
E L S E V I E R Fuzzy Sets and Systems 66 (1994) 1 13

FU22Y
sets and systems

Invited Review

Fuzzy neural networks: A survey

J a m e s J. B u c k l e y a'*, Y o i c h i H a y a s h i b

a Mathematics Department, University of Alabama at Birmingham, Birmingham, AL 35294, USA
b Department o/' Computer and Information Sciences. Ibaraki University. Hitachi-shi. Ibaraki 316 Japan

Received February 1994

Abstract

In this paper a fuzzy neural network will be a layered, feedforward, neural net that has fuzzy signals and/or fuzzy
weights. We survey recent results on learning algorithms and applications for fuzzy neural networks.

Key words: Neural networks; Learning algorithms: Regression; Fuzzy controller; Fuzzy expert systems; Hierarchical
analysis; Fuzzy equations; Universal approximator

1. Introduction

In this section we will first describe what we mean
by a neural net, hybrid neural net, fuzzy neural net,
and hybrid fuzzy neural net. Then we introduce
notation that will be used in the rest of the paper.

Consider the three layered, feedforward, neural
net shown in Fig. 1. For simplicity we have as-
sumed only two input neurons, one hidden layer,
and one output neuron. We begin by having the
signals and weights of all real numbers.

All neurons have a transfer function f which
translates input to output. Usually the input neur-
ons have y = f (x) = x (no change in input) and all
the other neurons have the sigmoidal function
y = f (x) = (1 + e - X) -1. However, the transfer
function, in general, can be any mapping f from the

* Corresponding author.

real numbers into the real numbers. Also, we will
usually not use a bias term in the sigmoidal function.

In this section we will have f (x) = x in the two
input neurons and the sigmoidal function in all
other neurons. If the input signals are xl and x2 (see
Fig. 1), then the output from neuron # 1 (# 2) in
the input layer is xl (x2). The input to neuron # k
in the hidden layer is

lk = XIW1k @ X2W2k , l <~ k <~ K . (1)

The output from hidden neuron # k will be

Z k = f (I k) , 1 <~k<<.K, (2)

for sigmoidal f It follows that the input to the
output neuron is

Io = z l vl + ... + z r v K , (3)

and its output is

y = f (l o) (4)

0165-0114/94/$07.00 © 1994 - Elsevier Science B.V. All rights reserved
SSDI 0165-01 14(94)00103-E

2 J.J. Buckle),, Y. Hayashi / Fuzz), Sets and Systems 66 (1994) 1 13

Hidden Inputs Output
Layer

W 2 K ~

Fig. 1. Neural network.

~ y

input to hidden neuron # k is

]-k = X 1 W l k + X 2 W 2 k , l <<, k <~ K, (5)

where we use standard fuzzy arithmetic to compute
]-k. The output from the kth hidden neuron will be

Zk=f(]-k), l~<k~<K, (6)

for sigmoidal f, where the extension principle is
used to obtain Z,k. It follows that the input to the
output neuron is

1-o = Z~ V1 + "" + Zr VK (7)

and the final output will be

=f (Io) , (8)

for sigmoidal f. We will have sigmoidal f in the
output neuron when we require y to be in [0, 1],
otherwise we omit f and have y = Io.

What we have just described is what we call
a regular neural net (NN). If we employ other
operations like a t-norm, or a t-conorm, to combine
the incoming data to a neuron (Eqs. (1) and (3)) we
obtain what we call a hybrid neural net (HNN).
HNNs also process real number signals and have
real number weights. There are many applications
of HNNs (see [7, 8, 26, 29, 32]). We will be con-
cerned with fuzzifying both NNs and HNNs in this
paper.

A regular fuzzy neural net (FNN) is a NN
with fuzzy signals and/or fuzzy weights. We differ-
entiate between different types of FNNs as fol-
lows: (1) FNN1 has real number input signals
but fuzzy weights; (2) FNNz has fuzzy set input
signals and real number weights; and (3) FNN3 has
both fuzzy set input signals and fuzzy weights. We
will be predominately interested in FNN3 in this
paper.

Let us now describe in more detail the internal
computations of a FNN3. We place a bar over
a symbol if it represents a fuzzy set and all our fuzzy
sets will be fuzzy subsets of the real numbers. In
a FNN3 the inputs X1,X2, the weights Wik, Vk,
and the output Y will all be fuzzy. The architecture
of FNN3 will be the same as in Fig. 1. The output
from input neuron #1 (#2) is)(1 (-~2). So, the

using regular fuzzy arithmetic in Eq. (7) and the
extension principle in Eq. (8). When we do not need

to be a fuzzy subset of [0, 1] we omit f i n Eq. (8)
and set Y =]-o.

What we have just described is a regular FNN3
where standard fuzzy arithmetic (add, multiply) is
used to compute the output. In a hybrid fuzzy
neural net (HFNN) we may combine the fuzzy
signals and weights using other operations besides
addition and multiplication to obtain]-k and]-o.
HFNNs are of recent research interest (see
I-4, 7, 9, 13]) and we shall discuss them again in the
following sections.

In Section 2 we briefly survey the literature on
FNNi, i = 1,2,3, and HFNNs. Section 3 is con-
cerned with learning algorithms for FNNi,
i = 1, 2, 3, and applications of fuzzy neural nets are
outlined in Section 4. Section 5 contains a brief
review and our conclusions.

We will now introduce notation to be employed
in the rest of the paper. If b = is a fuzzy set, then f i (x)
represents the membership function for ff evaluated
at x. The or-cut of a fuzzy set ff is defined as

f i [~]={xl f f (x) />c~} f o r 0 < c ~ < 1. (9)

The ct = 0 cut of ff is defined separately to be the
closure of the union of all the fi[~], 0 < e ~< 1.
F[0] is also called the support of ft. A triangular
fuzzy number N is specified by three numbers
a < b < c where: (1) AT(x) = 0 for x <~ a , x ~ c and

J.J. Buckley, Y. Hayashi / Fuzzy Sets and Systems 66 ~1994) 1 13 3

N(b) = 1; and (2) the graph of ~7(x) is a straight line
segment from (a,0) to (b, 1) and from (b, 1) to (c,0).
We write ~7 = (a/b/c). A triangular shaped fuzzy
number is similar to a triangular fuzzy number
except that the graph of N(x) need not be straight
line segments on [a, b] or on [b, c]. A fuzzy set is
discrete when the membership function is positive
at only a finite number of values of x. We say
a triangular fuzzy number/~ = (a/b/c) is non-nega-
tive when a >~ 0. If]V and ~3 are two fuzzy sets, then
we write)~ <~ A3 when N(x) ~< ~3(x) for all x.

