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a b s t r a c t

Epilepsy is an electrophysiological disorder of the brain, characterized by recurrent seizures. Electroen-
cephalogram (EEG) is a test that measures and records the electrical activity of the brain, and is widely
used in the detection and analysis of epileptic seizures. However, it is often difficult to identify subtle but
critical changes in the EEG waveform by visual inspection, thus opening up a vast research area for bio-
medical engineers to develop and implement several intelligent algorithms for the identification of such
subtle changes. Moreover, the EEG signals are nonlinear and non-stationary in nature, which contribute
to further complexities related to their manual interpretation and detection of normal and abnormal
(interictal and ictal) activities. Hence, it is necessary to develop a Computer Aided Diagnostic (CAD) sys-
tem to automatically identify the normal and abnormal activities using minimum number of highly dis-
criminating features in classifiers. It has been found that nonlinear features are able to capture the
complex physiological phenomena such as abrupt transitions and chaotic behavior in the EEG signals.
In this review, we discuss various feature extraction methods and the results of different automated epi-
lepsy stage detection techniques in detail. We also briefly present the various open ended challenges that
need to be addressed before a CAD based epilepsy detection system can be set-up in a clinical setting.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Epilepsy is the most common neurological disorder affecting 50
million people world-wide, 85% of which belong to the developing
countries. Around 2.4 million new cases occur every year globally.
At least 50% of the epileptic cases begin at childhood or adoles-
cence [124]. Sudden onset may also be seen in geriatric population
(people above the age of 65) [92]. Epileptic people are two or three
times more likely to die prematurely when compared to a normal
person [124]. Hence, study of epilepsy has always been an utmost
importance in the biomedical field of research.

Epilepsy is a chronic brain disorder, characterized by seizures,
which can affect any person at any age. It is characterized by recur-
rent convulsions over a time-period. The episodes may vary as low
as once in a year to frequent fits occurring several times per day.
Epilepsy and seizure disorders are not the same; in other words
all the seizures are not epileptic fits. Epilepsy is characterized by
unprovoked seizures due the involvement of the central nervous
ll rights reserved.
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system. It is due to the process of ‘epileptogenesis’ [24] where
normal neuronal network abruptly turns into a hyper-excitable
network, affecting mostly the cerebral cortex. It is therefore highly
unpredictable and its risk is much immeasurable. On the other
hand, non-epileptic seizure disorders could be due to several
measurable causes, such as stroke, dementia, head injury, brain
infections, congenital birth defects, birth-related brain injuries,
tumors and other space occupying lesions. The resulting type of
epilepsy is called as secondary or symptomatic epilepsy. For second-
ary epilepsy, preventive measures can be adopted according to the
various causes. It is interesting to note that for more than 60% of
cases, no definite cause can be ascertained. This broader type of
epilepsy is known as idiopathic or primary epilepsy. It is therefore
not preventable, but treatable with antiepileptic medications.

The epileptic seizures occur because of the malfunctioning of
the electrophysiological system of the brain, which causes sudden
excessive electrical discharge in a group of brain cells (i.e. neurons)
present in the cerebral cortex. Involvement of cerebral cortex leads
to abnormalities of motor functions causing jerky (tonic-clonic)
spasms of muscles and joints. The underlying physiology is
the hyper synchronous activity of neurons causing altered and
inappropriate changes in sensory and motor activity. Instead of
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controlled discharge of electrical energy, there is an abrupt and huge
surge of energy by the brain cells causing the epileptic seizures. The
seizures show large variations in properties. A seizure can be seen as
a minute muscle twitch to severe, generalized and prolonged con-
vulsions. Recurrent and suddenly occurring seizures are dangerous
and can lead to life-threatening situations [20]. The characteristics
of the seizure depend on the (i) specific region involved in the brain,
(ii) extent of abnormal electrical discharge, and (iii) its spread.

The human knowledge of the functioning of the brain is still
insufficient to understand the properties of an epileptic brain
[51]. Possible temporary symptoms of epilepsy are loss of mindful-
ness, almost undetectable abnormalities in the movement pattern,
very mild twitching of muscles, disturbances in visual, auditory,
gustatory senses and mood and many others are often beyond
manual recognition. Further, epileptic seizures usually begin and
end spontaneously without any external interference and could re-
main unnoticed. Hence, detecting and measuring epileptic seizures
should be a continuous process, and therefore, involves several
engineering challenges. In Section 1.1, we present the different
methods currently used to detect epilepsy. In Section 1.2, we
briefly discuss on the use of EEG signals for detection of epilepsy
by the identification of various associated EEG activities (pre-ictal,
interictal, and ictal) that occur in and around seizures.

1.1. Methods for detection of epilepsy

The occurrence of a seizure may not always be due to epilepsy
since about 10% of the people in the world have one seizure in their
lifetime. Chemical imbalances like low blood sugar, low oxygen,
abnormal sodium, calcium, and potassium in blood can also cause
seizures. These non-epileptic seizures (also known as pseudosei-
zures, phychogenic or cryptogenic seizures) are episodic events
and not related to epilepsy. However, they are abnormal electrical
activities in the brain. Hence, detecting non-epileptic pseudosei-
zures amidst the plausibility of seizures due to either primary and/
or secondary epilepsies could be very challenging. Clinically speak-
ing, if two or more unprovoked seizures occur, we can suspect that
the cause may be epilepsy. If seizure is due to epilepsy, the detection
of epilepsy at its onset is very beneficial for initiating early treatment
with antiepileptics for improving the quality of life and safety of epi-
leptic people. It is the unpredictability of the seizures that mainly
causes physical hazards, due to accidents, such as drowning (if it oc-
curs while swimming or bathing), burns, and head injury.

Research studies about the mechanisms behind seizures mainly
concentrate on studying neural components like neurotransmitter
receptors or specific ionophores (protein structure which regulate
the flow of ions across cell membrane). Osorio et al. [76] reported
that it is possible to detect epileptic seizure by studying seizure
intensity. There was a detection latency of 2.1 s. The authors later
developed a real-time epilepsy detection and intervention scheme
by direct electrical stimulation of the brain [77]. Niederhoefer et al.
[72] developed algorithms to detect the onset of epileptic seizures
using informative measures extracted from raw data. These epi-
lepsy detection methods employ biological parameters for the
analysis of seizure characteristics. However, the better approach
is to analyze the patterns of the Electroencephalogram (EEG) sig-
nals because they are a direct reflection of the electrophysiological
conditions of the brain at a given timestamp. Clinical diagnosis of
epilepsy requires detailed history and also neurological examina-
tions along with blood tests and sometimes cerebrospinal fluid
tests for checking the chance of associated causes, e.g. biochemical
imbalances, as mentioned before. Imaging techniques like CT
(Computerized Tomography) or MRI (Magnetic Resonance Imag-
ing) scans may be used to check for any structural abnormalities
(such as tumors, abnormal blood vessels, and ischemia) in the
brain, which may be causing seizures that may not be due to epi-
lepsy. However, the most common effective diagnostic method for
the detection of epilepsy is the analysis of EEG signals.

