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Scalable Economic Dispatch
for Smart Distribution Networks

Elisabeth Kellerer and Florian Steinke

Abstract—We present a novel algorithm for economic dispatch
in electric power grids. The method is inspired by statistical
inference methods. Using discretized optimization variables, our
algorithm finds the globally optimal, single time-step dispatch
assignment for radial grids in linear time with respect to the
number of network nodes. For such problems, the algorithm
outperforms state-of-the-art mixed-integer scheduling, both in
run-time and in the allowed complexity of component and line
models. Moreover, the necessary computations can be performed
in a distributed fashion, facilitating both practical implementation
as well as information privacy. Our algorithm is thus optimally
suited for the very large dispatch problems that will arise in future
smart distribution grids with hosts of small, decentralized, and
flexibly controllable prosumers, i.e., entities able to consume and
produce electricity.

Index Terms—Distributed algorithms,
graphical models.

economic dispatch,

I. INTRODUCTION

LECTRICITY generation is undergoing fundamental

changes. In the past, a few large power stations have
centrally supplied all demand. The wide-spread introduction of
new technologies is changing this paradigm now: renewable
energy, like photovoltaic and biogas, as well as decentral
combined heat and power (CHP) generation, is typically small
in size and distributed throughout electrical distribution grids.
Moreover, intelligent prosumers, such as electric cars or sta-
tionary batteries, are flexible with regard to their consumption
or production. The classic economic dispatch problem, i.e.,
determining a welfare maximizing assignment of who exactly
should produce or consume how much electricity at each
point in time (see e.g., the review [1]), thus receives renewed
interest. Novel algorithmic requirements are the scalability to
very large networks and the possibility to work in multi-owner
environments where component models and cost functions
comprise important business secrets and thus cannot be shared
freely with a central coordinating dispatch controller.
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Current commercial dispatch systems use almost exclusively
the mixed integer linear programming (MILP) approach to eco-
nomic dispatch, see, e.g., [2]. This formulation allows for mod-
erate model complexity, while providing good solver perfor-
mance control and scalability to medium-sized problems. How-
ever, it requires white box models, i.e., the dispatch system has
to have full knowledge of all component models. This may be
difficult in competitive, multi-owner environments. Moreover,
even highly optimized solver packages like CPLEX! do not
scale well to very large networks as our experiments show. For
these reasons, market-based dispatch approaches have become
more popular recently. For example, in the SO-EASY [3] and
PowerMatcher [4] systems, intelligent local agents bid on a cen-
tral market place whose market clearing then determines the dis-
patch result. While this approach is extremely scalable and suits
a competitive environment well, it does not achieve a globally
optimal dispatch result, even if the local agent models are very
detailed and are solved in an optimal way, e.g., by employing
dynamic programming approaches as in [5].

In this work we present a novel approach to economic
dispatch that is scalable, well-suited for multi-owner envi-
ronments, and finds the globally optimal solution for radial
distribution networks and discrete optimization variables. The
idea is to formulate the dispatch problem as an optimization
problem on a graph and then to employ graphical model infer-
ence methods originating in the statistical learning community,
see [6] for a good overview. These algorithms are designed
to optimally exploit the graph structure of certain statistical
estimation problems. We will show how to apply the same
algorithms to a graph-oriented formulation of the economic
dispatch problem.

Using probabilistic graphical model methods in power grids
has been proposed before for state estimation applications [7],
[8]. A one-to-one matching of customers and generators is com-
puted using graphical model algorithms in [9]. Our novel con-
tribution in this paper is to show how the graphical model ap-
proach can be used to solve economic dispatch problems. Fur-
thermore, we discuss the properties of our approach in detail and
describe several important steps facilitating an efficient imple-
mentation with standard tools from the probabilistic graphical
model community. We demonstrate the algorithm’s behavior for
an exemplary future smart grid and show its optimal computa-
tional scaling for very large networks. In this performance test
we beat the state of the art MILP solver CPLEX by orders of
magnitude.