2. Literature

Probably the first papers to introduce fuzzy sets
into neural nets were [45,46] where the authors
generalized the McCulloch Pitts model by using
intermediate values between zero and one. A survey
paper [53] in 1990 discussed the fusion of neural
nets and fuzzy logic, however very little research on
fuzzy neural nets was done by then with the excep-
tion of [44] and Yamakawa's fuzzy neuron. In [44]
the authors proposed adding fuzzy membership
functions to the perceptron.

Yamakawa's initial fuzzy neuron is discussed in
[56-58] and his new fuzzy neuron in [59]. His
initial fuzzy neuron was of type FNNI. The new
fuzzy neuron has, instead of a single weight on each
incoming arc to a neuron, a set of fixed fuzzy sets
and real number weights. A learning algorithm is
applied to the weights. Learning algorithms are
discussed in more detail in Section 3. See also [50]
for a discussion about improving Yamakawa's in-
itial fuzzy neuron.

Similar to Yamakawa's new fuzzy neuron is the
fuzzy neural net presented in [47, 55]. They also
have a collection of weights, and fuzzy sets, at-
tached to each incoming arc to a neuron. Learning
is applied to both the weights and the fuzzy set. The
authors in [48,49] also use a FNN1, present
a learning algorithm, and suggest applications to
fuzzy control.

Next, let us consider fuzzy neural nets of type
FNN2. In [51], they have fuzzy signals, real num-
ber weights, and a fuzzy threshold within the neur-
ons. The authors in [36, 37, 39-41] have a FNN2
with learning on the real weights performed by

~-cuts on the signals, and they generalize to
a FNN3 in [38,41].

Gupta [21-25] has presented various models of
a fuzzy neuron. These models include FNN1,
FNN2 and FNN3 but no learning algorithms were
presented in these papers.

In a series of papers [4, 7, 9 11, 13, 27, 28, 30, 31,
33 35] the authors discuss fuzzy neural nets with
emphasis on learning algorithms and applications
of FNN3.

The need for hybrid FNNs is twofold: applica-
tions and the fact that regular FNN3s are
not universal approximators. Applications using
hybrid fuzzy neural nets [4, 13] are discussed in
Section 4 and the result that hybrid FNN3s can be
universal approximators [7, 9] is discussed also in
Section 4.

We will survey many of the results in the papers
referenced above in the following two sections.

3. Learning

In this section we will survey learning algorithms
for FNN/, i = 1,2, or 3, that have been studied in
the literature. We concentrate mostly on FNN3.
No learning algorithms have been presented for
HFNNs.

3.1. Fuzzy backpropagation

In [4, 11, 13, 28, 31, 34, 35] the authors developed
a fuzzy backpropagation algorithm for FNN3. Let
the training set be (Xl, T~),)~l = ();~l,)(12) for in-
puts and T~ desired output, 1 ~< l ~< L. Given input
)(t let the actual output be ITt. The authors assumed
that)~tj, I~';~, and lPk are all triangular fuzzy num-
bers with)(~j in [0,1] and the weights are in
[- 1 , 1]. Also, Tt and Yi will be triangular shaped
fuzzy numbers in [0, 1].

The error measure they adopted was

1 L

= ~Y,7, (~' - ?')~' (10)

which is to be minimized. However, /7 will not be
zero, due to fuzzy arithmetic, even when Yt = ;rt, all

4 J.J. Buckley, Y. Hayashi / Fuzzy Sets and Systems 66 (1994) 1-13

I. Therefore, they required a special stopping rule
for the iterations.

Let]P/[0] = [hl , h2]. If lVl = Tz all l, then/~[0]
= [- 2 , 2] , where

1 L)2.
'~ = ~ l~= l (tt2 -- tzl (11)

Let e > 0 denote some acceptable deviation from
the value of/~ when Yt =]rt all I. Then the stopping
rule they adopted was to end the iterations on the
values of the weights when/~ is inside the set

f~= [- 2 - e , 2 + e] × [0,1]. (12)

They now directly fuzzified the standard delta rule
in backpropagation to update the values of the
weights.

It is interesting to note that this procedure fails
to converge to a correct set of weights. What they
found [11] was that there are values of the weights
that make/~ inside f2 but do not make Y~ close to
Tt, all I. That is, they have the wrong stopping rule
and the algorithm converges to the wrong weights.
The algorithm has been corrected but no new re-
suits have been reported.

3.2. Backpropagation on a-cuts

Also in [11] (see also [31,34,35]), the authors
discuss a backpropagation algorithm for the indi-
vidual a-cuts of the weights in a FNN3. Let
E[~] = [el (~), e2 (~)], Wik [0~] -m- [Wik 1 (0~), Wik 2(~)],
and ITk[~] = [Vkl(~t),VR2(~)], 0 ~< ~t ~< 1. They de-
veloped a backpropagation algorithm to update
the values of Wikl(Ct),Wik2(a),Vkl(a), and Vk2(a),
based on the partial derivates of e~(a) and e2(~)
with respect to Wikl(Og) ,Vk2(00, for different
values of a in [0, 1]. This method can also fail
because when you put the a-cuts of a weight back
together you may not get a fuzzy set. The problem
is that the backpropagation algorithm indepen-
dently updates the a-cuts of the weights. No con-
straint is built in to insure that the new weights are
in fact fuzzy sets. You could obtain 1#'11 [0] =
[0, 1], but ff'~l [0.5] = [- 1, 0].

3.3. a-cut based backpropagation

In a series of papers [36-41] these authors de-
veloped backpropagation based learning algo-
rithms for: (1) real signals and interval weights and
biases; (2) FNN2; and (3) FNN3. Let us now review
their learning method for FNN3 [38,41].

