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Abstract 

In this paper a fuzzy neural network will be a layered, feedforward, neural net that has fuzzy signals and/or fuzzy 
weights. We survey recent results on learning algorithms and applications for fuzzy neural networks. 
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1. Introduction 

In this section we will first describe what we mean 
by a neural net, hybrid neural net, fuzzy neural net, 
and hybrid fuzzy neural net. Then we introduce 
notation that will be used in the rest of the paper. 

Consider the three layered, feedforward, neural 
net shown in Fig. 1. For  simplicity we have as- 
sumed only two input neurons, one hidden layer, 
and one output neuron. We begin by having the 
signals and weights of all real numbers. 

All neurons have a transfer function f which 
translates input to output. Usually the input neur- 
ons have y = f ( x )  = x (no change in input) and all 
the other neurons have the sigmoidal function 
y = f ( x ) = ( 1  + e - X )  -1. However, the transfer 
function, in general, can be any mapping f from the 
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real numbers into the real numbers. Also, we will 
usually not use a bias term in the sigmoidal function. 

In this section we will have f ( x )  = x in the two 
input neurons and the sigmoidal function in all 
other neurons. If the input signals are xl and x2 (see 
Fig. 1), then the output from neuron # 1 (#  2) in 
the input layer is xl (x2). The input to neuron # k  
in the hidden layer is 

lk  = XIW1k  @ X2W2k , l <~ k <~ K .  (1) 

The output from hidden neuron # k will be 

Z k = f ( I k ) ,  1 <~k<<.K, (2) 

for sigmoidal f It follows that the input to the 
output neuron is 

Io = z l  vl + ... + z r v K ,  (3) 

and its output is 

y = f ( l o  ) (4) 
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Fig. 1. Neural  network. 
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input to hidden neuron # k is 

]-k = X 1 W l k  + X 2 W 2 k ,  l <<, k <~ K,  (5) 

where we use standard fuzzy arithmetic to compute 
]-k. The output from the kth hidden neuron will be 

Zk=f(]-k), l~<k~<K,  (6) 

for sigmoidal f, where the extension principle is 
used to obtain Z,k. It follows that the input to the 
output neuron is 

1-o = Z~ V1 + "" + Zr  VK (7) 

and the final output will be 

=f ( Io) ,  (8) 

for sigmoidal f. We will have sigmoidal f in the 
output neuron when we require y to be in [0, 1], 
otherwise we omit f and have y = Io. 

What we have just described is what we call 
a regular neural net (NN). If we employ other 
operations like a t-norm, or a t-conorm, to combine 
the incoming data to a neuron (Eqs. (1) and (3)) we 
obtain what we call a hybrid neural net (HNN). 
HNNs also process real number signals and have 
real number weights. There are many applications 
of HNNs (see [7, 8, 26, 29, 32]). We will be con- 
cerned with fuzzifying both NNs and HNNs in this 
paper. 

A regular fuzzy neural net (FNN) is a NN 
with fuzzy signals and/or fuzzy weights. We differ- 
entiate between different types of FNNs as fol- 
lows: (1) FNN1 has real number input signals 
but fuzzy weights; (2) FNNz has fuzzy set input 
signals and real number weights; and (3) FNN3 has 
both fuzzy set input signals and fuzzy weights. We 
will be predominately interested in FNN3 in this 
paper. 

Let us now describe in more detail the internal 
computations of a FNN3. We place a bar over 
a symbol if it represents a fuzzy set and all our fuzzy 
sets will be fuzzy subsets of the real numbers. In 
a FNN3 the inputs X1,X2, the weights Wik, Vk, 
and the output Y will all be fuzzy. The architecture 
of FNN3 will be the same as in Fig. 1. The output 
from input neuron #1 (#2)  is )(1 (-~2). So, the 

using regular fuzzy arithmetic in Eq. (7) and the 
extension principle in Eq. (8). When we do not need 

to be a fuzzy subset of [0, 1] we omit f i n  Eq. (8) 
and set Y = ]-o. 

What we have just described is a regular FNN3 
where standard fuzzy arithmetic (add, multiply) is 
used to compute the output. In a hybrid fuzzy 
neural net (HFNN) we may combine the fuzzy 
signals and weights using other operations besides 
addition and multiplication to obtain ]-k and ]-o. 
HFNNs are of recent research interest (see 
I-4, 7, 9, 13]) and we shall discuss them again in the 
following sections. 

In Section 2 we briefly survey the literature on 
FNNi, i =  1,2,3, and HFNNs. Section 3 is con- 
cerned with learning algorithms for FNNi, 
i = 1, 2, 3, and applications of fuzzy neural nets are 
outlined in Section 4. Section 5 contains a brief 
review and our conclusions. 