lwww.cplex.com.
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Exploiting the graph structure for optimal power flow
problem (OPF) has recently been discussed extensively in
[10]-[12]. A convex conic-programming relaxation of the
power flow equations [13], [14] is used for an OPF computa-
tion with convex costs in [10]. The results are then shown to be
equivalent to the optimal solution of the unrelaxed problem for
trees. Qualitatively similar steps but with different formulae are
undertaken by [12] and [11], where [12] only requires mono-
tonicity of cost functions instead of convexity. In contrast,
our work does not make any restrictions on the shape of the
cost functions, but requires discretization of the optimization
variables. In [10], the resulting optimization is decomposed in
line with the maximal cliques of a triangulated graph and linear
run-time with respect to the number of such cliques is shown.
Exactly same ideas underlie the Junction-Tree algorithm in the
graphical model community, see, e.g., [15], that presents a gen-
eralization of the belief propagation algorithm employed in this
paper. Whereas an iterative optimization routine exchanging
simple Lagrange multipliers is used [10], our proposed ap-
proach exchanges more complex messages (i.c., functions of a
few parameters), but only requires one iteration.

The remainder of the paper is structured as follows. In
Section I we provide a formal description of the economic
dispatch problem and describe how to formulate it as a graph
problem. In Section III, we briefly review probabilistic graph-
ical model theory, which is applied to the dispatch problem
in Section IV. In this section, we also present an in-depth
discussion of the proposed approach’s properties. We describe
details of our implementation and present the results of our
experiments in Section V. We conclude in Section VI.

II. EcoNOMIC DISPATCH AS A GRAPH PROBLEM

The economic dispatch problem is to schedule a number of
electricity generation or consumption units such that the overall
welfare, i.e., the summed utility of all consumption minus the
summed cost of all production, is maximized. This is to be done
subject to generation and transportation constraints.

For an electric grid with buses/nodes V' and lines/edges £,
the one time step dispatch problem formally reads

P?lel%,L; C'U (Pb)v (l)
vEV
vEV

Here, P, denotes the net power injection of node v, C,(P,)
the cost or negative utility function associated with it, and P,
the feasibility set for P,. For a generator node a typical (non-
convex) P, would be P, = {0} U[Prnin, Pmax), 1.€., @ generator
with minimum and maximum load if switched on.

The power balance constraint (2) is global in the sense that it
couples all decision variables P, in one equation. The problem
can therefore not trivially be decomposed. Equivalent to (2),
however, is a set of power flow equations, e.g.,

> Pou=P, 3)
wH#v
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where P, ,, is the power transport from v to w and P, , =
—P, .. If this equation is satisfied at each node, no energy is
lost in the network and the overall power balance constraint (2)
is satisfied.

Note that using formulation (3), the optimization problem (1),
(3) is local in the sense that each term of the objective and the
constraints only contains variables from a neighborhood of v in
the graph. Such a graph problem formulation of economic dis-
patch can be tackled by working locally on the graph, trying to
find optimal local assignments while guaranteeing local consis-
tency between neighboring sites that share common P, ,, vari-
ables. In some sense, that is exactly what the proposed graphical
model methods presented in the next section does. The rewriting
of (2) into (3) thus is, while almost trivial, important for the pro-
posed solution strategy.

The notation above, which we will also use for the remainder
of the paper, hints at using the P, ,, as optimization variables di-
rectly, the most simplified form of a power flow model with local
active power conservation only. However, the full AC power
flow equations with S, ., = U,Y. (U, — Uye %) could
also be employed, using the voltage magnitudes U,, and phase
angle differences 0, ., as optimization variables. Here, complex
valued power transports are denoted by .S, .., line admittances
by Y, ., and costs functions may be dependent on complex node
power injections S, = Zu Sy.w. Such a formulation would
also preserve the locality property as defined above and thus
would be amenable to the solution formalism proposed below.
Only the number of real variables in each neighborhood would
increase when using the three variables ¢, ,,,, U,,, U,, instead of
one P, ., per line.