They assumed that: (1) the inputs)(~j are non-
negative fuzzy numbers; (2) the weights and bias
terms are symmetric triangular fuzzy numbers; and
(3) Tt is a fuzzy number. Let ~rt[~] = [tu(a),
hE(a)], Y/[a] = [yll(a),yl2(a)], ~/~"ik[0] = [Wikl,
Wikz], and l?k[0] = [VRI,Vk2]. Also let as~[0,1],
l~<s~<S, s o t h a t 0 ~ < a l < ~ z < - . . < a s ~ < 1. The
error measure to be minimized is

1 L S

E = 2~:--~1 s:lE as(Etsl + Eta2), (13)

where

Eta1 = (tlx(~) - ytl(a~)) z, (14)

Els2 = (t ,2(~s)- y~2(~)) 2. (15)

They developed a standard backpropagation algo-
rithm for the supports of the weights and bias
terms. Since these fuzzy sets are symmetric triangu-
lar fuzzy numbers you know the whole fuzzy set if
you know their support. For example, one can
write down a formula for ~E/t~Vkl ~E/t3Wik 2 sim-
ilar to the delta rule in standard backpropagation
and this is used to compute the new supports of the
weights. A small example is given in [38, 41] show-
ing good results for this learning method. However,
this procedure gets more and more complicated
(the partials of E with respect to the weights get
more involved) if the weights are other types of
fuzzy numbers and/or the inputs are not non-nega-
tive. This method is not applicable when the inputs
and/or the weights become more general fuzzy sets.

3.4. Random search

Suppose that the inputs and 7 ~, are fuzzy num-
bers and the weights are triangular fuzzy numbers.
Let ff'ik = (Wikl/W~k/Wik2), Vk = (VkJV'k/Vk2). We ad-
opt some error measure to be minimized. Assume
we wish to minimize E in Eq. (13). In this method

J.J. Buckley, Y. Hayashi / Fuzzy Sets and Systems 66 (1994) 1-13 5

w e randomly generate Wikl, Wik , Wik2, Ukl , Ilk, Uk2 , a l l

i,k, to minimize E. For a reasonably large FNN3
this procedure will be too time consuming so let us
now look at a directed random search method
called genetic algorithms.

3.5. Genetic algorithms

Genetic algorithms [16, 20, 52] are finding more
and more applications in fuzzy systems. Recently
they have been applied to fuzzy optimization
[6, 12]. In [10] the authors use genetic algorithms,
to train a FNN3. We will now review this recent
research on learning. The type of genetic algorithm
used will depend on the kinds of fuzzy sets used for
input and weights, and the error measure to be
minimized.

3.5.1
Suppose X~j, Wik , and l?k are all triangular fuzzy

numbers with]r~ a triangular shaped fuzzy number.
Define Tie0] = [tll,tl2] and Yt[0] = [Yll,Yt2].
The authors wish to minimize E where E--
max{E1,E2} and

E1 = ~ (t l l - - yll) 2, (16)
1=1

1 L
E 2 = ~ l~1 (tl2 -- yl2) 2. (17)

A (regular) genetic algorithm is designed to manage
the supports of the weights in order to minimize E.
Since E is based on the supports of 171 and Tt the
algorithm only needs to keep track of the supports
of the weights. An example in [10] shows that this
type of learning algorithm can be used to train
a FNN3.

However, this learning method may fail because
it only ensures that the support of Yt is close to the
support of Tt, all l. It may happen that the algo-
rithm terminates with E very small but Y~(x) differs
significantly from Tt(x) for some x in the intersec-
tion of their supports. Then we must use an error
measure that takes into account the whole shape of
Yl(x) and the whole shape of]Pz(x), all I. These new
error measures are discussed in the rest of this
subsection.

3.5.2
The inputs and weights are assumed to be tri-

angular fuzzy numbers with T~ a triangular shaped
fuzzy number. The error measure to be minimized
will be based on e-cuts of '7~ and]rt similar to Eq.
(13). Let

E = ~ (Etsl + Els2), (18)
1=1 s = l

with Elsl (E~:) specified by Eq. (14) (Eq. (15)). The
(regular) genetic algorithm will be similar to the one
in 3.5.1 except that it searches for the supports of
the weights, and where the membership function
will be one, to minimize E in Eq. (18). Since the
input and weights are triangular fuzzy numbers all
that one needs to know is the support of the
weights, and where membership equals one, to
compute E employing interval arithmetic.

3.5.3
Now suppose that triangular fuzzy weights are

not sufficient to make Yt approximately equal to Tt
for all l. So let the weights be triangular shaped
fuzzy numbers with inputs triangular fuzzy num-
bers and T~ a triangular shaped fuzzy number. The
error measure is the same as the E defined in Eq.
(18). The genetic algorithm is the same as in 3.5.2
except for one major change: it keeps track of
certain e-cuts of the weights. That is, they store for
each weight its es, 1 ~< s ~< S, cuts. Knowing the
es-cuts of the weights and inputs one can compute
the ors-cuts of the output using interval arithmetic
and hence obtain E.

3.5.4
Now the inputs, weights, and T~ are arbitrary

discrete fuzzy subsets of [- M, M] for some M > 0.
Suppose the fuzzy sets Yt and 7~t can have their
membership functions positive only at xp in
[- M , M] where - M = Xo < xl < ... < xp= M.
Then the error measure will be based on member-
ship values so let

1 L e

E : ~ l ~ 1 p~=o (Y l (X p) - Tl(Xp)) 2, (19)

which is to be minimized. That is, the authors in
[10] designed a fuzzy genetic algorithm to find the

6 J.J. Buckle)', Y. Hayashi / Fuzz)' Sets and Systems 66 (1994) 1-13

weights to drive E to zero. A population member
H in a regular genetic algorithm looks like

H = (hi, h2 h,,), (20)

where each hi is zero or one. Binary notation (zeros
and ones) is used to specify real numbers in a regu-
lar genetic algorithm. In a fuzzy genetic algorithm
H is defined as in Eq. (20) but each hl is a real
number in [0, 1]. In a fuzzy genetic algorithm the hi
give membership values in fuzzy sets. Since the
elements in H are membership values of fuzzy sets it
was called a fuzzy genetic algorithm.

Input

*O--
xi , ~ p i l ~ ~ Output

Nn
- < > ,o

Fig. 2. Yamakawa's fuzzy neuron.