We will now introduce notation to be employed 
in the rest of the paper. If b = is a fuzzy set, then f i (x )  
represents the membership function for ff evaluated 
at x. The or-cut of a fuzzy set ff is defined as 

f i [~]={xl f f (x) />c~} f o r 0 < c ~ <  1. (9) 

The ct = 0 cut of ff is defined separately to be the 
closure of the union of all the fi[~], 0 < e ~< 1. 
F[0] is also called the support of ft. A triangular 
fuzzy number N is specified by three numbers 
a < b < c where: (1) AT(x) = 0 for x <~ a , x  ~ c and 
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N(b) = 1; and (2) the graph of ~7(x) is a straight line 
segment from (a,0) to (b, 1) and from (b, 1) to (c,0). 
We write ~7 = (a/b/c). A triangular shaped fuzzy 
number is similar to a triangular fuzzy number 
except that the graph of N(x) need not be straight 
line segments on [a, b] or on [b, c]. A fuzzy set is 
discrete when the membership function is positive 
at only a finite number of values of x. We say 
a triangular fuzzy number/~ = (a/b/c) is non-nega- 
tive when a >~ 0. If ]V and ~3 are two fuzzy sets, then 
we write )~ <~ A3 when N(x) ~< ~3(x) for all x. 

2. Literature 

Probably the first papers to introduce fuzzy sets 
into neural nets were [45,46] where the authors 
generalized the McCulloch Pitts model by using 
intermediate values between zero and one. A survey 
paper [53] in 1990 discussed the fusion of neural 
nets and fuzzy logic, however very little research on 
fuzzy neural nets was done by then with the excep- 
tion of [44] and Yamakawa's fuzzy neuron. In [44] 
the authors proposed adding fuzzy membership 
functions to the perceptron. 

Yamakawa's initial fuzzy neuron is discussed in 
[56-58] and his new fuzzy neuron in [59]. His 
initial fuzzy neuron was of type FNNI.  The new 
fuzzy neuron has, instead of a single weight on each 
incoming arc to a neuron, a set of fixed fuzzy sets 
and real number weights. A learning algorithm is 
applied to the weights. Learning algorithms are 
discussed in more detail in Section 3. See also [50] 
for a discussion about improving Yamakawa's in- 
itial fuzzy neuron. 

Similar to Yamakawa's new fuzzy neuron is the 
fuzzy neural net presented in [47, 55]. They also 
have a collection of weights, and fuzzy sets, at- 
tached to each incoming arc to a neuron. Learning 
is applied to both the weights and the fuzzy set. The 
authors in [48,49] also use a FNN1, present 
a learning algorithm, and suggest applications to 
fuzzy control. 

Next, let us consider fuzzy neural nets of type 
FNN2. In [51], they have fuzzy signals, real num- 
ber weights, and a fuzzy threshold within the neur- 
ons. The authors in [36, 37, 39-41] have a FNN2 
with learning on the real weights performed by 

~-cuts on the signals, and they generalize to 
a FNN3 in [38,41]. 

Gupta [21-25] has presented various models of 
a fuzzy neuron. These models include FNN1, 
FNN2 and FNN3 but no learning algorithms were 
presented in these papers. 

In a series of papers [4, 7, 9 11, 13, 27, 28, 30, 31, 
33 35] the authors discuss fuzzy neural nets with 
emphasis on learning algorithms and applications 
of FNN3. 

The need for hybrid FNNs is twofold: applica- 
tions and the fact that regular FNN3s are 
not universal approximators. Applications using 
hybrid fuzzy neural nets [4, 13] are discussed in 
Section 4 and the result that hybrid FNN3s can be 
universal approximators [7, 9] is discussed also in 
Section 4. 

We will survey many of the results in the papers 
referenced above in the following two sections. 

3. Learning 

In this section we will survey learning algorithms 
for FNN/, i = 1,2, or 3, that have been studied in 
the literature. We concentrate mostly on FNN3. 
No learning algorithms have been presented for 
HFNNs. 

3.1. Fuzzy backpropagation 

In [4, 11, 13, 28, 31, 34, 35] the authors developed 
a fuzzy backpropagation algorithm for FNN3. Let 
the training set be (Xl, T~), )~l = ();~l,)(12) for in- 
puts and T~ desired output, 1 ~< l ~< L. Given input 
)(t let the actual output be ITt. The authors assumed 
that )~tj, I~';~, and lPk are all triangular fuzzy num- 
bers with )(~j in [0,1] and the weights are in 
[ - 1 ,  1]. Also, Tt and Yi will be triangular shaped 
fuzzy numbers in [0, 1]. 

The error measure they adopted was 

1 L 

= ~Y,7, (~' - ?')~' (10)  

which is to be minimized. However, /7 will not be 
zero, due to fuzzy arithmetic, even when Yt = ;rt, all 
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I. Therefore, they required a special stopping rule 
for the iterations. 