1.2. EEG analysis for epilepsy detection

The EEG directly records the electrical activities of the cerebral
cortex through the electrodes placed on the scalp. It actually
measures the electrical potentials of the dendrites of the neurons
adjacent to cortical surface. Using EEG analysis, Wackermann et al.
[119] did the characterization of sleep phenomena, Stam et al.
[105] studied about Creutzfeldt–Jakob disease, Stam et al. [106]
studied nonlinear changes in encephalopathies, and Schraag et al.
[100] monitored the depth of required anesthesia. Though these
studies are not related to epilepsy, it is evident that many abnormal-
ities related to the improper functioning of the brain can be analyzed
by studying the EEG signals. The characteristics of epileptic seizures
can be studied by the analysis of the recorded EEG signals. EEG sig-
nals recorded just before and during seizures contain patterns which
are different from those in a normal EEG signal recorded from a nor-
mal non-epileptic person. EEG analysis can not only differentiate
epileptic from normal data, but also distinguish these different
abnormal stages/patterns of a seizure, such as pre-ictal (EEG
changes preceding a seizure) and ictal (EEG changes during a sei-
zure). In cases where patients have more than one seizure within a
small duration, there is a stage called the interictal stage. In the com-
mon mode of epilepsy, there is a single episode of seizure. In short,
pre-ictal is the stage before seizure, while interictal is the stage be-
tween two consecutive seizures. Pre-ictal or interictal EEG samples
are taken from an epilepsy patient when there is no seizure. The ictal
EEG data are recorded during the seizure. The electrophysiological
behavior of the brain exhibits change during the shift from normal
stage to pre-ictal and epileptic seizure stages. The dynamics of
pre-ictal transition are highly complex. The number of involved neu-
rons is variable ranging from tens to thousands. Even for the same
patient, the duration of transition from pre-ictal to ictal stage and
the participating cortical regions vary for each seizure [49,50].
During the pre-ictal stage, there is a reduction in the connectivity
of neurons in the epileptogenic zone. The epileptic neurons then
get isolated from the circuit [80]. These changes bring variations in
the EEG signal. The isolated epileptic neurons turn idle and eventu-
ally lose the inhibitory control from neighborhood. This results in
seizure, due to sudden increase in neural discharge. This further in-
creases the variability in the EEG signal. An increase in entropy is
associated with the occurrence of such abnormal electrical activity
[102,1,22]. Sleigh et al. [102] showed that the changes in the entropy
of EEG measures changes in the entropy occurring within the cere-
bral cortex of the brain.

During epilepsy, less number of independent functions and
processes are active in the brain. Epileptic seizures can be clearly
distinguished from non-epileptic ones by observing the EEG
recordings as non-epileptic seizures have normal EEG readings.
In order to achieve this goal, an efficient method of EEG signal anal-
ysis, which can provide maximum information about the condition
of the brain, has to be adopted. It is possible for experienced neu-
rophysiologists to detect epilepsy by visually scanning the EEG sig-
nals for pre-ictal, interictal and ictal activities. However, for more
objective analysis and reproducible results, it is always advanta-
geous to detect these activities from the EEG signals through some
computer methods by extracting relevant features from the sig-
nals. Adeli et al. [129] launched the field of automated EEG-based
diagnosis by analyzing and characterizing epileptiform discharges
using wavelet transform. Their group not only proposed automated
diagnosis systems for epilepsy [33–36] but also for other neurolog-
ical [130] as well as psychiatric disorders such as Attention Deficit
Hyperactivity Disorder [131–133], Autism Spectrum Disorder
[134,135], AD [136–139], and Major Depressive Disorder [140,
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141]. The scope of this review is to elaborate on the variety of Com-
puter Aided Diagnostic (CAD) techniques that have been developed
for epilepsy detection using EEG signals. Some studies focus on
detecting epilepsy by classifying only the normal and ictal stages
(two-class problem), and few other studies present methods to clas-
sify all three stages, namely, normal, interictal, and ictal (three-class
problem). After confirming that the seizure is due to epilepsy, the
next step is to detect and possibly predict the onset [47]. The onset
of epileptic seizures can be predicted by detecting pre-ictal EEG sig-
nals. Again, such a prediction system requires automated classifica-
tion of EEG segments in real time into three classes along with post-
processing, taking into account the previous classification data and
history. Another approach for prediction is detection of any EEG
characteristics differing from that of the normal. This may be an indi-
cation that the pre-ictal state is being approached [22]. Thus, for
both epilepsy detection and seizure onset prediction, there is a need
for an automated system that can clearly differentiate normal, pre-
ictal (or interictal) and epileptic stages. The recorded EEG signal is
the input for such an automated system and the output is the classi-
fication label of whether the segment belongs to a normal, pre-ictal
(or interictal) or epileptic stage. The two primary considerations for
this detection system are the type of features to be extracted from
the EEG input signal (feature extraction techniques) and the type
of analysis techniques to be applied on these extracted features to
detect the stage (classification techniques). In the forthcoming sec-
tions of this paper, we review these two techniques in detail and also
present the results of various studies conducted in this area.

The main EEG analysis methods are time domain, frequency do-
main, time–frequency domain, and nonlinear methods. The function-
ing of the brain at the microscopic level, i.e. the interplay of neurons, is
extremely nonlinear in nature since the dynamic behavior of individ-
ual neurons is decided by threshold and saturation phenomena [59].
Hence, instead of the traditional linear methods like time and fre-
quency domain methods, nonlinear dynamics analysis methods
may better suit for the analysis of the complex and nonlinear EEG
waveform recorded from the brain. This paper is organized as follows.
In Section 2.1, we describe the time domain, frequency domain and
the time–frequency/wavelet domain techniques used for EEG analy-
sis and for feature extraction from the EEG segments. In the same sec-
tion, we elaborate on the nonlinear features that have commonly
been used to quantify the normal, interictal and ictal segments of
the recorded EEG signal. We discuss on the need for surrogate data
analysis in Section 2.2, and the need for nonlinear analysis of EEG sig-
nals in Section 2.3. In Section 3, we review the findings of several stud-
ies that use the techniques described in Section 2.1 to classify normal
and abnormal (interictal and ictal) activities in the EEG signals. We
also briefly present the various open ended challenges that need to
be addressed before a CAD based epilepsy detection system can be
set-up in a clinical setting. We conclude the paper in Section 4.

2. Methods

2.1. EEG analysis methods

During the seventies, EEG analysis implied interpreting the EEG
waveform using descriptive and heuristic methods [21]. In time,
various methods have been used to analyze several subtle changes
in the EEG signal. Most of the methods fall under four broad cate-
gories: (1) time domain, (2) frequency domain, (3) time–frequency
domain and (4) nonlinear methods.

2.1.1. Time domain methods
The important methods for time domain analysis are linear

prediction and component analysis. Fig. 1 shows the typical EEG
waveforms in time domain belonging to a normal person and an
epilepsy patient in the ictal and interictal states.
2.1.1.1. Linear Prediction (LP). In this method, the output of a linear
system is predicted based on input x(n) and previous outputs
y(n � 1),y(n � 2), . . . ,y(n � p) as shown in the following equation:

ŷðnÞ ¼
Xp

k¼1

aðkÞyðn� kÞ þ
XN

k¼0

bðkÞxðn� kÞ ð1Þ

Here ‘a’ and ‘b’ are called predictor coefficients and ŷðnÞ is the esti-
mate of y(n). From Eq. (1), it is evident that the estimate is equal to a
linear combination of past output values along with past and pres-
ent input values. According to Pradhan and Dutt [89], LP can be used
for the generation, storage, and transmission of EEG waveforms.
Altunay et al. [9] utilized linear prediction error energy method to
detect epileptic seizures in EEG records.

2.1.1.2. Component Analysis. Component analysis is an unsuper-
vised method to map the data set to a feature set. Principal, linear,
and independent component analyses are the methods of compo-
nent analysis used in epilepsy diagnosis [26].
2.1.1.2.1. Principal Component Analysis (PCA). PCA transforms the
high-dimensional data to a low-dimensional orthogonal feature
(Eigenvector) subspace so that the mapping is optimum in a
sum-squared error sense. Each of the orthogonal features is called
a ‘principal component’. The most significant variance in the data
set is captured by the first principal component. The next signifi-
cant variance is captured by the second principal component.
The second principal component is directionally perpendicular to
the first principal component. The value of the dimension of the
feature space depends on the distribution of data points in the data
set. In PCA, the extracted feature subspace is linear. Ghosh-Dasti-
dar et al. [35], Subasi and Gursoy [110] and Acharya et al. [7] used
PCA for the classification of epileptic EEG signals.
2.1.1.2.2. Independent Component Analysis (ICA). ICA assumes that
each measured signal is a linear combination of independent sig-
nals. It decomposes multidimensional data vector linearly to statis-
tically independent components. ICA can be effectively used to
remove artifacts and to decompose EEG recorded signals into dif-
ferent component signals originated from different sources [57].
In the context of epilepsy detection, ICA is used to extract the inde-
pendent subcomponents corresponding to epileptic seizure from
the mixture of EEG signals. The extracted subcomponents are then
used to train classifiers that learn the difference between normal
and epileptic segments. This process is illustrated in Fig. 2. A test
EEG signal can be input into a trained classifier to detect the pres-
ence of any seizure affected segments in it.
2.1.1.2.3. Linear Discriminant Analysis (LDA). Like PCA, LDA is an-
other commonly used technique for the reduction of dimensional-
ity. LDA causes dimensionality reduction by finding a linear
combination of features which can separate two or more classes.
This linear combination can serve as a linear classifier. LDA models
the difference between classes of data. LDA maximizes the ratio of
variance between classes to the variance within class in the data
set. LDA does not change the location of the original data sets,
but provides more separation between classes. Kaplan [61] studied
about the time-varying spectral characteristics of the epileptic EEG
waveform and computed the statistical parameters in time do-
main. Subasi and Gursoy [110] used the time domain methods of
PCA, ICA and LDA to reduce the dimensionality of frequency do-
main parameters for detecting epileptic EEG.