3.6. Fuzzy chaos

Let ~ denote all the fuzzy numbers in some
interval [- M , M] , M > 0. Now suppose that F is
a fuzzy chaotic mapping from o~ into ~- [18, 19]
and let A7;+1 = F(/qi), i = 0,1,2 with N0 ini-
tially chosen in o~. Since F is chaotic the sequence
/ql appears to be a random sequence of fuzzy num-
bers in [- M, M]. This method could be used, as an
alternative to pure random search, to train
a FNN3. Fuzzy chaos has been applied to solve
a fuzzy optimization problem [5, 14].

Assume that we have selected some error
measure E, possible one of those defined in Sections
3.3 or 3.5, to be minimized. We will employ a fuzzy
chaotic mapping F as the basis of a search for the
fuzzy number weights to make E close to zero.
Initially pick values for the weights Wik, o and
l?k.O in o~. Now generate a sequence of weights
Wik, u+l = F(l~ik , u), Vk,u+l = F(Vk,u) , u -~ 0,1,2
looking for those values in ~ that produce a value
of E close to zero. This would be an interesting
topic for future research.

3.7. Other learning methods

In [48,49] the authors have: (1) real number
signals; (2) monotone increasing membership func-
tions for the fuzzy weights; and (3) a special fuzzy
error measure. They employ a special learning al-
gorithm, inspired by the standard backpropagation
learning algorithm, so that the FNN~ can learn the
fuzzy weights.

Input
Xl ~ ~ y t

wm

Fig. 3. Fuzzy neuron.

Yamakawa's new fuzzy neuron [59] has a learn-
ing algorithm for the weights. The input to a fuzzy
neuron is shown in Fig. 2. The collection/iij and
wij, 1 ~ j <~ n, exist for each input xi, 1 ~< i ~< m.
The fiij are fixed fuzzy sets (triangular fuzzy num-
bers) and the wij are real number weights. Given xi,
only two neighboring/7ij can be not zero, say ~ik(Xi)
and ~i.k+l(Xi) are not zero. In Fig. 2,

Yi = ~ik(Xi)Wik "Jr- ~i,k+ l(Xi)Wi, k+ 1 (21)

and the input to the neuron is yi, 1 ~< i ~< m, with
output Yl + "'" + Ym. The learning algorithm for
the wij is based on a heuristic rule which produces
an update formula for the weights similar to that
obtained in backpropagation in standard NNs.

The FNN in [47, 55] is similar to Yamakawa's
fuzzy neuron. This fuzzy neural net is based on the
fuzzy neuron shown in Fig. 3. The output y is

J.J. Buckle)', Y. Hayashi / Fuzz)" Sets and Systems 66 (1994) 1 13 7

computed as

~.i% 1 wifii(xi) (22)
Y - ~ i % 1 wi

The fii are assumed to be trapezoidal fuzzy num-
bers. A FNN is made up of a network of fuzzy
neurons shown in Fig. 3. The authors claim to have
a learning algorithm both for the weights (wi) and
the trapezoidal fuzzy numbers fi~.

Inputs

T = Target

X 2 - - - - - -

x 2

4. Applications Fig. 4. Fitting a quadratic by a fuzzy neural net.

In this section we will survey some possible ap-
plications of fuzzy neural nets that have been dis-
cussed in the literature.

4.1. Fuzz), regression

In systems identification we have an unknown
process Q, a set of inputs X~ = (X , , "~/2) and out-
puts T~, 1 ~< l~< L, and we would like to identify
a Q so that

Q()(/I,)(12) =]PI, 1 ~< l ~< L. (23)

In fuzzy regression we try for Q a linear, quadratic,
exponential function. In this section let us use
a quadratic. So, for Q we will attempt to substitute.

=. ~ 2 + B X 1 X 2 + ~ 2 (24)

for triangular fuzzy numbers A, B, C. Fuzzy regres-
sion is becoming an active area of research
[1, 17,42,43, 54].

We may now use a FNN3 two ways: (1) com-
putationally equivalent to the quadratic (Eq. (24));
or (2) learn the weights so that the quadratic ap-
proximates the unknown process Q.

First let us build a FNN3 equivalent to the quad-
ratic. In fact, this can be done for any fuzzy poly-
nomial. The network is shown in Fig. 4. Nodes
1 and 3 square their input, nodes 2 and 4 have
output equal to input, nodes 5 and 7 add their
inputs to produce output, and node 6 multiplies the
inputs. All arcs have fixed weight equal to one
except those showing A,B,C. In the second and
third layer we multiply the signal times the weight.

Therefore, the final output Y is given by Eq. (24).
So, if we know A, B and (' the FNN3 in Fig. 4 can
compute the value of the quadratic.

Now suppose that we do not know A, B, C and
we would like to find their values so that the output
from the quadratic 9l, when the inputs are
"~ll ~--- z~l ,)(12 = "~2, is approximately Tz, all I. We
want the FNN3 in Fig. 4 to learn its weights
(A, B, C) for the training data (X~, Tt), 1 ~< l <~ L.
A specialized backpropagation learning algorithm
for this FNN3 is presented in [4, 13,30,33]. No
numerical results have been reported using this
algorithm.

We cannot expect a FNN3 to be able to learn the
values of its weights for any training data. It was
shown in [9, 27] that a regular FNN3 is not a uni-
versal approximator. Let F be a continuous map-
ping from ~ × ~ into ~- and suppose F produced
the training data. That is, Tt=F()(~1,)(~2),
1 ~< I ~< L. In general we cannot expect to train
a regular FNN3 to learn this data unless F is
monotone [9]. F is monotone if and only if
given)('1 ~<)~1 and)(~ ~<)(2, all in ~,~, then
F(X'~, X'2) <~ F(X1, X2). The fact that hybrid fuzzy
neural nets can be universal approximators is dis-
cussed at the end of this section.