Let ]P/[0] = [hl ,  h2]. If lVl = Tz all l, then/~[0] 
= [ - 2 , 2 ] ,  where 

1 L )2. 
'~ = ~ l~= l ( tt2 -- tzl (11) 

Let e > 0 denote some acceptable deviation from 
the value of/~ when Yt = ]rt all I. Then the stopping 
rule they adopted was to end the iterations on the 
values of the weights when/~ is inside the set 

f~= [ - 2  - e , 2  + e] × [0,1]. (12) 

They now directly fuzzified the standard delta rule 
in backpropagation to update the values of the 
weights. 

It is interesting to note that this procedure fails 
to converge to a correct set of weights. What they 
found [11] was that there are values of the weights 
that make/~ inside f2 but do not make Y~ close to 
Tt, all I. That is, they have the wrong stopping rule 
and the algorithm converges to the wrong weights. 
The algorithm has been corrected but no new re- 
suits have been reported. 

3.2. Backpropagation on a-cuts 

Also in [11] (see also [31,34,35]), the authors 
discuss a backpropagation algorithm for the indi- 
vidual a-cuts of the weights in a FNN3. Let 
E[~]  = [el (~), e2 (~)], Wik [0~] -m- [Wik 1 (0~), Wik 2(~)], 
and ITk[~] = [Vkl(~t),VR2(~)], 0 ~< ~t ~< 1. They de- 
veloped a backpropagation algorithm to update 
the values of Wikl(Ct),Wik2(a),Vkl(a), and Vk2(a), 
based on the partial derivates of e~(a) and e2(~) 
with respect to Wikl(Og) . . . .  ,Vk2(00, for different 
values of a in [0, 1]. This method can also fail 
because when you put the a-cuts of a weight back 
together you may not get a fuzzy set. The problem 
is that the backpropagation algorithm indepen- 
dently updates the a-cuts of the weights. No con- 
straint is built in to insure that the new weights are 
in fact fuzzy sets. You could obtain 1#'11 [0] = 
[0, 1], but ff'~l [0.5] = [ -  1, 0]. 

3.3. a-cut based backpropagation 

In a series of papers [36-41] these authors de- 
veloped backpropagation based learning algo- 
rithms for: (1) real signals and interval weights and 
biases; (2) FNN2; and (3) FNN3. Let us now review 
their learning method for FNN3 [38,41]. 

They assumed that: (1) the inputs )(~j are non- 
negative fuzzy numbers; (2) the weights and bias 
terms are symmetric triangular fuzzy numbers; and 
(3) Tt is a fuzzy number. Let ~rt[~ ] = [tu(a), 
hE(a)], Y/[a] = [yll(a),yl2(a)], ~/~"ik[0] = [Wikl, 
Wikz], and l?k[0 ] = [VRI,Vk2]. Also let as~[0,1],  
l~<s~<S, s o t h a t 0 ~ < a l < ~ z < - . . < a s ~ <  1. The 
error measure to be minimized is 

1 L S 

E = 2~:--~1 s:lE as(Etsl + Eta2), (13) 

where 

Eta1 = (tlx(~) - ytl(a~)) z, (14) 

Els2 = (t ,2(~s)- y~2(~)) 2. (15) 

They developed a standard backpropagation algo- 
rithm for the supports of the weights and bias 
terms. Since these fuzzy sets are symmetric triangu- 
lar fuzzy numbers you know the whole fuzzy set if 
you know their support. For example, one can 
write down a formula for ~E/t~Vkl . . . . .  ~E/t3Wik 2 sim- 
ilar to the delta rule in standard backpropagation 
and this is used to compute the new supports of the 
weights. A small example is given in [38, 41] show- 
ing good results for this learning method. However, 
this procedure gets more and more complicated 
(the partials of E with respect to the weights get 
more involved) if the weights are other types of 
fuzzy numbers and/or the inputs are not non-nega- 
tive. This method is not applicable when the inputs 
and/or the weights become more general fuzzy sets. 

3.4. Random search 

Suppose that the inputs and 7 ~, are fuzzy num- 
bers and the weights are triangular fuzzy numbers. 
Let ff'ik = (Wikl/W~k/Wik2), Vk = (VkJV'k/Vk2). We ad- 
opt some error measure to be minimized. Assume 
we wish to minimize E in Eq. (13). In this method 
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w e  randomly generate Wikl, Wik , Wik2, Ukl , Ilk, Uk2 , a l l  

i,k, to minimize E. For a reasonably large FNN3 
this procedure will be too time consuming so let us 
now look at a directed random search method 
called genetic algorithms. 

3.5. Genetic algorithms 

Genetic algorithms [16, 20, 52] are finding more 
and more applications in fuzzy systems. Recently 
they have been applied to fuzzy optimization 
[6, 12]. In [10] the authors use genetic algorithms, 
to train a FNN3. We will now review this recent 
research on learning. The type of genetic algorithm 
used will depend on the kinds of fuzzy sets used for 
input and weights, and the error measure to be 
minimized. 