2.1.2. Frequency domain methods
Spectral analysis is a detailed examination of information con-

tained in the frequency domain by using statistical and Fourier
Transform (FT) methods. Spectral estimation methods can be cate-
gorized as (1) the classical or non-parametric method and (2) the
non-classical or parametric approach.
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Fig. 1. Typical EEG signals (a) normal, (b) interictal and (c) ictal.
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2.1.2.1. Non-parametric method. In this method, autocorrelation is
initially estimated from a time sequenced data set. The next step
is power spectrum estimation by applying FT to the autocorrela-
tion sequence. The Welch method is commonly used to estimate
the power spectrum of a time sequence [122]. In the Welch meth-
od, a data window is applied to each segment of the time sequence
to divide the time sequence into successive blocks, and the period-
ogram is formed for each block, and finally the periodograms are
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Fig. 2. Illustration of use of ICA in epilepsy detection.
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averaged over time to determine the estimate of the Power Spec-
tral Density (PSD). Let the pth windowed, zero-padded frame from
the input signal x be denoted by

xpðnÞ ffi wðnÞxðnþ pRÞ; n ¼ 0;1; . . . ;M � 1; p ¼ 0;1; . . . ;K ð2Þ

where R is the window hop size and K is the number of available
frames. The periodogram of the pth block is given by

Pxp ;MðwkÞ ¼
1
M
jFFTN;kðxpÞj2 ffi

1
M

XN�1

n¼0

xpðnÞe�j2pnk=N

�����
�����

2

ð3Þ

The Welch estimate of PSD (average of periodograms across
time) is given by

PSbDðwkÞ ffi
1
K

XK�1

p¼0

Pxp ;MðwkÞ ð4Þ

Polat and Gunes [86] used the Welch method for developing a
system for two-class epilepsy detection.

2.1.2.2. Parametric method. The non-parametric method has the
disadvantage of spectral leakage due to the use of windows. This
is overcome by parametric or model-based power spectrum esti-
mation methods. The parametric method also provides better fre-
quency resolution compared to non-parametric. In this method,
Fig. 3. PSD estimation using Burgs method for normal, interictal and ictal signals
shown in Fig. 1.
the signal is assumed to be a stationary random process. The signal
is then modeled as the output of a filter for which white noise is
the input. Then, the corresponding filter parameters are found
out. There are many methods to calculate the filter parameters
according to the model of the filter used. The model of the filter
and hence the method used depends on the presence and absence
of poles in the z-domain. The Moving Average (MA) model, the
Auto Regressive (AR) model and the Auto Regressive Moving Aver-
age (ARMA) model are the three available models. Given a time
series data xt, these three models can be used to predict the future
values in the series. The AR model, which can be viewed as the out-
put of an all-pole infinite impulse response filter whose input is
white noise, can be defined as

xt ¼ c þ
Xa

i¼1

qixt�i þ et ð5Þ

where c is a constant, et is white noise, and q1, . . . ,qa are the param-
eters of the model. ARMA model, on the other hand, refers to a mod-
el with a autoregressive terms and b moving-average terms.

xt ¼ c þ
Xa

i¼1

qixt�i þ et þ
Xb

i¼1

lixt�i ð6Þ

where c is a constant, et is white noise, q1, . . . ,qa are the parameters
of the AR model, and l1, . . . ,lb are the parameters of the MA model.
Burg’s method is an efficient algorithm to obtain a stable AR model
[115]. The AR model parameters are obtained by the minimization
of both forward and backward prediction errors and the estimation
of the reflection coefficient. Fig. 3 shows the PSD estimation using
Burgs method for normal, interictal and ictal segments shown in
Fig. 1.
2.1.3. Time–frequency domain methods
2.1.3.1. Wavelet transform. A wavelet is a small wave of finite dura-
tion and finite energy which is correlated with the EEG signal to
obtain the wavelet coefficients [118]. Initially the mother wavelet
(a reference wavelet) is shifted continually along the time scale to
obtain a set of coefficients at all instants of time. The wavelet coef-
ficients represent the signal in both the time and frequency do-
mains. Next the wavelet is dilated for a different width and then
normalized so as to contain the same amount of energy as the
mother wavelet. Then the first process of shifting this dilated
wavelet along the time scale and evaluating the corresponding
set of coefficients is done. Discrete Wavelet Transform (DWT), Con-
tinuous Wavelet Transform (CWT) and Wavelet Packet Decomposi-
tion (WPD) are the three types of wavelet transforms. Jahankhani
et al. [52], Sadati et al. [99], Subasi [109] and Ocak [74] used
DWT in their work for automated detection of epilepsy. Acharya
et al. [3] used WPD for detecting epileptic stages using Higher Or-
der Spectra (HOS) cumulants. WPD is an extension of the DWT. In
the case of DWT, in the first level, the signal is decomposed into
coarse approximation coefficients by filtering it using a low-pass
filter and into detail coefficients by passing it through a high-pass
filter. In the subsequent levels, the decomposition is done recur-
sively only on the low pass approximation coefficients obtained
at the previous level. The process is continued for the required
number of levels. However, in the case of WPD, both the detail
and approximation coefficients are decomposed at each level. An
illustration of WPD is given in Fig. 4. A1 depicts the approximation
coefficients obtained at level 1 of decomposition and D1 the detail
coefficients. Similarly, AA2 and DA2 are the approximation and de-
tail coefficients obtained at level 2 by decomposing A1. These
coefficients can be used as features that describe the epileptic
activities.



Fig. 4. Wavelet packet decomposition.
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2.1.3.2. Hilbert–Huang Transform (HHT). The Hilbert–Huang Trans-
form (HHT) is used to decompose a signal into Intrinsic Mode Func-
tions (IMFs) in order to obtain instantaneous frequency data. In the
context of epilepsy detection, Empirical Mode Decomposition
(EMD) is first applied to extract the intrinsic modes in the EEG sig-
nal. Subsequently, Hilbert Transform is applied to every intrinsic
mode to track instantaneous frequencies and amplitudes. Then Hil-
bert weighted frequency is determined which is used to discrimi-
nate between healthy and seizure activities [78]. Empirical Mode
Decomposition (EMD) is a simple, adaptive, nonlinear method
which can provide variability in the given time series [46]. EMD
yields few IMFs, which are amplitude and frequency modulated
(AM and FM) waves. Martis et al. [68] classified normal, interictal
and ictal EEG time series using EMD techniques and reported an
accuracy of 95.3%. We have shown eight IMFs for normal, interictal
and ictal EEG signals in Fig. 5.

2.1.4. Nonlinear method of analysis
Frequency domain methods can capture rhythmic oscillations

in a signal, but are limited by the inability to detect nonlinear cou-
pling and phase locking among harmonics in the same spectrum
[22]. Biological systems can be represented in an effective way
using nonlinear techniques. This is true for EEG signal analysis
too. The various useful and tried nonlinear parameters for the
detection of epilepsy using EEG signals are HOS, Largest Lyapunov
Exponent (LLE), Correlation Dimension (CD), Fractal Dimension
(FD), Hurst Exponent (H), entropies like Approximate Entropy
(ApEn) and Sample Entropy (SampEn), and Recurrence Quantifica-
tion Analysis (RQA). In this section, we briefly describe these
parameters.