Using local power flow equations (3) in replacement of the
global constraint (2) also easily allows us to define limits on
power transport, e.g., =1, v < P, ., < T, o, where T, , is the
line capacity.

III. SHORT INTRODUCTION TO PROBABILISTIC
GRAPHICAL MODELS

A probabilistic graphical model describes a family of mul-
tivariate probability distributions that share a common (con-
ditional) independence structure. The graphical representation
is used to develop efficient graph-based algorithms for various
statistical inference computations such as independence testing,
marginalization or finding the most likely variable assignment.
A recent introduction is given in [6].

Graphical models come in various flavors. We focus on undi-
rected graphical models here. For these, the graph (V, ) repre-
sents all probability distributions p(x+v ) over random variables
Z,,v € V, that factor as

plav) = %H(/)C(ch) “4)

IS

Here, z 4 for set A denotes the set ofall z,,, v € A. C are cliques
in the graph, i.e., fully connected subsets, and the factors ¢¢
are non-negative functions over the variables z . Z denotes the
necessary normalization factor.

Finding the maximum probability assignment, also known as
decoding, means determining

* - I
vy = argmax p(ay).
Xy
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Fig. 1. Undirected graphical model with 5 nodes x,, . ...x. and three max-
imal cliques (solid lines, filled circles). Overlayed is shown an electrical grid
with 6 power in-feeds P, ..., Fs. Electric lines (dotted) are associated with
the graphical model variables that correspond to power flows P, ,,.

For this inference task the graph structure can be exploited
as the following example shows. The graphical model de-
picted in Fig. 1 contains three maximal cliques, namely
{Za, s, 24}, {xp, x.} and {4, 2. }. Computing the maximum
probability assignment we obtain

1
max Ed)(a;,,,?a:b,a;d)qﬁ(a;b,a:c)qﬁ(we,wd)

= n};%x Z(;S(:L'a, Ly Lg)
#g

X (mgx ¢(:1:b,:l:c)) (rnfixqb(xﬁ,:ﬂd))

o -

(&)

=rmcp () =mcq(zd)
where m..; (1), meq{24) are function-valued messages that can
be computed independently.

In this paper we generally assume the variables z,, to take
values in discrete sets. The messages are thus vectors of the size
of these sets. The example then shows how one 5-D maximiza-
tion problem is split into two sets of 2-D and one 3-D maxi-
mization problem by exploiting commutativity. Since the op-
timization effort for discrete variables is exponential in the di-
mension of the optimization problem (using full enumeration),
this rewriting amounts to a tremendous reduction in computa-
tion time—especially if this trick is repeated again and again for
larger graphs.

The same argument qualitatively also holds for continuous
variables x,. However, the messages then contain infinitely
many values that can neither be fully computed nor be stored.
Approximate inference algorithms for graphical models then try
to approximate those messages with standard function classes,
see [15] for an introduction.

A major limitation is the structure of the underlying graph: if
it contains loops, the maximization operators cannot be shifted
inside the formula, since variables to the right hand side of the
formula have influence on variables on the left hand side. This
is why the work presented in this paper is focused on tree-struc-
tured/radial networks, that do not contain loops.

The example shows the basis for deriving a general algorithm,
known as belief propagation, for decoding in tree-structured
graphs. In a first stage, the messages m;;(zs,,;) are computed

for every pair of overlapping cliques C; and C}, i.e., cliques
where the separator set S;; = C; N C is not empty. The mes-
sages are computed as

myi(2s,;) = max ¢(wc;) H mi; (@s,,) .

FC3NS ki

(6)

The optimal values for variables contained in one of the sepa-
rator sets S;; are then computed as

Q)

.* — O s p s oy 9 o f ooy
xg,, = cugnax "M ((L Sis ) mji(rs,, ).