4.2. Fuzzy controller

We will show how to model an elementary fuzzy
controller using a HFNN1 (see also [4, 13, 30, 33]).
The fuzzy controller is specified by the rule table
given in Table 1 and the definition of the fuzzy

8 J.J. Buckle),, Y. Hayashi / Fuzz)' Sets and Systems 66 (1994) 1 13

Table 1
Fuzzy control rules in the industrial process (rule number
given in the right-hand corner)

e Ae

dl d2 G3 d, Gs

ffl /tl 1
F2 -41 2 A2 3
if2 /~2 4 "43 5
~e, ,4, 7 As 8
,e5 ,4s 9

• 44 6

_ A x

Input / 52 ~ / ' ~ Y ~ I

e e ~ e ~ _

~ - - Output

Fig. 6. Fuzzy controller as a fuzzy neural net.

m _ _ _ _ _ _ m

(a) 0 2"0 40 60 80 100

I ," . N J . N / , % ,
(b) -4 -3 -2 -1 0 1 2 3 4

(c) -4 -3 -2 -1 0 1 2 3 4

Fig. 5. Fuzzy numbers in the fuzzy controller rules: (a) for error;
(b) for change in error; (c) for output.

numbers is presented in Fig. 5. This fuzzy controller
accepts singleton input e = error and Ae = change
in error. Given values for e and Ae, the nine rules
are evaluated as follows: A1 = min(ffl (e), G2(Ae)),
. . . . A9 = min(Fs(e), t74(Ae)). Then, since we have
nine rules but only five control actions, we maxi-
mize the At corresponding to the same action "tk, as
follows: el = max(A1,A2), •2 = max(A3,A4), / ; 3 =

As, e4=max(A6,A7), es=max(As ,A9) . Then
each ek is assigned to its Ak, 1 ~< k ~< 5. To defuzzify
the result we first compute ,4 = O(ek,4k), where
union is taken as maximum, find 3 which is equal to
the center of gravity of ,4, and then 6 is the defuzzi-
fled output from the controller.

This fuzzy controller, modeled as a (hybrid)
FNN1, is shown in Fig. 6. In this net the input to
node 1 is ffl(e) and d2(Ae) as in rule number one,
and the output is A1 = min {Fl(e), G2(Ae)}. Nodes
1-9 take the rain of its inputs so they act like
evaluating the nine control rules. Also, the interac-
tion of signal e and fuzzy weight/~x, for neuron I, is
to evaluate F1 at e (same for neurons 1-9).
Neurons 10-14 take the max of their inputs, the
weights for these neurons are all equal to one.
Neuron 15 takes the union (max) of its fuzzy input
which is ~i.4i (multiplication), 1 ~< i ~< 5. The last
neuron 16 has the weight one and acts as the
defuzzifier.

How is this fuzzy neural net to be used? It can be
used in place of the fuzzy controller, or it is to learn
the fuzzy control rules (the weights Fi, Gi and ,4/)
given some training data. Because of the use of max
and rain this net will require a special learning
algorithm [4, 13, 30, 33].

4.3. Fuzzy expert system

A FNN3 is ideal for modeling a fuzzy expert
system [4,30,31,33-35]. Suppose we are given

J.J. Buckley, Y. Hayashi / Fuzzy Sets and Systems 66 (1994) 1 13 9

a fuzzy expert system with one block of rules

~ : I f X = , 4 ~ a n d Y = / ~ , t h e n Z = (T i , l~<i~<n.

(25)

the third section might be used to train this fuzzy
neural net. Once the FNN3 in Fig. 7 has been
trained its generalization property will allow it to
approximately operate as a fuzzy expert system.

Given some data X = A' and Y =/~ ' , the system is
to come up with its final conclusion Z = (7'. In this
paper it does not matter the exact details (genera-
lized modus ponens, etc.) on how it gets C', we will
only assume that the rules are evaluated separately
and their results are combined to obtain C'.

A fuzzy neural network of the fuzzy expert sys-
tem is shown in Fig. 7. The two input nodes have
their output equal to their input. We input the
information on X and Y and the nodes 1-n repres-
ent the n rules. Consider node 1 which is to model
N1. Given X = A' and Y = / ~ ' when Nt is evalu-
ated suppose the conclusion is Z = (~'1. Then, once
the net is trained the output from node 1 should be
approximately (7'1. All the rules are evaluated pro-
ducing separate conclusions Z -- (7'~, 1 <~ i ~< n,
when the system is presented with X = ,4', Y =/~ ' .
The fuzzy expert system now combines all the (7'~,
1 ~<i~< n, into one final conclusion Z = C'. The
weights I?~ and the output node are to model form-
ing (~' from (7'~, 1 ~< i ~< n.

Now suppose we have some training data
X = ,4~ and Y = / ~ for inputs and Z = / ~ for final
conclusion, 1 <~j ~< K. That is, we run the fuzzy
expert system for X = ,4~, Y = / ~ and it produces
Z = / ~ , all j. This then becomes the training set for
FNN3. One of the learning algorithms discussed in

Input W l l ~

A'-~(~~/~21 "~ ~1 Output

Fig. 7. Fuzzy expert system as a fuzzy neural network.

4.4. Fuzzy hierarchical analysis

This application shows a fuzzy neural network
for fuzzy hierarchical analysis [2]. Here we are
concerned with ranking a set of alternatives across
a collection of criteria. To simplify notation, etc. let
us assume we have three alternatives al , a2, a3 and
two criteria c~ ,c2. One first compares al to a2, al
to a3,a2 to a3 for c~ and then for c2. You also need
to compare c l and c2. We are to rank the alterna-
tives not the criteria. However, in hierarchical anal-
ysis we must pairwise compare all the criteria, as
discussed below, in order to obtain the final
ranking of the alternatives.

Let us consider the pairwise comparison of
al , a2, a3 for criterion c~. A person (expert, judge) is
asked to supply ratios for each pairwise compari-
son al to a2, al to a3, and a 2 to a3. If the person
considers a~ more important than a3, then the ratio
might be 3, or ~, or ~. The numbers in the ratio are
usually taken from the set {1,2 9}. The ratio
indicates the strength with which al dominates a3.
If the ratio for a~ to a3 is ~, then the ratio for a3 to
a~ is ~. Of course, the ratio for ai to ai is one for all i.

In fuzzy hierarchical analysis you are allowed to
use fuzzy ratios, or crisp ratios, in all comparisons.
A fuzzy ratio is the fuzzification of i/j where
i, j e { 1,2 9}. The exact value of the fuzzy ratio
does not matter in this paper so we assume that
these are all non-negative fuzzy sets.

For Cl assume that when we compare a~ to a 2 we
get ,4~, a 1 to a 3 is '42, and a 2 versus a 3 is ~z[3. If you
consider a~ more important than a2, for cl, then we
would expect that the support o f / f l lies in (1, M)
for some M > 1. Similarly, if we believe that a2 is
more important, then the support of A1 lies in (0, 1).
Employing criterion c2 let /31 be the value of a~
versus a2, /32 for a~ to a3, and/33 the outcome of
comparing a2 to a 3. For the criteria we compare c~
to c2 and obtain C. We need only one fuzzy set here
because there are only two criteria.