2.1.4.1. Higher Order Spectra (HOS). Higher order spectral analysis is
a powerful tool for conducting nonlinear dynamical analysis of
nonlinear, non-stationary and non-Gaussian physiological signals.
HOS analysis can detect nonlinearity, deviations from Gaussianity
and phase relationships between harmonic components of the sig-
nal. HOS are used to analyze signals and extract useful features
which can be used to detect abnormalities. HOS (also called as
polyspectra) is the spectral representation of higher order statis-
tics, i.e. moments and cumulants of third and higher order. It can
measure non-Gaussianity and separate non-Gaussian signal from
an additive mixture of independent non-Gaussian signals and
Gaussian noise using the property that HOS of Gaussian signals
are statistically zero. The high noise immunity provided by HOS
techniques is specifically useful in cases where the signals are cor-
rupted with Gaussian noise. Another advantage is that HOS can
preserve the true phase character of signals. Most of the work done
so far in HOS used the third order statistics named bispectrum B(f1,
f2) which is the third order cumulant generating function. It can
also be defined as the FT of the third order correlation of a signal.
It is given by

Bðf1;f2Þ ¼ E½Xðf1ÞXðf2ÞXðf1 þ f2Þ� ð7Þ

where X(f) is the FT of the signal X(nT), n is an integer index, T is the
sampling interval and E[�] is the expectation operator. The expecta-
tion operator can be omitted for deterministic signals. For deter-
ministic sampled signals, X(f) is the discrete-time FT computed
using Fast Fourier Transform (FFT). From the equation, it can be
seen that bispectrum is a triple product evaluated at two frequen-
cies and their sum frequency. Bispectrum gives the cross correlation
between frequency components in a two-dimensional frequency
plot. The nonlinear interactions between harmonic components of
a signal are thus clearly evident from the bispectrum plot. Bispec-
trum is a function of two frequencies whereas power spectrum is
a function of one frequency variable. Several useful parameters
can be extracted from bispectrum. Some of these derived HOS
parameters are [3]

(a) Normalized bispectral entropy (P1):
P1 ¼

X
n

pn log pn ð8Þ

where

pn ¼
jBðf1; f2ÞjP
XjBðf1; f2Þj

ð9Þ

(b) Normalized bispectral squared entropy (P2):
P2 ¼ �

X
n

qn log qn ð10Þ

where qn ¼ jBðf1 ;f2Þj2P
X
jBðf1 ;f2Þj2

and O is the region where f1 > f2 and f1 + f2 < 1

as shown in Fig. 6. This region is termed as the principal domain or
the non-redundant region for the computation of bispectrum of real
signals.

(c) Mean bispectrum magnitude is
Mave ¼
1
L

X
X

jBðf1; f2Þj ð11Þ
Here L is the number of points within the region in Fig. 6.
(d) The bispectrum phase entropy (Pe)
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Fig. 5. Typical plots of IMFs derived from EMD decomposition (a) normal, (b) interictal and (c) ictal EEG signals shown in Fig. 1.
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Pe ¼
X

n

pðWnÞ log Wn ð12Þ

where

pðWnÞ ¼
1
L

X
X

1ðUðbðf1; f2ÞÞWnÞ ð13Þ
where

Wn ¼ U=� pþ 2pn=N 6 U < �pþ 2pðnþ 1Þ
N

; n ¼ 0;1; ::N � 1
�

ð14Þ

U is the phase angle of bispectrum and 1(�) is the indicator function
which has the value 1 when phase angle U lies within the range of



Fig. 6. Non-redundant region of computation of bispectrum (frequencies shown are
normalized by Nyquist frequency).
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bin Wn in Eq. (14). The phase entropy parameter increases with the
increase of randomness of the process.

Chua et al. [23] and Acharya et al. [3] used HOS parameters for
the automated detection of epilepsy. Fig. 7 shows the bispectrum
(left) and its contour plot (normalized derivative of bispectrum)
(right) for normal (a), interictal (b) and ictal (c) segments shown
in Fig. 1. Fig. 8 shows the bicoherence (left) and its contour plot
(normalized derivative of bispectrum) (right) for normal (a), inter-
ictal (b) and ictal (c) segments shown in Fig. 1. Table 1 shows the
values of P1, P2, and Pe for the signals in Fig. 1. The difference of
these HOS features among the three segments is clearly evident
from both the figure and table.

2.1.4.2. Higher order cumulants. It is very difficult to evaluate the
nonlinear dynamic property of the bio-signals using first and sec-
ond order statistics [73]. Hence, third order cumulant which high-
lights the nonlinear behavior can be used for EEG signals.
Cumulants are a class of HOS features widely used in many appli-
cations for EEG analysis [126,117]. Acharya et al. [3] also used
cumulants for the automated detection of epilepsy.

Suppose {x1,x2,x3, . . . ,xk} denote a k dimensional multivariate
zero mean random process. The first four order moments are [73],

mx
1 ¼ E½xðnÞ� ð15Þ

mx
2ðiÞ ¼ E½xðnÞxðnþ iÞ� ð16Þ

mx
3ði; jÞ ¼ E½xðnÞxðnþ iÞxðnþ jÞ� ð17Þ

mx
4ði; j; kÞ ¼ E½xðnÞxðnþ iÞxðnþ jÞxðnþ kÞ� ð18Þ

where mx
1;m

x
2;m

x
3 and mx

4 are the first four order moments, E[�] is the
expectation operator, i and j are the time lag parameters. The cumu-
lants can be computed as nonlinear combinations of moments [73]
and is given by

Cx
1 ¼ mx

1 ð19Þ
Cx

2 ¼ mx
2ðiÞ ð20Þ

Cx
3 ¼ mx

3ði; jÞ ð21Þ

Cx
4 ¼ mx

4ði; j; kÞ �mx
2ðiÞ �mx

2ðj� kÞ �mx
2ðk� iÞ �mx

2ðkÞmx
2ði� jÞ ð22Þ

where Cx
1;C

x
2; C

x
3 and Cx

4 are the first four order cumulants respectively.
In this work, third order cumulant is used for the analysis of EEG signals.
Fig. 9 shows the third order cumulant plots and its contour plot for typ-
ical normal, interictal and ictal EEG signal shown in Fig. 1.

2.1.4.3. Recurrence Plot (RP) and Recurrence Quantification Analysis
(RQA).
2.1.4.3.1. Recurrence Plot (RP). Recurrence plot, proposed by Eck-
mann [27] is a two-dimensional graphical plot, which displays
the recurrences of states. RP can find out hidden periodicities in a
signal in time domain which are not easily noticeable. It can measure
the non-stationarity of a time-series signal. Recurrence is said to
have occurred when the distance between two states i and j falls be-
low a threshold value e. Let xi be the ith point on the orbit in an m-
dimensional space. Whenever xj is sufficiently close to xi, a dot is
placed at (i, j). The plots are symmetric along the diagonal i = j be-
cause if xi is close to xj, then xj is close to xi. Thus, recurrence plot is
an array of dots in an N � N square. It can also be viewed as an
N � N matrix of black and white dots in time related space. Here
black dot means recurrence has occurred. Acharya et al. [4] used
RP for identifying normal, interictal, and ictal EEG signals. Fig. 10
shows the RPs of normal, interictal and ictal EEG signals of Fig. 1 (tak-
ing 1000 samples). It can be observed that RPs are unique for each
class and rhythmicity increases gradually from Fig. 10a–c.
2.1.4.3.2. Recurrence Quantification Analysis (RQA). RQA measures
the number and duration of recurrences in a dynamical system.
It is used to quantify the Recurrence plot of EEG signal. RQA mea-
sures the non-stationarity and hidden periodicities in a time do-
main signal. For the non-stationary input data signal, RQA gives
parameters which are measures of complexity and nonlinearity.
Webber and Zbilut [121], Zbilut and Webber [127] and Marwan
et al. [69] were the main developers of RQA techniques. Acharya
et al. [4] used RQA features for the three-class classification of
EEG signals for detecting epilepsy. The RQA features used are as
follows:

(a) Mean diagonal line length hLi or Lmean: hLi is an indicator of the
mean prediction time of the system. The inverse of divergence
of the system is measured by this parameter. It is defined as
Lmean ¼
PN

l¼lmin
lPðlÞPN

l¼lmin
PðlÞ

: ð23Þ
(b) Longest diagonal line (Lmax): Lmax is length of the longest
diagonal line in the RP. It is defined as Lmax = max({li;
i = 1, . . . ,Nl}). Here Nl represents the number of diagonal lines
in the recurrence plot.

