j¼1;2
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�w";1w";1 �w#;2w#;2 þ �w#;1w#;1 �w";2w";2
� �

þ g4
�w";1w";1 �w";2w";2 þ �w#;1w#;1 �w#;2w#;2
� �

: ð4Þ

It contains the terms describing both the intraband s-wave scatter-
ing (with j ¼ 1; 2) and the scattering between fermions in different
bands (with j ¼ 3; 4). Introducing the auxiliary bosonic fields and
performing the Hubbard–Stratonovich transformation we arrive at
an effective bosonic action of the pair fields as described in Ref.
[12]. Subsequently, we make the standard approximation for the
GL approach: we assume that the pair fields slowly vary in time
and space. The gradient expansion of the pair fields leads to the
long-wavelength approximation for the effective bosonic action.
This yields the following GL-like free energy
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Here, the function Xs;j formally coincides with the saddle-point
thermodynamic potential for the imbalanced Fermi gas,
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is the Bogoliubov excitation energy,
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2. However, the order parameter Wj entering this

thermodynamic potential is coordinate-dependent. The parameter
c describes the strength of coupling between two bands. The coef-
ficients Cj; Dj and E j derived in Ref. [12] are
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The functions fpðb; e; fÞ are the Matsubara sums:
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They can be analytically expressed, e.g., using the recurrence
relations:
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In order to analytically compare the results of the present
approach with the known GL method near Tc , we use the results
of Ref. [24], which represents the limiting case of the present
approach when T ! Tc (for a one-band system and without imbal-
ance). For temperatures near Tc , the order parameter is small. Thus
the coordinate-dependent thermodynamic potential Xs;j is
expanded in powers of Wj

�� ��2 up to the quartic order, and the coef-
ficients Cj; Dj and E j are kept for Wj ¼ 0. In this case, the GL-like
free energy (5) is reduced to the TDGL free energy of Ref. [24],
except for the coefficient D, which appears to be real in the present
approach. The reason for this difference consists in the following.
The imaginary part in D appears in Ref. [24] when the gradient
expansion is performed at W ¼ 0. On the contrary we perform
the summations of the whole series in powers of the order param-
eter before taking the limit T ! Tc , indicating therefore that the
appearance of an imaginary part of D depends on a sequence of
the limits W! 0 and T ! Tc .
3. Results

First, we illustrate a difference of the temperature behavior of
the coefficients of the GL-like free energy (5) compared to the coef-
ficients of the TDGL equation of Ref. [24].

In Fig. 1, the coefficient C is plotted as a function of temperature
for several values of the inverse scattering length 1=as and
compared with the coefficient c of Ref. [24]. Both coefficients
analytically tend to the same values when T ! Tc . The temperature
behavior of the coefficient C drastically differs from that for the
corresponding coefficient c within the GL approach [24]. In the
whole range of the BCS–BEC crossover, the coefficient C only
slightly varies when T goes from Tc to zero. When increasing the
inverse scattering length, the range of temperatures, where C and
c are rather close to each other, gradually broadens. In the molec-
ular (BEC) regime, both solutions tend to one and the same limit for
all T 6 Tc . On the contrary, for 1=as � 0, (i, e., at the BCS side and at
unitarity) c rapidly increase when decreasing temperature (except
for the BEC case), and even diverges at T ! 0. These results confirm
the fact that the standard GL approach becomes inapplicable at low
temperatures.

Vortices are studied in the present work using the variational
method. The deviations of the order parameters Wj from a uniform
equilibrium background can be represented through the product of



−

ξ

ξ

ξ
ξ

Fig. 2. (a) Healing lengths for a two-band superfluid fermion system as a function
of temperature for different values of the coupling parameter c and (b) the ratio of
the healing lengths n2=n1.
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a uniform background amplitude Dj � Wbulk
j

��� ��� with the amplitude
modulation function fjðr; sÞ and the phase factor eihj r;sð Þ:

Wj ¼ Dj � fj r; sð Þeihj r;sð Þ: ð13Þ

The coefficients Dj; Cj; E j are kept with the bulk values of the order
parameter. Thus the time and space dependence are taken in
leading order through the derivatives. This is in line with the
gradient-expansion approximation which was already kept when
deriving (5).