Computing the optimal values for variables that are not con-
tained in one of the S;; is described in [6, Ch. 10]. Message
propagation starts at a leaf node, where (6) reduces to maxi-
mization over ¢ only, and then continues along the edges where
all messages my;(xs,,), k # i are known. A feasible ordering
can always be found for trees, e.g., by depth-first-search. Exam-
ples and implementation tricks are explained in [6].

IV. EcoNoMIC DISPATCH WITH GRAPHICAL MODELS

We now show how to apply the graphical model framework
to economic dispatch problems in electrical networks. Matching
our introduction of graphical models we assume discrete vari-
ables P, ., in this paper.

We first note that due to monotonicity argmax [[.¢. =
argmin ) —log ¢.. Moreover, we can re-write problem (1),
(3) as

®)

E Cll § Pv,u,v
Py €Ty, T ]

min
veEV wH#v

where we have included the domain constraints P, € P, into
the cost function C\, (P, ), by setting it to infinity if P, & P,,.
We then construct an undirected graphical model from the
electric network as demonstrated in Fig. 1. We create a node
for each transport variable I, ,, and add edges between these
nodes, iff the corresponding electric lines connect to the same
electric bus. Buses in the electric network then match to cliques
in the graphical model and we define the clique potentials
¢c by identifying the cost function of the electrical node,
Co(> Lo P, ), with the negative logarithm of the clique’s
potential function in the graphical model — log ¢¢:.
With these ingredients the following statement holds.
Proposition 1: The decoding problem on the constructed
undirected probabilistic graphical model is equivalent to the
economic dispatch problem in the original electric network.
This equivalence implies that all methods for decoding of
probabilistic graphical models can also be applied to economic
dispatch. For belief propagation, specifically, the message com-
putation (6) becomes

TTLTHH(R)”H)) = P“‘,I?igéw Cl) (Z Pu,,'z)) + Z nlu'z,v(Pu,'v)
’LL#‘LU
)
and (7) then reads
PlTTu, = arg min My (Lo w) + Moy (P ap)- (10)

Dy
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An implementation with standard graphical model in-
ference codes is discussed in the experimental section.
Using the full AC power flow equations leads to messages
Mo (U Uy B 0) = Mps (S0 Uy, Uiy Bu.10)). The opti-
mization problems in (9) and (10) are then higher-dimensional,
but still local.

A. Properties of the Proposed Approach

The equivalence of economic dispatch with a suitably con-
structed graphical model and the possibility to apply belief prop-
agation has several important consequences for economic dis-
patch in smart distribution networks. They concern the opti-
mality of results, the linear run-time of computations, and the
information privacy principles inherent in the method.

Belief propagation is known to find maximum probability as-
signments on trees—for discrete variables. Applying this algo-
rithm to economic dispatch will thus result in the globally op-
timal assignment, if the electrical network is radial, i.e., is a tree.
Unlike most optimization algorithms, the cost functions and do-
main constraints may take any shape. Only the grid’s struc-
ture is important. Low and medium voltage networks are often
tree-shaped in practice. Low-voltage feeders tend to be com-
posed of several strings connected to one transformer. Medium
voltage lines are often built as rings, but during normal opera-
tion, which is of major interest to economic dispatch, the loops
are typically split by an opened breaker.

Concerning the run-time of this algorithm, note that the
number of messages, and thus the number of message compu-
tations, is exactly twice the number of overlaps/links between
cliques. If the maximum number of values for any P, ,, is k
and there are 7 electrical buses in the system, then the total
run-time of our algorithm is O(2nk?), using full search for
the optimizations in (9) and denoting the maximal clique size
of the graphical model (equal to the degree of the electrical
network) by d. The total run-time scales linearly in the size
of the network, which renders our proposed algorithm suitable
for very large networks. Moreover, the run-time is precisely
predictable and independent of the shape of cost and constraint
functions.