3.5.1 
Suppose X~j, Wik , and l?k are all triangular fuzzy 

numbers with ]r~ a triangular shaped fuzzy number. 
Define Tie0] = [tll,tl2] and Yt[0] = [Yll,Yt2]. 
The authors wish to minimize E where E--  
max{E1,E2} and 

E1 = ~ ( t l l  - -  yll) 2, (16) 
1=1 

1 L 
E 2 = ~ l~1 (tl2 -- yl2) 2. (17) 

A (regular) genetic algorithm is designed to manage 
the supports of the weights in order to minimize E. 
Since E is based on the supports of 171 and Tt the 
algorithm only needs to keep track of the supports 
of the weights. An example in [10] shows that this 
type of learning algorithm can be used to train 
a FNN3. 

However, this learning method may fail because 
it only ensures that the support of Yt is close to the 
support of Tt, all l. It may happen that the algo- 
rithm terminates with E very small but Y~(x) differs 
significantly from Tt(x) for some x in the intersec- 
tion of their supports. Then we must use an error 
measure that takes into account the whole shape of 
Yl(x) and the whole shape of ]Pz(x), all I. These new 
error measures are discussed in the rest of this 
subsection. 

3.5.2 
The inputs and weights are assumed to be tri- 

angular fuzzy numbers with T~ a triangular shaped 
fuzzy number. The error measure to be minimized 
will be based on e-cuts of '7~ and ]rt similar to Eq. 
(13). Let 

E = ~ (Etsl + Els2), (18) 
1=1 s = l  

with Elsl (E~:) specified by Eq. (14) (Eq. (15)). The 
(regular) genetic algorithm will be similar to the one 
in 3.5.1 except that it searches for the supports of 
the weights, and where the membership function 
will be one, to minimize E in Eq. (18). Since the 
input and weights are triangular fuzzy numbers all 
that one needs to know is the support of the 
weights, and where membership equals one, to 
compute E employing interval arithmetic. 

3.5.3 
Now suppose that triangular fuzzy weights are 

not sufficient to make Yt approximately equal to Tt 
for all l. So let the weights be triangular shaped 
fuzzy numbers with inputs triangular fuzzy num- 
bers and T~ a triangular shaped fuzzy number. The 
error measure is the same as the E defined in Eq. 
(18). The genetic algorithm is the same as in 3.5.2 
except for one major change: it keeps track of 
certain e-cuts of the weights. That is, they store for 
each weight its es, 1 ~< s ~< S, cuts. Knowing the 
es-cuts of the weights and inputs one can compute 
the ors-cuts of the output using interval arithmetic 
and hence obtain E. 

3.5.4 
Now the inputs, weights, and T~ are arbitrary 

discrete fuzzy subsets of [ -  M, M] for some M > 0. 
Suppose the fuzzy sets Yt and 7~t can have their 
membership functions positive only at xp in 
[ - M , M ]  where - M  = Xo < xl < ... < xp= M. 
Then the error measure will be based on member- 
ship values so let 

1 L e 

E : ~ l ~  1 p~=o ( Y l ( X p ) -  Tl(Xp)) 2, (19) 

which is to be minimized. That is, the authors in 
[10] designed a fuzzy genetic algorithm to find the 
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weights to drive E to zero. A population member 
H in a regular genetic algorithm looks like 

H = (hi, h2 . . . . .  h,,), (20) 

where each hi is zero or one. Binary notation (zeros 
and ones) is used to specify real numbers in a regu- 
lar genetic algorithm. In a fuzzy genetic algorithm 
H is defined as in Eq. (20) but each hl is a real 
number in [0, 1]. In a fuzzy genetic algorithm the hi 
give membership values in fuzzy sets. Since the 
elements in H are membership values of fuzzy sets it 
was called a fuzzy genetic algorithm. 

Input 

*O-- 
xi , ~ p i l  ~ ~ Output 

Nn 
- < >  ,o 

Fig. 2. Yamakawa's fuzzy neuron. 

3.6. Fuzzy chaos 

Let ~ denote all the fuzzy numbers in some 
interval [ - M , M ] ,  M > 0. Now suppose that F is 
a fuzzy chaotic mapping from o~ into ~- [18, 19] 
and let A7;+1 = F(/qi), i =  0,1,2 . . . .  with N0 ini- 
tially chosen in o~. Since F is chaotic the sequence 
/ql appears to be a random sequence of fuzzy num- 
bers in [ -  M, M]. This method could be used, as an 
alternative to pure random search, to train 
a FNN3. Fuzzy chaos has been applied to solve 
a fuzzy optimization problem [5, 14]. 