Further on, we introduce the notations:
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The parameter qðsf Þ
j is the superfluid density, and qðqpÞ

j is the quan-
tum pressure coefficient.

Using (13), we arrive at the following variational GL-like free
energy functional,
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It describes, in principle, not only the stationary states but also the
time-dependent Josephson physics for a two-band system due to
the phase difference h2ðr; sÞ � h1ðr; sÞ.

In the present work, the amplitude modulation function for a
vortex was used in the form

f r; nð Þ ¼ tanh
rffiffiffi
2
p

n

� �
; ð17Þ

with the healing length n. The healing lengths are determined min-
imizing the free energy (16). In Fig. 2a, the healing lengths for a vor-
tex in a two-band system are plotted as a function of temperature
for the inverse scattering lengths (in units of the Fermi wave vector
kF) 1=a1 ¼ 0, 1=a2 ¼ �0:5, and for different values of the coupling
parameter c. The healing length for the ‘‘stronger’’ band, n1, extre-
mely weakly depends on c. The healing length for the ‘‘weaker’’
band, n2, demonstrates the ‘‘hidden criticality’’ discussed in our
manuscript and in Ref. [25]. At zero interband coupling, each of
two subsystems (the ‘‘stronger’’ and ‘‘weaker’’ bands) is character-
ized by its own critical temperature Tc;j and healing length nj, which
tends to infinity at T ! Tc;j. When the Josephson interband coupling
is nonzero but sufficiently weak, we can see a fingerprint of the
phase transition for a ‘‘weaker’’ band as a peak of the healing length
n2 at T � Tc;2.

When comparing the healing lengths for a vortex calculated in
the present work note with those calculated in Ref. [12] using the
model fermion system near a hard wall, we see a qualitative agree-
ment between the healing lengths determined by these two meth-
ods. However, there is some quantitative difference between these
healing lengths.

In Fig. 2b, the ratio n2=n1 is plotted for the same parameters as
in Fig. 1. We can note on a remarkable similarity between these
results and those shown in Fig. 2c of Ref. [25] for a two-band super-
conductor using BdG equations. The ratio n2=n1 starts from a value
n2=n1 > 1 at zero temperature, exhibits a peak near the critical
temperature for a ‘‘weaker’’ band Tc;2, and tends to 1 when
T ! Tc (which is very close to Tc;1).
4. Conclusions

In summary, we re-formulated the path-integral approach for
interacting Fermi gases [24] to the case of a two-band system.
The Hubbard–Stratonovich transformation and the integration
over the fermion fields lead to an effective bosonic action with
Josephson interband coupling. The gradient expansion of the effec-
tive bosonic action results in the GL-like free energy functional in
which the amplitude of the pair field is not a small parameter.
Therefore the obtained free energy represents an extension of the
Ginzburg–Landau formalism to temperatures below Tc . The range
of applicability of the gradient expansion is determined by the
same conditions as for the standard GL approach, where that
expansion is also used. Thus the present extended GL-like method
is valid under the same conditions as the GL approach – but in a
wider temperature range.

As an example, the method has been tested for vortices in a
two-band system of ultracold fermions. It has been shown that
the ‘‘hidden criticality’’ far below Tc , treated previously using the
BdG equations [25] is captured by the extended GL-like approach.
Because of the validity of the present approach at temperatures far
below Tc , it can find a wide spectrum of applications, e.g., for the
analysis of distributions of trapped fermionic atoms, vortices, soli-
tons and other spatially non-uniform phenomena in ultracold
Fermi gases.
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Phys. Rev. B 87 (2013) 134510.
[9] M. Silaev, E. Babaev, Phys. Rev. B 84 (2011) 094515.