(c) Longest vertical line Vmax: Vmax is length of the longest vertical
line in RP. It is defined as Vmax = max({vi; i = 1,. . . ,Nv}).

(d) Recurrence Rate (REC): REC indicates the density of recur-
rence points present in a recurrent plot. As described earlier,
a black dot indicates that recurrence has occurred. REC is
defined as
REC ¼ 1
N2

XN

i;j¼1

Ri;j ð24Þ
where Ri,j is the representation of recurrence plot, N is the
number of points Ri,j on the phase space trajectory; it repre-
sents the total number of states considered.

(e) Determinism (DET): DET is the fraction of recurrence points
which form the diagonal line in the RP and is defined asP

DET ¼

N
l¼lmin

lPðlÞPN
i;j¼1Rði; jÞ

ð25Þ
Here P(l) is the frequency distribution of the lengths l of the
diagonal lines (proportion of diagonal lines of length l over
the total diagonal lines). lmin is the length of the minimum
diagonal line. DET measures the predictability and determin-
ism of the system.

(f) Entropy (ENTR): The complexity of the recurrence system is
given by entropy. It is a measure of the average information
contained in the line-segment distribution. It is given by
ENTR ¼ �
XN

‘¼‘min

pð‘Þ ln pð‘Þ ð26Þ



Fig. 7. Plots of bispectrum (left) and its contour (right) for (a) normal (b) interictal (c) ictal signals shown in Fig. 1.
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(g) Laminarity (LAM): LAM is the fraction of recurrence points
which form the vertical lines. It is an indicator of the number
of laminar states in the system.

LAM ¼
PN

v¼vmin
vPðvÞPN

i;j¼1PðvÞ
ð27Þ
Here P(v) is histogram of the length v of the vertical lines.

(h) Trapping time (TT): This is related to the average length of the
vertical lines. It is the average time the system remains in
one state or changes its state very slowly.

(i) Recurrence time of the recurrence plots is calculated as
T(i) = ti+1 � ti where t = 1,2, . . . ,K.



Fig. 8. Plots of bicoherence (left) and its contour (right) for (a) normal, (b) interictal and (c) ictal signals shown in Fig. 1.
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Table 2 shows the results of RQA parameters for normal, inter-
ictal and ictal EEG signals shown in Fig. 1. It is evident that the RQA
parameters are different for the three classes.

2.1.4.4. Approximate Entropy (ApEn). ApEn was proposed by Pincus
[84] and it is a measure of regularity of data. The value of ApEn is
more for more complex or irregular data. An irregular time series
results in a higher non-negative value for ApEn while a regular
and predictable time series signal results in low ApEn value [85].
Let Rm be the embedding space and x(1),x(2), . . . ,x(N) be the N data
points, then ApEn is calculated as

ApEnðm; r;NÞ ¼ 1
N �mþ 1

XN�mþ1

i¼1

log Cm
i ðrÞ �

1
N �m

XN�m

i¼1

log Cmþ1
i ðrÞ

ð28Þ



Table 1
Results of normalized bispectrum entropy1 (P1), normalized bispectrum entropy2
(P2), and phase entropy (Pe) for normal, interictal and ictal EEG signals shown in Fig. 1.

Features Normal Interictal Ictal

P1 0.665 0.510 0.688
P2 0.421 0.207 0.512
Pe 3.578 3.569 3.395
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Fig. 9. Plots of 3rd order cumulent (left) and its contour (right) for
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where
Cm
i ¼

2
NmðNm � 1Þ

XNm

i¼1

XNm

j¼1;j–i

Hðr � kxi � xjkÞ ð29Þ

Kannathal et al. [59] and Acharya et al. [6] used ApEn for dis-
criminating epileptic stages. Table 3 shows the ApEn values for
the normal, interictal, and ictal EEG signals shown in Fig. 1.
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(a) normal, (b) interictal and (c) ictal signals shown in Fig. 1.
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Fig. 10. Results of recurrence plots of (a) normal, (b) interictal and (c) ictal EEG signals shown in Fig. 1.
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2.1.4.5. Sample Entropy (SampEn). Richman and Randall [96] devel-
oped the parameter called SampEn and it also measures the com-
plexity and regularity of the time-series data. SampEn is also a
measure of self-similarity. Lower SampEn value implies high self-
similarity, and higher values are registered for more irregular data.
SampEn is an improved measure when compared to ApEn. Epilepsy
causes a reduction in both these entropy parameters. Table 4
shows the SampEn values for the normal, interictal, and ictal EEG
signals shown in Fig. 1.
2.1.4.6. Fractal Dimension (FD). Mandelbrot [66] introduced the
term ‘fractal’. The concept of fractal dimension originates from
fractal geometry. FD is a powerful tool for transient detection. It
can be used to measure the dimensional complexity of biological
signals. It can give an indication of how completely the fractal ap-
pears to fill space. A fractal is a geometric shape which can be di-
vided into smaller components. Each of these components
represents a reduced copy of the original from which it is derived.
FD can be calculated from a set of points using several methods



Table 2
Results of RQA parameters for normal, interictal and ictal EEG signals shown in Fig. 1.

Features Normal Interictal Ictal

RR 0.052 0.060 0.087
DET 0.266 0.496 0.518
hLi 2.279 2.503 3.169
Lmax 8 10 38
ENTR 0.669 0.956 1.471
LAM 0.353 0.630 0.684
TT 2.425 2.783 3.878
Vmax 7 11 20
T1 19.051 16.498 11.449
T2 24.055 27.711 23.315

Table 4
SampEn values for normal, interictal, and ictal EEG signals shown in Fig. 1.

Features Normal Interictal Ictal

SampEn 1.301 1.048 0.796
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that differ in accuracy, sensitivity to the number of points used and
the time required for computation (Estellar et al. [28] and Kalli-
manis et al. [58]). The algorithm proposed by Higuchi is generally
used for finding FD of EEG signals. Higuchi [44] introduced the
algorithm as an effective technique to analyze non-periodic and
irregular time series better and achieve precise and stable FD.
The EEG signal is assumed as the time sequence x(1),x(2), . . . ,x(n).
Time series xk

m may be constructed as:

xk
m ¼ xðmÞ; xðmþ kÞ; xðmþ 2kÞ; . . . ; x mþ N �m

k

� �
k

� �� �
ð30Þ

where m = 1,2, . . . ,k. Here m indicates the initial time value and k
indicates the discrete time interval between points. The length
Lm(k) for each of the k time series or curves xk

m is computed as:

LmðkÞ ¼
Pbac

i¼1jxðmþ ikÞ � xðmþ ði� 1ÞkÞjðN � 1Þ
back ð31Þ

where n is the total length of data sequence x. The mean value of the
curve length Lm(k) is calculated for each k by averaging Lm(k) for all
m. Thus, an array of mean values Lm(k) is obtained. A plot of log(Lm(-
k)) versus log 1

k

	 

is made and FD is estimated from the slope of least

squares linear best fit from the plot. In other words, FD can be de-
fined as FD = log(Lm(k))/log(1/k) [44]. Table 5 shows the FD values
for normal, interictal, and ictal EEG signals shown in Fig. 1.

2.1.4.7. Correlation Dimension (CD). Correlation Dimension (CD) is a
nonlinear parameter which can be used as a useful indicator of
pathologies. CD is a widely used measure of fractal dimension.
The widely used algorithm for calculating CD is the Grassberger–
Procaccia algorithm proposed by Grassberger and Procassia [38].
As per this algorithm, a function C(r), which is the probability that
two arbitrary points on the orbit are closer together than r, is con-
structed. The correlation function C(r) is calculated as follows

CðrÞ ¼ 1
N2

XN

x¼1

XN

y¼1;x–y

Hðr � jXx � XyjÞ ð32Þ

Here Xx and Xy are points of the trajectory in the phase space, N is
the number of data points in phase space, r is the radial distance
around each reference point and H is the Heaviside function. CD
is then calculated using the equation:

CD ¼ lim
r!0

log CðrÞ
logðrÞ ð33Þ

Table 6 shows the CD values for normal, interictal, and ictal EEG
signals shown in Fig. 1.
Table 3
ApEn values for normal, interictal, and ictal EEG signals shown in Fig. 1.