Assume that we have selected some error 
measure E, possible one of those defined in Sections 
3.3 or 3.5, to be minimized. We will employ a fuzzy 
chaotic mapping F as the basis of a search for the 
fuzzy number weights to make E close to zero. 
Initially pick values for the weights Wik, o and 
l?k.O in o~. Now generate a sequence of weights 
Wik, u+l = F( l~ik ,  u), Vk,u+l = F(Vk,u) ,  u -~ 0,1,2 . . . .  
looking for those values in ~ that produce a value 
of E close to zero. This would be an interesting 
topic for future research. 

3.7. Other learning methods 

In [48,49] the authors have: (1) real number 
signals; (2) monotone increasing membership func- 
tions for the fuzzy weights; and (3) a special fuzzy 
error measure. They employ a special learning al- 
gorithm, inspired by the standard backpropagation 
learning algorithm, so that the FNN~ can learn the 
fuzzy weights. 

Input 
Xl ~ ~ y t  

wm 

Fig. 3. Fuzzy neuron. 

Yamakawa's new fuzzy neuron [59] has a learn- 
ing algorithm for the weights. The input to a fuzzy 
neuron is shown in Fig. 2. The collection/iij and 
wij, 1 ~ j <~ n, exist for each input xi, 1 ~< i ~< m. 
The fiij are fixed fuzzy sets (triangular fuzzy num- 
bers) and the wij are real number weights. Given xi, 
only two neighboring/7ij can be not zero, say ~ik(Xi) 
and ~i.k+l(Xi) are not zero. In Fig. 2, 

Yi = ~ik(Xi)Wik "Jr- ~i,k+ l(Xi)Wi,  k+ 1 (21) 

and the input to the neuron is yi, 1 ~< i ~< m, with 
output Yl + "'" + Ym. The learning algorithm for 
the wij is based on a heuristic rule which produces 
an update formula for the weights similar to that 
obtained in backpropagation in standard NNs. 

The FNN in [47, 55] is similar to Yamakawa's 
fuzzy neuron. This fuzzy neural net is based on the 
fuzzy neuron shown in Fig. 3. The output y is 
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computed as 

~.i% 1 wifii(xi) (22) 
Y - ~ i %  1 wi 

The fii are assumed to be trapezoidal fuzzy num- 
bers. A FNN is made up of a network of fuzzy 
neurons shown in Fig. 3. The authors claim to have 
a learning algorithm both for the weights (wi) and 
the trapezoidal fuzzy numbers fi~. 

Inputs 

T = Target 

X 2 - - - - - -  

x 2 

4. Applications Fig. 4. Fitting a quadratic by a fuzzy neural net. 

In this section we will survey some possible ap- 
plications of fuzzy neural nets that have been dis- 
cussed in the literature. 

4.1. Fuzz), regression 

In systems identification we have an unknown 
process Q, a set of inputs X~ = ( X , ,  "~/2) and out- 
puts T~, 1 ~< l~< L, and we would like to identify 
a Q so that 

Q()(/I,)(12) = ]PI, 1 ~< l ~< L. (23) 

In fuzzy regression we try for Q a linear, quadratic, 
exponential . . . .  function. In this section let us use 
a quadratic. So, for Q we will attempt to substitute. 

=. ~ 2  + B X 1 X  2 + ~ 2  (24) 

for triangular fuzzy numbers A, B, C. Fuzzy regres- 
sion is becoming an active area of research 
[1, 17,42,43, 54]. 

We may now use a FNN3 two ways: (1) com- 
putationally equivalent to the quadratic (Eq. (24)); 
or (2) learn the weights so that the quadratic ap- 
proximates the unknown process Q. 

First let us build a FNN3 equivalent to the quad- 
ratic. In fact, this can be done for any fuzzy poly- 
nomial. The network is shown in Fig. 4. Nodes 
1 and 3 square their input, nodes 2 and 4 have 
output equal to input, nodes 5 and 7 add their 
inputs to produce output, and node 6 multiplies the 
inputs. All arcs have fixed weight equal to one 
except those showing A,B,C. In the second and 
third layer we multiply the signal times the weight. 

Therefore, the final output Y is given by Eq. (24). 
So, if we know A, B and ( '  the FNN3 in Fig. 4 can 
compute the value of the quadratic. 

Now suppose that we do not know A, B, C and 
we would like to find their values so that the output 
from the quadratic 9l, when the inputs are 
"~ll ~--- z~l ,  )(12 = "~2, is approximately Tz, all I. We 
want the FNN3 in Fig. 4 to learn its weights 
(A, B, C) for the training data (X~, Tt), 1 ~< l <~ L. 
A specialized backpropagation learning algorithm 
for this FNN3 is presented in [4, 13,30,33]. No 
numerical results have been reported using this 
algorithm. 

We cannot expect a FNN3 to be able to learn the 
values of its weights for any training data. It was 
shown in [9, 27] that a regular FNN3 is not a uni- 
versal approximator. Let F be a continuous map- 
ping from ~ × ~ into ~- and suppose F produced 
the training data. That is, Tt=F()(~1,)(~2), 
1 ~< I ~< L. In general we cannot expect to train 
a regular FNN3 to learn this data unless F is 
monotone [9]. F is monotone if and only if 
given )('1 ~< )~1 and )(~ ~< )(2, all in ~,~, then 
F(X'~, X'2) <~ F(X1, X2). The fact that hybrid fuzzy 
neural nets can be universal approximators is dis- 
cussed at the end of this section. 