In fuzzy hierarchical analysis these fuzzy
sets A~, A 2 , A 3 , B~, B2, B3, and (7 are combined to

10 J.J. Buckle),, Y. Havashi / Fuzz)' Sets and Systems 66 (1994) 1 13

I n p u t s _
X ~ (" ~ Wn ~ / ~ - O u t p u t

)_

L 2
-

,0 j~' ~ I//" ~ Desired
~, ~ ~ ~ / ~ _ , , , ~ Output

k 3 ~ ~ ~ k l , ~ k 2 , ~ k 3

Fig. 8. Fuzzy hierarchical analysis as a fuzzy neural network.

produce the final weights t_7~ for the a~, 1 ~< i ~< 3.
Then, employing some method of ranking the fuzzy
sets Ui we rank the ai from most important (best) to
least important (worst).

A regular fuzzy neural net for fuzzy hierarchical
analysis is shown in Fig. 8. This net is a regular
FNN 3 except for the fact that all input neurons are
not connected to all the neurons in the hidden layer
[4, 31, 34, 35]. We now enlist the help of N experts
(judges) to rank the alternatives. The judges pro-
duce the training data for the net with fuzzy ratios
Akl ,Ak2, Zk3,Bkl ,Bk2,Bk3 , and Ck from expert
k and weights, from fuzzy hierarchical analysis,
Ukl,Uk2,Uk3, 1<~ k <~ N. The training set is
{ Akl /~k3 } for input and target { Ukl, /-7k2, Uk3 },
1 ~< k ~< N. The input nodes have their output the
same as their input. Nodes 1-3 are for criterion c~,
nodes 4-6 are for c2, and nodes 7 to 9 combine the
results across all the criteria to produce outputs
Ykl, Yk2, Yk3'

The fuzzy neural net is trained from the
combined results of N experts. Once trained, its
generalization property can be used to perform
fuzzy hierarchical analysis for other "judges" who
give data on only the comparison of the alterna-
tives for each criterion.

4.5. Fuzzy matrix equations

We wish to solve

AY =/~ (26)

for Y given m x n fuzzy matrix .4 = [du] for triangu-
lar fuzzy numbers a u and given b ' = (bl b,,)
a m x 1 vector made up of triangular shaped fuzzy
numbers, and ~' = (.71 :~,) is the unknown n x 1
vector of fuzzy numbers. See [15] for a discussion
of solving fuzzy matrix equations and [3] for a gen-
eral discussion on solving fuzzy equations.

A FNN3 solution to Eq. (26) is given in Fig.
9 [4, 13]. The input to the net is the ith row of ,4.
The input neurons make no change in their inputs,
so the input to the output neuron is

all x1 + "'" + ainXn, (27)

which is the ith component in the product ,4~. The
output, in the output neuron, equals its input, so

Yi = d i lXl + "'" + ainxn for 1 ~< i ~< m. (28)

How is the FNN 3 going to solve the fuzzy matrix
equation? The training data is ((l i l ain) for input
and target output is bl, 1 ~< i ~< m. A learning algo-
rithm, possibly one of those discussed in Section 3,
is then employed to find the best weights which will
produce the unknown fuzzy vector ~.

The fuzzy matrix equation may have no solution
for fuzzy numbers Yi, 1 ~< i ~< m. In this case there is
no hope in making the error measure close to zero.
One could then try more general fuzzy sets for the
~ and possibly try a fuzzy genetic algorithm to
train the FNN 3 (see Section 3.5.4).

Input

0°,p °,

Fig. 9. Fuzzy neural net to solve fuzzy matrix equation.

J.J. Buckley, Y. Hayashi Fuzzy Sets and Systems 66 f 1994) 1-13 1t

Alternatively, the FNN3 in Fig. 9 could be used
to evaluate fuzzy matrix equations. If we know
/1 and -'L then the FNN3 computes b,

4.6. Universal approximators

Numerous papers have appeared showing that
a regular neural net (Fig. l) is a universal approxi-
mator. What this means is that given continuous
9: ~z ~ ~, a compact subset J of ~z and e > 0,
there is a NN (weights Wig, Vk, and K = number of
hidden neurons) so that

INN(xl ,x2) - 9 { X l , X 2) [< ~ for all (x t ,x2) in J.

(29)

We have used the notation NN(x t ,x2) to denote
the output y from the neural net given inputs
x l ,x2 . Can this result be generalized to fuzzy neu-
ral nets?

Let continuous G : o~ x ~ --, ~ , J be a compact
subset of ~ x ~ and e > 0. Can we build a regular
FNN3 so that

I [F N N 3 (X 1 , X e) - G(X1,X2)I] < e

for all (X t , X 2) in J? (30)

See [9] for the details on the topology for ~ and
the metric I!'1[in Eq. (30). In general, the answer to
the above question is no because FNN3 is a mono-
tonic mapping from o ~ × o~ into o~. If G is also
monotonic then we might hope to build a FNN3
that can uniformly approximate G on compact
subsets of ~ × o~.

However, it was also shown in [9] that certain
HFNN3's are universal approximators. But these
HFNN3's were not continuous. Future research
will be concerned with finding continuous
HFNN3's which are universal approximators.

It is important to note that the fuzzy neural nets
discussed in this subsection are to be built for fast
parallel computation and learning algorithms are
not relevant.

4.7. Other applications

A regular FNN3 has been applied to a fuzzy classi-
fication problem [4,13, 36]. In [37, 39] the authors

employ a regular FNN2 to learn/interpolate fuzzy
iVthen rules, The FNNt in [48,49] was used to
learn the iLthen rules in a fuzzy controller. Finally,
Yamakawa's fuzzy neuron was applied to pattern
recognition [47, 50,56-58] and system identifica-
tion [59].

5. Summary and conclusions

In this paper we reviewed learning algorithms
and applications of fuzzy neural networks. Our
definition of a fuzzy neural network is a layered,
feedforward, network that processes fuzzy set sig-
nals and/or has fuzzy set weights.