A reduction of the exponential scaling factor k% for high-de-
gree nodes in the electrical network to at most &3 can be
achieved by re-writing the electrical network without changing
its physical meaning—iteratively split nodes with a degree
larger than three into two new nodes that are connected with
an appropriate capacity, loss-less line. The neighborhood
connections are distributed among the two new nodes, thus
reducing the original degree of the node to roughly one half.
This procedure is repeated until all nodes in the graph have
maximum degree three. The price to pay for this rewriting is
a few additional edges/message computations. However, the
computational effort is constant per edge, whereas the reduction
of the neighborhood dimension leads to an exponential cost
decrease.

Solving economic dispatch via belief propagation also means
that the component models do not have to be exchanged if the
algorithm is implemented in a distributed fashion. The only ex-
changed information are the messages. Since these messages
contain highly aggregated information from several users, in-
dividual cost functions typically cannot be reconstructed from
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them. This built-in information hiding principle is very helpful
for competitive, multi-owner environments, where the true cost
structure of a participant may comprise an important business
secret.

To what degree it is possible to reconstruct the individual cost
functions from the transmitted messages strongly depends on 1)
the prior knowledge of the shape of the true cost functions and
2) the number and position of messages that are used for re-
construction. A complete characterization under which condi-
tions which knowledge can be obtained goes beyond the scope
of this paper. We only discuss a few important situations here.
First, the message from a single leaf node is the cost function
of that node. However, the second message up the hierarchy
of the tree is already a mixture of at least two cost functions.
The minimum operator in the message computation (9) is not
one-to-one, meaning that only the lowest cost for each value
P, ., is visible in the message and the information about the
higher “bids” is lost. Knowing the potential shapes of cost func-
tions with the only uncertainty being a scaling factor, one can
potentially reconstruct the individual cost functions from this
partial information. The assignment of each cost function to a
particular node, however, would still not be clear. In a realistic
scenario with limited prior knowledge one can thus assume that
from the messages of a larger sub-graph no exact reconstruction
of each node’s contribution is possible.

The proposed algorithm is, in fact, equivalent to the dynamic
programming approach to economic dispatch when it is applied
to a string-like graph extending over several time steps for one
generator, not different locations for one time step as discussed
in this paper. The proposed framework thus forms an extension
of the dynamic programming approach to economic dispatch
for tree-like graphs. Apart from placing the novel framework
within a well-known economic dispatch environment, this ob-
servation has an important practical consequence. Having com-
puted all messages one can locally deduce finite step-size mar-
ginal costs, i.e., the global cost increase if the demand at the
given node increases by a finite amount—all other things being
equal. For (mixed integer) linear programming the optimal dual
variables of the local power flow equation yield only the differ-
ential marginal costs, i.e., the total cost changes for infinitesimal
changes in local demand.

This result can be understood via the similarity between be-
lief propagation and dynamic programming. Our messages are
nothing but the value functions transferred in dynamic program-
ming. The values 17, (P1,,7,,,)) thus express exactly the minimum
cost that would be accumulated in the sub-tree behind edge vw,
if P, ,, was transported over that edge. This view point also ex-
plains formula (10), where the minimum cost of the left half-tree
is added to the minimum cost of the right half-tree to obtain
the globally optimal decision (note the similarity to the for-
ward-backward pass in dynamic programming). Interpreting the
messages as value functions, the finite step-size marginal costs
can be computed by deciding locally at each node for each ad-
ditional demanded unit from which source it should be taken,
either via transport from one of the attached sub-networks or
from a local production. For this computation only the mes-
sages of the local neighborhood and the node’s own cost func-
tion have to be considered, while still obtaining the true global
finite step-size cost-changes.
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One final remark concerns the consistency of the solution if
the minimizer of the optimization problem is not unique. Since
the decisions for the individual P, in (10) are taken locally and
independently from each other, a non-consistent selection of one
of the solution sets of optimal P, ,, may result in this case. This
may then lead to non-optimal or even infeasible node injections
P,. A simple example is a chain of three nodes where each of
the end nodes could supply a load in the middle at identical cost.
Independent decisions on each of the two edges could then lead
to the situation where the load in the middle is covered twice or
not at all. To avoid such problems we propose to ensure solution
uniqueness by breaking potential symmetries, e.g., via adding
small random terms onto otherwise identical cost functions.