4.2. Fuzzy controller 

We will show how to model an elementary fuzzy 
controller using a HFNN1 (see also [4, 13, 30, 33]). 
The fuzzy controller is specified by the rule table 
given in Table 1 and the definition of the fuzzy 
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Table 1 
Fuzzy control rules in the industrial process (rule number 
given in the right-hand corner) 

e Ae 

dl d2 G3 d, Gs 

ffl /tl 1 
F2 -41 2 A2 3 
if2 /~2 4 "43 5 
~e, ,4, 7 As 8 
,e5 ,4s 9 

• 44 6 

_ A x 

Input /  52 ~ / ' ~ Y ~ I  

e e ~ e  ~ _ 

~ - -  Output 

Fig. 6. Fuzzy controller as a fuzzy neural net. 

m _ _  _ _  _ _  m 

(a) 0 2"0 40 60 80 100 

I ," . N J . N / ,  % , 
(b) -4 -3 -2 -1 0 1 2 3 4 

(c) -4 -3 -2 -1 0 1 2 3 4 

Fig. 5. Fuzzy numbers in the fuzzy controller rules: (a) for error; 
(b) for change in error; (c) for output. 

numbers is presented in Fig. 5. This fuzzy controller 
accepts singleton input e = error and Ae = change 
in error. Given values for e and Ae, the nine rules 
are evaluated as follows: A1 = min(ffl (e), G2(Ae)), 
. . . .  A9 = min(Fs(e), t74(Ae)). Then, since we have 
nine rules but only five control actions, we maxi- 
mize the At corresponding to the same action "tk, as 
follows: el = max(A1,A2), •2  = max(A3,A4), / ; 3  = 

As, e4=max(A6,A7),  es=max(As ,A9) .  Then 
each ek is assigned to its Ak, 1 ~< k ~< 5. To defuzzify 
the result we first compute ,4 = O(ek,4k), where 
union is taken as maximum, find 3 which is equal to 
the center of gravity of ,4, and then 6 is the defuzzi- 
fled output from the controller. 

This fuzzy controller, modeled as a (hybrid) 
FNN1, is shown in Fig. 6. In this net the input to 
node 1 is ffl(e) and d2(Ae) as in rule number one, 
and the output is A1 = min {Fl(e), G2(Ae)}. Nodes 
1-9 take the rain of its inputs so they act like 
evaluating the nine control rules. Also, the interac- 
tion of signal e and fuzzy weight/~x, for neuron I, is 
to evaluate F1 at e (same for neurons 1-9). 
Neurons 10-14 take the max of their inputs, the 
weights for these neurons are all equal to one. 
Neuron 15 takes the union (max) of its fuzzy input 
which is ~i.4i (multiplication), 1 ~< i ~< 5. The last 
neuron 16 has the weight one and acts as the 
defuzzifier. 

How is this fuzzy neural net to be used? It can be 
used in place of the fuzzy controller, or it is to learn 
the fuzzy control rules (the weights Fi, Gi and ,4/) 
given some training data. Because of the use of max 
and rain this net will require a special learning 
algorithm [4, 13, 30, 33]. 

4.3. Fuzzy expert system 

A FNN3 is ideal for modeling a fuzzy expert 
system [4,30,31,33-35]. Suppose we are given 
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a fuzzy expert system with one block of rules 

~ : I f X = , 4 ~ a n d Y = / ~ , t h e n Z = ( T i ,  l~<i~<n.  

(25) 

the third section might be used to train this fuzzy 
neural net. Once the FNN3 in Fig. 7 has been 
trained its generalization property will allow it to 
approximately operate as a fuzzy expert system. 

Given some data X = A' and Y =/~ ' ,  the system is 
to come up with its final conclusion Z = (7'. In this 
paper it does not matter the exact details (genera- 
lized modus ponens, etc.) on how it gets C', we will 
only assume that the rules are evaluated separately 
and their results are combined to obtain C'. 

A fuzzy neural network of the fuzzy expert sys- 
tem is shown in Fig. 7. The two input nodes have 
their output equal to their input. We input the 
information on X and Y and the nodes 1-n repres- 
ent the n rules. Consider node 1 which is to model 
N1. Given X = A' and Y = / ~ '  when Nt  is evalu- 
ated suppose the conclusion is Z = (~'1. Then, once 
the net is trained the output from node 1 should be 
approximately (7'1. All the rules are evaluated pro- 
ducing separate conclusions Z -- (7'~, 1 <~ i ~< n, 
when the system is presented with X = ,4', Y =/~ ' .  
The fuzzy expert system now combines all the (7'~, 
1 ~<i~< n, into one final conclusion Z = C'. The 
weights I?~ and the output node are to model form- 
ing (~' from (7'~, 1 ~< i ~< n. 