Features Normal Interictal Ictal

ApEn 2.216 1.781 1.885
2.1.4.8. Hurst Exponent (H). Hurst exponent is a measure of self-
similarity, predictability and the degree of long-range dependence
in a time-series. It is also a measure of the smoothness of a fractal
time-series based on asymptotic behavior of the rescaled range of
the process [30,91]. According to the Hurst’s generalized equation
[48] of time series, Hurst exponent H is defined as

H ¼ logðR=SÞ
logðTÞ ð34Þ

where T is the duration of the sample of data and R/S is the corre-
sponding value of rescaled range. R is the difference between the
maximum and minimum deviation from the mean while S repre-
sents the standard deviation [25]. Hurst exponent is estimated by
plotting (R/S) versus T in log–log axes. The slope of the regression
line approximates the Hurst exponent. Table 7 shows the H values
for normal, interictal, and ictal EEG signals shown in Fig. 1.

2.1.4.9. Largest Lyapunov Exponent (LLE). Largest Lyapunov expo-
nent is a measure of the dependence of the system on initial con-
ditions. It defines the average rate by which two neighboring
trajectories diverge or separate from one another. A negative expo-
nent indicates that orbits approach a common fixed point, while a
zero exponent means that orbits maintain their relative positions.
If a positive LLE is achieved, it indicates the existence of chaos in
that system. An algorithm for calculating LLE was proposed by
Wolf et al. [123]. Another method for calculation was devised by
Rosenstein et al. [98] which was used in this study. It works on re-
corded time-series uses the nearest neighbor of each point in
phase-space and traces their separation over certain time develop-
ment. The LLE is then calculated by means of a least squares fit to
the ‘‘average’’ line defined by:

yðiÞ ¼ 1
Dt
hln djðiÞi ð35Þ

Here dj(i) represents the distance between each phase space point
and its nearest neighbor at time ith step, and h�i denotes the average
overall phase space points. Table 8 shows the LLE values for normal,
interictal, and ictal EEG signals shown in Fig. 1.

2.2. Surrogate data analysis

Surrogate data analysis is performed to test whether there is
nonlinearity in the original data [113]. The original data is sub-
jected to phase randomization to obtain the surrogate data. The
surrogate data sequence has the same mean, variance, autocorrela-
tion, and power spectrum as the original data sequence. But the
phase relationships present in the original data will be completely
lost in the surrogate data sequence. The random phase spectrum of
the derived surrogate data can be achieved by any of the three
methods of random phase, phase shuffle and data shuffle [59].
For the EEG analysis, nonlinear parameters like CD, LLE are com-
puted for several surrogate data series and they are compared with
Table 5
FD values for normal, interictal, and ictal EEG signals shown in Fig. 1.

Features Normal Interictal Ictal

FD �1.413 �1.345 �1.461



Table 6
CD values for normal, interictal, and ictal EEG signals shown in Fig. 1.

Features Normal Interictal Ictal

CD 5.39 8.59 2.82

Table 7
H values for normal, interictal, and ictal EEG signals shown in Fig. 1.

Features Normal Interictal Ictal

H 0.7194 0.8727 0.5546

Table 8
LLE values for normal, interictal, and ictal EEG signals shown in Fig. 1.

Features Normal Interictal Ictal

LLE 3.8501 2.9444 6.7946
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those computed using the original data series. If there is significant
difference (more than 50%) in the nonlinear parameter values be-
tween those obtained from original and surrogate data, it is a
strong indication of nonlinearity in the original EEG signal [2].
2.3. Necessity of nonlinear methods for EEG analysis

EEG signals have significant nonlinearity [107]. EEG signals are
generated mainly by the firing of post-synaptic neurons when their
membrane exceeds a certain threshold. An EEG signal is comprised
of several sinusoidal components of distinct frequencies. These
components have nonlinear interactions among themselves pro-
ducing more sinusoidal components at sum or difference frequen-
cies [128]. Any method which can detect the nonlinear behavior of
EEG signals can provide much better information about the state of
central nervous system and brain [101]. The nonlinear dynamical
theory has its basis on the concept of chaos and it is widely used
in many applications including medicine and biology. Experiments
over the past 30 years have shown that chaotic systems are com-
mon in nature. Boccaletti et al. [18] describe a chaotic system in
detail. Glass et al. [37], Jeong et al. [55], and Philippe and Henri
[81] found that schizophrenia, insomnia, epilepsy and other disor-
ders can be identified by studying the chaotic behavior of the neu-
rons. Babloyantz et al. [14], Pritchard and Duke [90], and Rey and
Guillemant [95] employed nonlinear techniques for analyzing
sleep signals and EEG waveform. Rapp et al. [93] and Rapp [94] ex-
plained neural processes and brain signals using nonlinear dynam-
ics and chaos. Literature [108,45] shows that nonlinear methods
are used for the analysis of several physiological signals related
to heart and respiratory dynamics. Nonlinear dynamical analysis
methods have been widely employed for extracting maximum
information from EEG signals [10,11,62,111] and for improving
the reliability of the results of analysis. Lehnertz and Elger [64]
found that time-resolved analysis of the EEG signals recorded from
within the seizure-generating area of the brain showed changes in
the nonlinear characteristics for up to several minutes prior to sei-
zures. Martinerie et al. [67] conducted a dimension analysis of EEG
and reached the conclusion that epileptic seizures are states with
reduced dimensionality compared to normal epileptic states, and
hence, showed the possibility of prediction of seizures. Lehnertz
and Elger [63] studied about the relationships between neurons
and epileptic region by analyzing the spatial extent and temporal
dynamics using correlation dimension techniques. Pijn [82] and
Pijn et al. [83] conducted the quantitative evaluation of epilepsy
with intracranial EEG signals as input by using the techniques of
nonlinear dynamics. Jing and Takigawa [56] used correlation
dimension techniques to study the different neurological states
of epilepsy using EEG signal. Andrzejak et al. [10] used a new mea-
sure n to discriminate between nonlinear deterministic and linear
stochastic systems. It was found that EEG signals recorded from
epileptic regions displayed strong nonlinear determinism while
non-epileptic zones can be characterized as linear stochastic sys-
tems. Aschenbrenner-Scheibe et al. [12] proposed several methods
for the detection of onset of seizures based on EEG recordings and
analysis of a nonlinear feature motivated by correlation dimension.
They studied the dimension drop in the pre-ictal state. Paivinen
et al. [79] used nonlinear features and computational methods like
discriminant analysis to analyze EEG and to detect epileptic sei-
zures in addition to time and frequency domain methods. Bai
et al. [15] used nonlinear parameters like sample entropy for ana-
lyzing epileptic EEG signals and observed that epilepsy resulted in
a reduction of sample entropy and approximate entropy values.
Freeman [32] and Wright and Liley [125] proposed EEG models
for the domain of neurobiology. Theiler [112], Theiler et al. [113],
Rombouts et al. [97], Lamberts et al. [62], and Bradley [19] used
nonlinear measures for analyzing EEG data. Nonlinear characteris-
tics of EEG were studied to test the differences between groups of
healthy and diseased people [16,70,54] and to identify different
sleep stages [31]. All these studies emphasize the importance of
nonlinear method of analysis of EEG signals to understand and
study its nature in various brain related disorders, and therefore,
such analysis is apt for detection of epileptic stages.
3. Epilepsy activity classification

All the studies summarized in this section used the Bonn Uni-
versity dataset [10]. This dataset includes five subsets (denoted
as Z, O, N, F and S), each containing 100 single-channel EEG seg-
ments of 23.6 s duration. All the segments were recorded using a
128-channel amplifier system, digitized with a sampling rate of
173.61 Hz and 12-bit A/D resolution, and filtered using a 0.53–
40 Hz (12 dB/octave) band pass filter. The normal segments (Sets
Z and O) were taken from the five healthy subjects. The standard
surface electrode placement scheme (the international 10–20 sys-
tem) was used to obtain the EEG from the healthy cases. Volun-
teers were relaxed in an awake state with eyes open (Z) and eyes
closed (O), respectively. Both the interictal and ictal segments were
obtained from five epilepsy patients. The interictal segments were
recorded during seizure free intervals from the depth electrodes
that were implanted into the hippocampal formations (Set N)
and from the epileptogenic zone (Set F). The ictal segments (Set
S) were recorded from all sites exhibiting ictal activity using depth
electrodes and also from strip electrodes that were implanted into
the lateral and basal regions of the neocortex [10].
3.1. Studies that presented techniques for two-class (normal, ictal)
epilepsy activity classification