The main topic for future research is to develop
learning algorithms for fuzzy neural nets that have
more general fuzzy sets. Initially researchers as-
sumed the signals/weights were (symmetric) tri-
angular fuzzy numbers. This is too restrictive for
applications. We need now to assume the sig-
nals/weights are fuzzy numbers (any type) or
general fuzzy sets. It appears that (fuzzy) genetic
algorithms might be the tool needed to handle the
more general fuzzy sets.

Once we have a general learning algorithm for
fuzzy neural nets the applications will follow
naturally.

References

[I] A. Bardossy, I. Bogardi and L, Duckstein, Fuzzy nonlinear
regression analysis of dose-response relationships, Euro-
pean J. Oper. Res. 66 (1993) 46-51.

[2] J.J. Buckley, Fuzzy hierarchical analysis, Fuzz)" Sets and
Systems 17 (1985) 233-247.

[3] J.J. Buckley, Solving fuzzy equations. Fuzz), Sets and
Systems 50 ~1992) 1 14.

[4] J.J. Buckley and Y. Hayashi, Fuzzy neural nets and ap-
plications, Fuzzy Systems and AI, 3 (1992) 11 41.

[5] J.J. Buckley and Y. Hayashi, Fuzzy simulation based on
fuzzy chaos, Proc. 2nd IEEE lnternat. ('on[. on Fuzz),
Systems, San Francisco (1993) Vol. II, 1039 1043.

[6] J.J. Buckley and Y. Hayashi, Fuzzy genetic algorithms for
optimization, Proc. lnternat. Joint Conf on Neural Net-
works, Nagoya, Japan (1993) Vol. 1, 725 728.

[7] J.J. Buckley and Y. Hayashi, Numerical relationships be-
tween neural networks, continuous functions, and fuzzy
systems, Fuzz), Sets and Systems 60 (1993} 1 8.

12 J.J. Buckle)', Y. Hayashi / Fuzzy Sets and Systems 66 (1994) 1 13

[8] J.J. Buckley and Y. Hayashi, Hybrid neural nets can be
fuzzy controllers and fuzzy expert systems, Fuzzy Sets and
Systems 60 (1993) 135 142.

[9] J.J. Buckley and Y. Hayashi, Can fuzzy neural nets ap-
proximate continuous fuzzy functions? Fuzzy Sets and
Systems 61 (1993) 43-52.

[10] J.J. Buckley and Y. Hayashi, Genetic algorithms for fuzzy
neural nets, unpublished manuscript.

[11] J.J. Buckley and Y. Hayashi, Fuzzy backpropagation for
fuzzy neural nets, unpublished manuscript.

[12] J.J. Buckley and Y. Hayashi, Fuzzy genetic algorithm and
applications, to appear in Fuzzy Sets and Systems.

[13] J.J. Buckley and Y. Hayashi, Fuzzy neural networks, in:
R.R. Yager and L.A. Zadeh, Eds., Fuzzy Sets, Neural
Networks and Soft Computing (to appear).

[14] J.J. Buckley and Y. Hayashi, Applications of fuzzy chaos to
fuzzy simulation, to appear in Fuzzy Sets and Systems.

[15] J.J. Buckley and Y. Qu, Solving systems of fuzzy linear
equations, Fuzzy Sets and Systems 43 (1991) 33 43.

[16] L. Davis, Handbook of Genetic Algorithms (Van Nostrand
Reinhold, New York, 1991).

[17] P. Diamond, Fuzzy least squares, Inform. Sci. 46 (1988)
141-157.

[18] P. Diamond, Chaos and fuzzy representations of dynam-
ical systems, Proc. 2nd Internat. Conf. on Fuzzy Logic and
Neural Networks, lizuka, Japan (1992) 51 58.

[19] P. Diamond, Chaos and information loss in fuzzy dynam-
ical systems, unpublished manuscript.

[20] D.E. Goldberg, Genetic Algorithms in Search, Optimization,
and Machine Learning (Addison-Wesley, Reading, MA
1989).

[21] M.M. Gupta, Fuzzy logic and neural networks, Proc. 2nd
lnternat. Conf. on Fuzzy Logic and Neural Networks,
Iizuka, Japan (1992) 157 160.

[22] M.M. Gupta and G.K. Knopf, Fuzzy neural network ap-
proach to control systems, Proc. 1st lnternat. Symp. on
Uncertainty Modeling and Anal),sis, Maryland, MD (1990)
483 488.

[23] M.M. Gupta and J. Qi, Fusion of fuzzy logic and neural
networks with applications to decision and control prob-
lem, Proc. NAFIPS-'91, Columbia, MO (1991) 327 328.

[24] M.M. Gupta and J. Qi, On fuzzy neuron models, Proc.
Internat. Joint Conf. on Neural Networks, Seattle (1991)
Vol. II, 431-436.

[25] M.M. Gupta and J. Qi, On fuzzy neuron models, in:
L. Zadeh and J. Kacprzyk, Eds., Fuzzy Logic for the
Management of Uncertainty (Wiley, New York, 1992)
479-491.

[26] Y. Hayashi and J.J. Buckley, Fuzzy controllers and fuzzy
expert systems as hybrid neural nets, Proc. 5th IFSA,
Seoul, Korea (1993) Vol. I, 70-72.

[27] Y. Hayashi and J.J. Buckley, Are regular fuzzy neural nets
universal approximators? Proc. Internat. J. Conf. Neural
Networks, Nagoya, Japan (1993) Vol. I, 721-724.

[28] Y. Hayashi and J.J. Buckley, Direct fuzzification of
neural networks, Proc. 1st Asian Fuzz)' Systems Syrup.,
Singapore (1993) 560-567.

[29] Y. Hayashi and J.J. Buckley, Fuzzy max-min neural con-
troller, Fuzzy Sets and Systems, under revision.

[30] Y. Hayashi, J.J. Buckley and E. Czogala, Systems engineer-
ing applications of fuzzy neural networks, J. Systems
Enorg. 2 (1992) 232-236.

[31] Y. Hayashi, J.J. Buckley and E. Czogala, Fuzzy neural
network with fuzzy signals and weights, Proc. Internat. J.
Conf. Neural Networks, Baltimore (1992) Vol. II, 696-701.

[32] Y. Hayashi, J.J. Buckley and E. Czogala, Fuzzy neural
controller, Proc. IEEE Internat. Conf. Fuzzy Systems, San
Diego (1992) 197-202.