Now suppose we have some training data 
X = ,4~ and Y = / ~  for inputs and Z = / ~  for final 
conclusion, 1 <~j ~< K. That is, we run the fuzzy 
expert system for X = ,4~, Y = / ~  and it produces 
Z = / ~ ,  all j. This then becomes the training set for 
FNN3. One of the learning algorithms discussed in 

Input W l l ~  

A'-~(~~/~21 "~ ~1 Output 

Fig. 7. Fuzzy expert system as a fuzzy neural network. 

4.4. Fuzzy hierarchical analysis 

This application shows a fuzzy neural network 
for fuzzy hierarchical analysis [2]. Here we are 
concerned with ranking a set of alternatives across 
a collection of criteria. To simplify notation, etc. let 
us assume we have three alternatives al ,  a2, a3 and 
two criteria c~ ,c2. One first compares al to a2, al 
to a3,a2 to a3 for c~ and then for c2. You also need 
to compare c l and c2. We are to rank the alterna- 
tives not the criteria. However, in hierarchical anal- 
ysis we must pairwise compare all the criteria, as 
discussed below, in order to obtain the final 
ranking of the alternatives. 

Let us consider the pairwise comparison of 
al ,  a2, a3 for criterion c~. A person (expert, judge) is 
asked to supply ratios for each pairwise compari- 
son al to a2, al to a3, and a 2 to a3. If the person 
considers a~ more important  than a3, then the ratio 
might be 3, or ~, or ~. The numbers in the ratio are 
usually taken from the set {1,2 . . . . .  9}. The ratio 
indicates the strength with which al dominates a3. 
If the ratio for a~ to a3 is ~, then the ratio for a3 to 
a~ is ~. Of course, the ratio for ai to ai is one for all i. 

In fuzzy hierarchical analysis you are allowed to 
use fuzzy ratios, or crisp ratios, in all comparisons. 
A fuzzy ratio is the fuzzification of i/j where 
i, j e { 1,2 . . . . .  9}. The exact value of the fuzzy ratio 
does not matter in this paper so we assume that 
these are all non-negative fuzzy sets. 

For Cl assume that when we compare a~ to a 2 we 
get ,4~, a 1 to a 3 is '42,  and a 2 versus a 3 is ~z[ 3. If you 
consider a~ more important than a2, for cl,  then we 
would expect that the support o f / f l  lies in (1, M) 
for some M > 1. Similarly, if we believe that a2 is 
more important,  then the support of A1 lies in (0, 1). 
Employing criterion c2 let /31 be the value of a~ 
versus a2, /32 for a~ to a3, and/33 the outcome of 
comparing a2 to a 3. For the criteria we compare c~ 
to c2 and obtain C. We need only one fuzzy set here 
because there are only two criteria. 

In fuzzy hierarchical analysis these fuzzy 
sets A~, A 2 , A 3 ,  B~, B2, B3, and (7 are combined to 
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I n p u t s  _ 
X ~ ( " ~  Wn ~ / ~  - O u t p u t  

)_ 

L 2 
- 

,0 j~' ~ I//" ~ Desired 
~, ~ ~ ~ / ~ _ , , , ~  Output 

k 3 ~  ~ ~ k l , ~ k 2 , ~ k  3 

Fig. 8. Fuzzy hierarchical analysis as a fuzzy neural network. 

produce the final weights t_7~ for the a~, 1 ~< i ~< 3. 
Then, employing some method of ranking the fuzzy 
sets Ui we rank the ai from most important (best) to 
least important (worst). 

A regular fuzzy neural net for fuzzy hierarchical 
analysis is shown in Fig. 8. This net is a regular 
FNN 3 except for the fact that all input neurons are 
not connected to all the neurons in the hidden layer 
[4, 31, 34, 35]. We now enlist the help of N experts 
(judges) to rank the alternatives. The judges pro- 
duce the training data for the net with fuzzy ratios 
Akl ,Ak2,  Zk3,Bkl ,Bk2,Bk3 , and Ck from expert 
k and weights, from fuzzy hierarchical analysis, 
Ukl,Uk2,Uk3, 1<~ k <~ N. The training set is 
{ Akl . . . . .  /~k3 } for input and target { Ukl, /-7k2, Uk3 }, 
1 ~< k ~< N. The input nodes have their output the 
same as their input. Nodes 1-3 are for criterion c~, 
nodes 4-6 are for c2, and nodes 7 to 9 combine the 
results across all the criteria to produce outputs 
Ykl, Yk2, Yk3' 

The fuzzy neural net is trained from the 
combined results of N experts. Once trained, its 
generalization property can be used to perform 
fuzzy hierarchical analysis for other "judges" who 
give data on only the comparison of the alterna- 
tives for each criterion. 