Nigam and Graupe [71] used a multistage nonlinear pre-pro-
cessing filter along with an Artificial Neural Network (ANN) for
the automated detection of epileptic signals and obtained an accu-
racy of around 97.20%. Nonlinear parameters like CD, LLE, H, and
entropy were used to characterize the EEG signal and discriminate
epileptic and alcoholic EEG from normal EEG with more than 90%
accuracy [60]. Using the same dataset, the same group automati-
cally classified EEG signals into normal and epileptic using differ-
ent entropies using an Adaptive Neuro-Fuzzy Interference System
(ANFIS) and obtained an accuracy of 92.22% [59]. Time domain
and frequency domain EEG features combined with Elman network
was used to classify the two classes with an accuracy, sensitivity,



Table 9
Summary of previous works for automated detection of normal and epileptic classes.

Authors Features Classifier Accuracy (%)

Nigam and Graupe [71] Nonlinear pre-processing filter Diagnostic neural network 97.20
Kannathal et al. [59] Entropy measures Adaptive Neuro-Fuzzy Inference system (ANFIS) 92.22
Srinivasan et al. [103] Time & frequency domain features Elman network 99.60
Sadati et al. [99] DWT Adaptive neural fuzzy network 85.90
Subasi [109] DWT-Statistical measures Mixture expert model (a modular neural network) 94.50
Polat and Gunes [86] FFT based features Decision tree 98.72
Tzallas et al. [114] Time–frequency methods Artificial neural network 97.72–100
Srinivasan et al. [104] ApEn Probabilistic neural network, Elman network 100
Polat and Gunes [87] FFT based features Artificial immune recognition system 100
Polat and Gunes 88 AR C4.5 decision tree classifier 99.32
Ocak [74] DWT-ApEn Thresholding 96.65
Guo et al. [40] Relative Wavelet Energy ANN 95.20
Guo et al. [41] ApEn and Wavelet Transform ANN 99.85
Guo et al. [42] Line length features and Wavelet Transform ANN 99.60
Subasi and Gursoy [110] DWT-PCA, ICA, LDA SVM 98.75(PCA)

99.50(ICA)
100(LDA)

Ubeyli [116] AR SVM 99.56
Lima et al. [65] Wavelet Transform SVM 100
Guo et al. [43] Genetic programming based KNN 99
Wang et al. [120] Wavelet packet entropy KNN 100
Iscan et al. [53] Cross correlation and PSD Several classifiers including SVM 100
Orhan et al. [75] DWT ANN 100
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and specificity of 99.6% [103]. Normal and epileptic EEG signals
were automatically identified with a classification accuracy of
85.9% using DWT sub-band energy as input features to adaptive
neural fuzzy network [99].

Srinivasan et al. [104] developed an automated epileptic EEG
detection system using approximate entropy as the feature in El-
man and probabilistic neural networks. Elman network yielded
an overall accuracy of 100%. Tzallas et al. [114] employed time–fre-
quency methods to analyze selected segments of EEG signals for
automated detection of seizure using neural network and obtained
an accuracy ranging from 97.72% to 100%. Subasi [109] applied
DWT on EEG signals and decomposed them into frequency sub-
bands. DWT coefficients were converted into four statistical fea-
tures and these were fed to a modular neural network called Mix-
ture of Experts (MEs). They classified normal and epileptic EEG
signals with an accuracy of 94.5%, sensitivity of 95%, and specificity
of 94%. Polat and Gunes [86] classified EEG signals into epileptic
and normal using FFT based Welch method and decision tree clas-
sifier and achieved a maximum classification accuracy of 98.72%,
sensitivity of 99.4%, and specificity of 99.31%. The same group
[87] used the Welch FFT method for feature extraction, PCA for
dimensionality reduction, and a new hybrid automated identifica-
tion system based on artificial immune recognition system (AIRS)
with fuzzy resource allocation mechanism for classification of nor-
mal and epileptic segments. They reported an accuracy of 100%.
The same group ([88] used AR for feature extraction and C4.5 deci-
sion tree classifier for classification and reported an accuracy of
99.32%.

Ocak [74] developed a method for automated seizure detection
based on ApEn and DWT. They were able to distinguish seizures
with more than 96% accuracy. Guo et al.’s group conducted many
studies using ANN for classification and reported an accuracy of
95.2%, sensitivity of 98.17%, and specificity of 92.12% using relative
wavelet energy based features [40], an accuracy of 99.85%, sensi-
tivity of 100%, and specificity of 99.2% using wavelet transform
and ApEn features [41], an accuracy of 99.60% using wavelet trans-
form and line length feature [42], and an accuracy of 99% using ge-
netic programming based features in a K-Nearest Neighbor (KNN)
classifier [43]. The DWT features were reduced using PCA, ICA and
LDA and the resultant features were used to classify normal and
epilepsy EEG signals using Support Vector Machine (SVM) classifier
[110]. They obtained an accuracy of 98.85% using PCA method,
99.5% using ICA method and 100% using LDA method. Ubeyli
[116] used AR methods for feature extraction and SVM for classifi-
cation and reported an accuracy of 99.56%. In other recent studies,
100% classification accuracy was achieved by Lima et al. [65]
(wavelet transform and SVM), Wang et al. [120] (wavelet packet
entropy and KNN), Iscan et al. [53] (cross correlation and PSD
and SVM), and Orhan et al. [75] (DWT and ANN).

Table 9 gives a summary of the above listed studies for auto-
mated detection of normal and epileptic classes. It can be observed
that a variety of methods like FFT, time–frequency, DWT, statistical
measures, nonlinear, chaotic and entropy measures, dimension
reduction methods like PCA, ICA and LDA are used to analyze
EEG to detect epileptic state from normal state. Among these
methods, nonlinear methods and time–frequency related tech-
niques, specifically DWT based methods, resulted in higher
accuracies.

3.2. Studies that presented techniques for three-class (normal,
interictal, ictal stages) epilepsy activity classification

Aslan et al. [13] studied epilepsy groups such as partial and pri-
mary generalized epilepsy using a Radial Basis Function Neural
Network (RBFNN) and a Multilayer Perceptron Neural Network
(MLPNN) and achieved a classification accuracy of 95.2% and
89.2%, respectively. Several studies have been reported which
use linear and nonlinear features for the automatic detection of
the three EEG classes. Table 10 shows the summary of the
features used and the classification accuracies obtained in these
studies.

Guler et al. [39] used LLE as a feature in a feed-forward neural
network and Recurrent Neural Network (RNN) for the three-class
problem. RNN presented an accuracy of more than 96%, sensitivity
of around 96%, and specificity of 97.38%. In a recent study [33],
wavelets were used to decompose the EEG signals into delta, theta,
alpha, beta, and gamma sub-bands. Three features, namely, stan-
dard deviation, CD, and LLE were extracted from each sub-band.
The authors used a mixed-band feature space consisting of nine
parameters in a Spiking Neural Network (SNN) that was trained
using three training algorithms (SpikeProp, Quick-Prop and RProp).
RProp model resulted in the maximum classification accuracy of



Table 10
Summary of previous works for automated detection of normal, interictal and epileptic classes.