[10] E. Babaev, M. Silaev, Phys. Rev. B 86 (2012) 016501.
[11] M. Silaev, E. Babaev, Phys. Rev. B 85 (2012) 134514.
[12] S.N. Klimin, J. Tempere, J.T. Devreese, 2013, (arXiv:1309.1421, in press).
[13] I.S. Aranson, L. Kramer, Rev. Mod. Phys. 74 (2002) 99.
[14] R. Liao, J. Brand, Phys. Rev. A 83 (2011) 041604.
[15] V.V. Konotop, L. Pitaevskii, Phys. Rev. Lett. 93 (2004) 240403.
[16] A. Spuntarelli, L.D. Carr, P. Pieri, G.C. Strinati, New J. Phys. 13 (2011) 035010.
[17] R.G. Scott, F. Dalfovo, L.P. Pitaevskii, S. Stringari, Phys. Rev. Lett. 106 (2011)

185301.
[18] T. Yefsah, A.T. Sommer, M.J.H. Ku, L.W. Cheuk, W. Ji, W.S. Bakr, M.W. Zwierlein,

Nature 499 (2013) 426.
[19] C. Becker, Nature 499 (2013) 413.
[20] P. Pieri, G.C. Strinati, Phys. Rev. Lett. 91 (2003) 030401.
[21] L.O. Baksmaty, H. Lu, C.J. Bolech, H. Pu, New J. Phys. 13 (2011) 055014.
[22] Y. Ohashi, A. Griffin, Phys. Rev. A 72 (2005) 13601.
[23] X.-J. Liu, H. Hu, P.D. Drummond, Phys. Rev. A 75 (2007) 023614.
[24] C.A.R. Sa de Melo, M. Randeria, J.R. Engelbrecht, Phys. Rev. Lett. 71 (1993)

3202.
[25] L. Komendová, Y. Chen, A.A. Shanenko, M.V. Miloševic, F.M. Peeters, Phys. Rev.

Lett. 108 (2012) 207002.

http://refhub.elsevier.com/S0921-4534(14)00105-1/h0010
http://refhub.elsevier.com/S0921-4534(14)00105-1/h0015
http://refhub.elsevier.com/S0921-4534(14)00105-1/h0020
http://refhub.elsevier.com/S0921-4534(14)00105-1/h0025
http://refhub.elsevier.com/S0921-4534(14)00105-1/h0025
http://refhub.elsevier.com/S0921-4534(14)00105-1/h0030
http://refhub.elsevier.com/S0921-4534(14)00105-1/h0035
http://refhub.elsevier.com/S0921-4534(14)00105-1/h0035
http://refhub.elsevier.com/S0921-4534(14)00105-1/h0040
http://refhub.elsevier.com/S0921-4534(14)00105-1/h0040
http://refhub.elsevier.com/S0921-4534(14)00105-1/h0045
http://refhub.elsevier.com/S0921-4534(14)00105-1/h0045
http://refhub.elsevier.com/S0921-4534(14)00105-1/h0050
http://refhub.elsevier.com/S0921-4534(14)00105-1/h0055
http://refhub.elsevier.com/S0921-4534(14)00105-1/h0060
http://refhub.elsevier.com/S0921-4534(14)00105-1/h0065
http://refhub.elsevier.com/S0921-4534(14)00105-1/h0070
http://refhub.elsevier.com/S0921-4534(14)00105-1/h0075
http://refhub.elsevier.com/S0921-4534(14)00105-1/h0080
http://refhub.elsevier.com/S0921-4534(14)00105-1/h0085
http://refhub.elsevier.com/S0921-4534(14)00105-1/h0085
http://refhub.elsevier.com/S0921-4534(14)00105-1/h0090
http://refhub.elsevier.com/S0921-4534(14)00105-1/h0090
http://refhub.elsevier.com/S0921-4534(14)00105-1/h0095
http://refhub.elsevier.com/S0921-4534(14)00105-1/h0100
http://refhub.elsevier.com/S0921-4534(14)00105-1/h0105
http://refhub.elsevier.com/S0921-4534(14)00105-1/h0110
http://refhub.elsevier.com/S0921-4534(14)00105-1/h0115
http://refhub.elsevier.com/S0921-4534(14)00105-1/h0120
http://refhub.elsevier.com/S0921-4534(14)00105-1/h0120
http://refhub.elsevier.com/S0921-4534(14)00105-1/h0125
http://refhub.elsevier.com/S0921-4534(14)00105-1/h0125

	Extension of the Ginzburg–Landau approach for ultracold Fermi gases below a critical temperature
	1 Introduction
	2 Formalism
	3 Results
	4 Conclusions
	Acknowledgments
	References