[33] Y. Hayashi, J.J. Buckley and E. Czogala, Systems engineer-
ing applications of fuzzy neural networks, Proc. lnternat.
Joint Conf. on Neural Networks, Baltimore (1992) Vol. II,
412-418.

[34] Y. Hayashi, J.J. Buckley and E. Czogala, Direct fuzzifica-
tion of neural network and fuzzified delta rule, Proc. 2nd
Internat. Conf. on Fuzz)' Logic and Neural Networks,
lizuka, Japan (1992) 73-76.

[35] Y. Hayashi, J.J. Buckley and E. Czogala, Fuzzy neural
network with fuzzy signals and weights, lnternat. J.
Intelligent Systems 8 (1993) 527-537.

[36] H. Ishibuchi, R. Fujioka and H. Tanaka, An architecture
of neural networks for input vectors of fuzzy numbers,
Proc. IEEE Internat. Conf. on Fuzz)' Systems, San Diego
(1992) 1293-1300.

[37] H. Ishibuchi, R. Fujioka and H. Tanaka, Neural networks
that learn from fuzzy i~then rules, IEEE Trans. Fuzzy
Systems 1 (1993) 85 97.

[38] H. lshibuchi, K. Kwon and H. Tanaka, Learning of fuzzy
neural networks from fuzzy inputs and fuzzy targets, Proc.
5th IFSA Worm Congr., Seoul, Korea (1993) Vol. I,
147-150.

[39] H. lshibuchi, H. Okada and H. Tanaka, Interpolation of
fuzzy iLthen rules by neural networks, Proc. 2rid Internat.
Conf. on Fuzzy Logic and Neural Networks, lizuka, Japan
(1992) 337-340.

[40] H. Ishibuchi, H. Okada and H. Tanaka, Learning of neural
networks from fuzzy inputs and fuzzy targets, Proc. Int. J.
Conj. on Neural Networks, Beijing, China (1992) Vol. III,
447-452.

[41] H. Ishibuchi, H. Okada and H. Tanaka, Fuzzy neural
networks with fuzzy weights and fuzzy biases, Proc. IEEE
lnternat. Conf. Neural Networks, San Francisco (1993) Vol.
III, 165(~1655.

[42] H. Ishibuchi, H. Okada and H. Tanaka, An architecture of
neural networks with interval weights and its application
to fuzzy regression analysis, to appear in Fuzzy Sets and
Systems.

[43] H. Ishibuchi and H. Tanaka, Fuzzy regression analysis
using neural networks, Fuzzy Sets and Systems 511 (1992)
257-265.

[44] J.M. Keller and D. Hunt, Incorporating fuzzy membership
functions into the perceptron algorithm, IEEE Trans.
Pattern Anal. Mach. lntell. 7 (1985) 693-699.

[45] S.C. Lee and E.T. Lee, Fuzzy sets and neural networks, J.
Cybernetics 4 (1974) 83 103.

J.J. Buckle)', Y. Hayashi / Fuzz), Sets and Systems 66 (1994) 1-13 13

[46] S.C. Lee and E.T. Lee, Fuzzy neural networks, Math.
Biosci. 23 (1975) 151-177.

[47] K. Nakamura, T. Fujimaki, R. Horikawa and Y. Ageishi,
Fuzzy network production system, Proc. 2nd Internat.
Con[] on Fuzz)' Logic and Neural Networks, lizuka, Japan
(1992) 127-130.

1,48] D. Nauck and R. Kruse, A neural fuzzy controller learning
by fuzzy error propagation, Proc. NAFIPS 1992, Puerto
Vallarta, Mexico (1992) Vol. I1, 388-397.

1,49] D. Nauck and R. Kruse, A fuzzy neural network learning
fuzzy control rules and membership functions by fuzzy
error backpropagation, Proc. IEEE Internat. Conf. on
Neural Networks, San Francisco (1993) Vol. II, 1022-1027.

[50] M. O'Hagan, A fuzzy neuron based upon maximum
entropy ordered weighted averaging, in: B. Bouchon-
Meunier, R.R. Yager and L.A., Zadeh, Eds., Uncertainty in
Knowledge Bases, Lecture Notes in Computer Science,
Vol. 521 (Springer, Berlin, 1991) 598-609.

1-51] I. Requena and M. Delgado, R-FN: A model of fuzzy
neuron, Proe. 2nd Internat. Conf. on Fuzz), Logic and
Neural Networks, lizuka, Japan (1992) 793 796.

[52] R. Serra and G. Zanarini, Complex Systems and Cognitive
Processes (Springer, Berlin, 1990).

[53] H. Takagi, Fusion technology of fuzzy theory and neural
networks survey and future directions, Proc. Internat.

Conf. on Fuzzy Logic and Neural Networks, lizuka, Japan
(1990) 13-26.

[54] H. Tanaka, S. Uejima and K. Asai, Linear regression
analysis with fuzzy model, IEEE Trans. Systems Man
Cybernet. 12 (1982) 903-907.

[55] M. Tokunaga, K. Kohno, Y. Hashizume, K. Hamatani, M.
Watanabe, K. Nakamura and Y. Ageishi, Learning Mech-
anism and an application of FFS-Network reasoning sys-
tem, Proc. 2nd Internat. Conf. on Fuzz), Logic and Neural
Networks, lizuka, Japan (1992) 123-126.

1-56] T. Yamakawa, Pattern recognition hardware system em-
ploying a fuzzy neuron, Proc. Internat. Conf. on Fuzzy
Logic, lizuka, Japan (1990) 943-948.

[57] T. Yamakawa and M. Furukawa, A design of membership
functions for a fuzzy neuron using example based learning,
Proc. IEEE lnternat. Conf. Fuzzy Systems, San Diego, CA
(1992) 75-82.

1,58] T. Yamakawa and S. Tomoda, A fuzzy neuron and its
application to pattern recognition, Proc. 3rd IFSA Cong.,
Seattle (1989) 30 38.

[59] T. Yamakawa, E. Uchino, T. Miki and H. Kusanagi, A neo
fuzzy neuron and its application to system identification
and prediction of the system behavior, Proc. 2nd lnternat.
Con/i on Fuzz)" Logic and Neural Networks, lizuka, Japan
(1992) 477-483.