Authors Features Classifier Accuracy (%)

Guler et al. [39] Lyapunov exponents Recurrent neural network 96.79
Ghosh-Dastidar and Adeli [33] Mixed-band feature space Spiking neural network 92.50
Ghosh-Dastidar et al. [34] Mixed-band feature space Back propagation neural network 96.70
Ghosh-Dastidar et al. [35] Mixed-band feature space PCA enhanced Cosine radial basis function neural network 96.60
Ghosh-Dastidar and Adeli [36] Mixed-band feature space Multi-spiking neural network 90.70–94.80
Chua et al. [22] and Chua et al. [23] HOS based features GMM 93.11
Faust et al. [29] Frequency domain parameters, Burg’s method SVM 93.30
Acharya et al. [2] Nonlinear features GMM 95
Guo et al. [43] Genetic Programming based KNN 93.50
Orhan et al. [75] DWT ANN 96.67
Acharya et al. [3] HOS cumulants from WPD coefficients SVM 98.50
Acharya et al. [4] RQA parameters SVM 95.60
Acharya et al. [5] Entropies + HOS + Higuchi FD + Hurst Fuzzy 99.70
Acharya et al. [6] Entropies Fuzzy 98.10
Acharya et al. [7] PCA eigenvalues from WPD coefficients GMM 99
Acharya et al. [8] DWT, ICA coefficients SVM 96
Martis et al. [68] Empirical mode C4.5 95.33
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92.5%. In another study by the same group [34], a good classifica-
tion accuracy of 96.7% was obtained using the Levenberg–Marqu-
ardt back propagation neural network and the same nine-
parameter mixed-band feature space. The same group [35] devel-
oped a novel principal component analysis-enhanced cosine radial
basis function neural network classifier to detect epilepsy. Their
system yielded a highest accuracy of 96.6%, and was robust to
changes in training data with a low standard deviation of 1.4%.
During the epilepsy diagnosis, their model yielded an accuracy of
99.3% when only normal and interictal EEGs were considered.
Again the same group [36] proposed a multi-spiking neural net-
work wherein information transfer between neurons happens
through multiple synapses. They obtained an accuracy range of
90.7–94.8% using the mixed-band feature space to classify the
three classes.

Chua et al. [22] applied HOS based features in Gaussian Mixture
Model (GMM) and SVM classifiers and obtained an accuracy of
93.11% and 92.67%, respectively. Chua et al. [23] compared HOS
features and power spectrum based features and obtained 93.11%
classification accuracy for HOS features, while the accuracy was
only 88.78% using features derived from power spectrum, both re-
sults obtained for the GMM classifier. Faust et al. [29] used three
parametric methods for power density spectrum estimation
(ARMA, Yule-Walker and Burg’s) and evaluated three classifiers.
Four local maxima and four local minima parameters were found
out (using Billauer’s ‘peak detection’ algorithm: http://bill-
auer.co.il/peakdet.html) [17] from the power density spectrum
using Burg’s method and given as input to the classifiers. SVM clas-
sifier presented the highest classification accuracy of 93.33%, sen-
sitivity of 98.33%, and specificity of 96.67%. Guo et al. [43] and
Orhan et al. [75] used the same study protocol used for the two-
class problem and obtained lowered accuracies of 93.5% and
96.67%, respectively.

Acharya et al. [2] used four nonlinear parameters namely CD,
FD, H and ApEn in SVM and GMM classifiers. GMM classifier
showed better performance with an average classification accuracy
of 95%, sensitivity of 92.22%, and specificity of 100%. In another
study by this group [3], HOS cumulants extracted from WPD coef-
ficients were fed to SVM classifier and an accuracy of 98.5%, sensi-
tivity of 100%, and specificity of 100%, was reported. The same
group [4] used RQA parameters in an SVM classifier and obtained
a classification accuracy of 95.6%, sensitivity of 98.9%, and specific-
ity of 97.8%. In a recent study by this group [5], nonlinear features
based on HOS, two entropies, namely ApEn and SampEn, FD and H
were extracted from the EEG segments of 6 s duration. These
features in the Fuzzy classifier resulted in 99.7% classification accu-
racy, and a sensitivity and specificity of 100%. The same group [6]
used ApEn, SampEn and two phase entropies in a Fuzzy classifier and
reported an accuracy of 98.1%, sensitivity of 99.4%, and specificity
of 100%. Again this group recently decomposed EEG segments into
wavelet coefficients using WPD, and extracted eigenvalues from
the resultant wavelet coefficients using PCA. These features were
used in a GMM classifier and accuracy, sensitivity, and specificity
of 99% was registered [7]. The same group classified the three clas-
ses by applying ICA on the DWT coefficients extracted from various
durations of EEG signals (6 s, 12 s, 18 s, and 23.6 s) [8]. They re-
ported the highest classification accuracy of 96%, sensitivity of
96% and specificity of 97% using the SVM classifier for 23.6 s inter-
val data. Spectral peaks, spectral entropy and spectral energy ob-
tained from the waveforms obtained by performing the Hilbert
Transform of the intrinsic mode functions were fed to the C4.5
decision tree classifier to classify the three classes [68]. They re-
ported the highest average accuracy of 95.33%, average sensitivity
of 98%, and average specificity of 97%.

The results of these studies are further proof to the fact that
nonlinear techniques are better applicable for successful EEG anal-
ysis, especially for tackling the three-class problem. It is evident
from the above summarized studies that the maximum classifica-
tion accuracy of 100% has been easily achieved in studies that clas-
sified normal and epileptic (ictal) stages. However, as highlighted
earlier, it is important to determine the interictal or pre-ictal stages
to predict the onset of a seizure. For this reason, many studies also
focused on classifying normal segments from ictal and interictal
segments. From the published literature, it can be seen that the
highest accuracy of 99.7% has been achieved for such a three-class
classification problem using nonlinear features [5]. Most of these
CAD techniques can be written as a software application and easily
installed in any physician’s office or EEG labs. The process is fully
automated as the doctors have to only input the EEG segments,
and hence, there is no need for expert training and the results
are highly objective.

Even though a technique has been developed for achieving the
maximum possible clinically significant accuracy for epilepsy stage
classification, there are several areas that have to be addressed be-
fore such a technique can be deployed for daily clinical use. First,
the current technique has been developed using a benchmark data-
set that has been made publicly available for more than a decade
now [10]. There is definitely a need to validate the developed tech-
nique using several large clinical databases collected using multi-
center clinical trials. It is high time that researchers start validating
their developed techniques on newly acquired clinical EEG dat-
abases rather than trying to improve the classification accuracy
which has already reached the highest value possible. Second,
studies are needed to determine the accuracy of prediction of the
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onset of a subsequent seizure after detecting an interictal/pre-ictal
stage. The real use of the availability of an excellent classification
technique for the three class problem can only be achieved if it
can be extended to predict real-time seizures in patients. Third,
one has to address the issue of how good these techniques are in
the continuous monitoring of EEG signals for changes in EEG activ-
ities. How often should the segments be tested to determine a
stage? When should the system alert the user of a possibility of
an oncoming seizure? Which electrode setup/arrangement should
be in place to record the EEG signals for monitoring?

It may seem like a solution is in place to address the complex
problem of subjective visual inspection of tremendous volumes
of EEG data. However, there is still a lot of unanswered questions
that need to be addressed before such a solution can be imple-
mented for successful clinical use.

4. Conclusions

EEG signals can be used effectively to study the mental states and
ailments related to the brain. The inherent issues with the EEG signal
are that it is highly nonlinear in nature and its visual interpretations
are tedious and subjective prone to inter-observer variations. To
help researchers better analyze EEG signals, we have presented var-
ious signal analysis techniques such as linear, frequency domain,
time–frequency, and nonlinear methods in this review. Our key fo-
cus in this review was on epilepsy detection. Epilepsy is a neurolog-
ical disorder that can cause serious discomfort to the patients due to
its abrupt and uncertain nature of presentation. A good side of it is
that it is treatable with antiepileptics. An automated system to de-
tect the nature of the seizures at early stage (interictal) and to classify
normal, interictal, and ictal states can help improving the quality of
life by preventing its occurrence. In this regard, we have summa-
rized the findings of many automated epilepsy activity classification
techniques that use EEG as the base signal. It is evident from the
summary that a combination of the features extracted using the re-
viewed techniques or sometimes even the features extracted from a
single technique can successfully distinguish the three classes. It ap-
pears that the use of nonlinear features extracted from EEG seg-
ments in classifiers results in high classification accuracies of more
than 99%. Even though the highest possible classification accuracy
has been achieved for epilepsy activity detection, there are several
challenges that have to be faced before such a technique can be clin-
ically used. We have briefly highlighted these challenges and open
ended problems that need to be addressed for a fully automated
CAD based epilepsy detection and seizure monitoring system to be
deployed in a clinical setting.
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