4.5. Fuzzy matrix equations 

We wish to solve 

AY =/~ (26) 

for Y given m x n fuzzy matrix .4 = [du] for triangu- 
lar fuzzy numbers a u and given b ' =  (bl . . . . .  b,,) 
a m x 1 vector made up of triangular shaped fuzzy 
numbers, and ~' = (.71 . . . . .  :~,) is the unknown n x 1 
vector of fuzzy numbers. See [15] for a discussion 
of solving fuzzy matrix equations and [3] for a gen- 
eral discussion on solving fuzzy equations. 

A FNN3 solution to Eq. (26) is given in Fig. 
9 [4, 13]. The input to the net is the ith row of ,4. 
The input neurons make no change in their inputs, 
so the input to the output neuron is 

all x1 + "'" + ainXn, (27) 

which is the ith component in the product ,4~. The 
output, in the output neuron, equals its input, so 

Yi = d i lXl  + "'" + ainxn for 1 ~< i ~< m. (28) 

How is the FNN 3 going to solve the fuzzy matrix 
equation? The training data is ( ( l i l  . . . . .  ain ) for input 
and target output is bl, 1 ~< i ~< m. A learning algo- 
rithm, possibly one of those discussed in Section 3, 
is then employed to find the best weights which will 
produce the unknown fuzzy vector ~. 

The fuzzy matrix equation may have no solution 
for fuzzy numbers Yi, 1 ~< i ~< m. In this case there is 
no hope in making the error measure close to zero. 
One could then try more general fuzzy sets for the 
~ and possibly try a fuzzy genetic algorithm to 
train the FNN 3 (see Section 3.5.4). 

Input 

0°,p °, 

Fig. 9. Fuzzy neural net to solve fuzzy matrix equation. 
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Alternatively, the FNN3 in Fig. 9 could be used 
to evaluate fuzzy matrix equations. If we know 
/1 and -'L then the FNN3 computes b, 

4.6. Universal approximators 

Numerous papers have appeared showing that 
a regular neural net (Fig. l) is a universal approxi- 
mator. What this means is that given continuous 
9: ~z ~ ~, a compact subset J of ~z and e > 0, 
there is a NN (weights Wig, Vk, and K = number of 
hidden neurons) so that 

INN(xl ,x2)  - 9 { X l , X 2 ) [  < ~ for all (x t ,x2)  in J. 

(29) 

We have used the notation NN(x t ,x2)  to denote 
the output y from the neural net given inputs 
x l ,x2 .  Can this result be generalized to fuzzy neu- 
ral nets? 

Let continuous G : o~ x ~ --, ~ ,  J be a compact 
subset of ~ x ~ and e > 0. Can we build a regular 
FNN3 so that 

I [ F N N 3 ( X 1 , X e ) -  G(X1,X2)I] < e 

for all ( X t , X 2 )  in J?  (30) 

See [9] for the details on the topology for ~ and 
the metric I!'1[ in Eq. (30). In general, the answer to 
the above question is no because FNN3 is a mono- 
tonic mapping from o ~ × o~ into o~. If G is also 
monotonic then we might hope to build a FNN3 
that can uniformly approximate G on compact 
subsets of ~ × o~. 

However, it was also shown in [9] that certain 
HFNN3's are universal approximators. But these 
HFNN3's were not continuous. Future research 
will be concerned with finding continuous 
HFNN3's which are universal approximators. 

It is important to note that the fuzzy neural nets 
discussed in this subsection are to be built for fast 
parallel computation and learning algorithms are 
not relevant. 

4.7. Other applications 

A regular FNN3 has been applied to a fuzzy classi- 
fication problem [4,13, 36]. In [37, 39] the authors 

employ a regular FNN2 to learn/interpolate fuzzy 
iVthen rules, The FNNt  in [48,49] was used to 
learn the iLthen rules in a fuzzy controller. Finally, 
Yamakawa's fuzzy neuron was applied to pattern 
recognition [47, 50,56-58] and system identifica- 
tion [59]. 

5. Summary and conclusions 

In this paper we reviewed learning algorithms 
and applications of fuzzy neural networks. Our 
definition of a fuzzy neural network is a layered, 
feedforward, network that processes fuzzy set sig- 
nals and/or has fuzzy set weights. 

The main topic for future research is to develop 
learning algorithms for fuzzy neural nets that have 
more general fuzzy sets. Initially researchers as- 
sumed the signals/weights were (symmetric) tri- 
angular fuzzy numbers. This is too restrictive for 
applications. We need now to assume the sig- 
nals/weights are fuzzy numbers (any type) or 
general fuzzy sets. It appears that (fuzzy) genetic 
algorithms might be the tool needed to handle the 
more general fuzzy sets. 

Once we have a general learning algorithm for 
fuzzy neural nets the applications will follow 
naturally. 
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