V. EXPERIMENTS

We test our proposed algorithmic framework with two ex-
periments. We first compare the computational performance to
MILP for sampled distribution networks that can be scaled to
very large size. Second, we examine an exemplary smart distri-
bution network of the future in closer detail.

A. Implementation

In our first example, the line capacities are all equal and their
size is on the same order of magnitude as the generators’ and
consumers’ power intake. We thus use an equal, equidistant dis-
cretization on all lines. In the second example, the line capacities
are very different from each other and relatively large in com-
parison to the loads and generators. In this case we proceed iter-
atively. We use a fixed number of discretization points for each
line and start with a large line-capacity dependent discretization
step-size at first. We then determine a provisional solution with
one run of belief propagation where the power balance at each
node is assumed to hold up to discretization errors only. After-
wards, we re-discretize around the initial solution with a finer
grid and rerun the algorithm. This iterative procedure increases
the run-time of the algorithm by a small factor and is not guaran-
teed anymore to find the globally optimal solution, as claimed in
Section IV. However, we have found it to work well in practice
as our experiments in Section V-C show. It allows us to tackle
difficult optimization problems with variables with largely dif-
ferent value ranges.

Our implementation uses the UGM toolbox [16] with only
slight modifications. This allows us to apply tested standard
algorithms for all our purposes. Since we are only interested in
costs, i.e., log probability functions, we replace the max-product
implementation (6) with the min-sum equations (9) for im-
proved numerical stability. Moreover, since the UGM toolbox
only supports pairwise potentials, we rewrite the graphical
model slightly as explained in [17, Appendix].

As a baseline we implement the MILP formulation of [2].
Our implementation is written using the GAMS programming
system with either the CPLEX or the SCIP solver. CPLEX is a
highly optimized commercial MILP solver whereas SCIP rep-
resents one of the best available open source implementations.
We built piecewise linear cost functions for the MILP formu-
lation using the same discretization values as for the graphical
model approach. While convex generator cost functions with a
minimum load require only one binary variable per generator, an

My S1 So Mo

Hy

Fig.2. Testsystem for scaling experiments: Two medium voltage transformers
Ay and M, feed a medium voltage ring of differing size. Radial low voltage
lines with households H; dissect at busbar nodes 5.

— GM
convex MIP (CPLEX)
e e e e convex MIP (COINSCIP)
— - —- non-convex MIP (CPLEX)
= = = non-convex MIP (COINSCIP)

log,,(computational time in seconds)

3.5 4
log,,(# households)

Fig. 3. Computational time of economic dispatch for the test distribution sys-
tems shown in Fig. 2, for convex (dotted) and non-convex (dashed) generator
cost functions. Lines represent the mean computational time over 10 network
random samples, shaded areas plus-minus one standard deviation. Our algo-
rithm (solid line) is compared to MILP using the CPLEX solver (fine lines) and
the SCIP solver (bold lines).

additional binary variable is necessary for each discretization in-
terval for non-convex functions. The additional binary variables
indicate whether the previous interval is fully used. Moreover,
since we consider problems with transmission constraints in this
paper, we slightly extend [2] with additional linear constraints
on the transported power.

B. Computational Scaling Performance

For testing the computational performance of our proposed
algorithm in comparison to the MILP approach, we sample test
distribution networks of different sizes 7 as illustrated in Fig. 2.
From a medium voltage ring, n./100 radial low-voltage feeders
dissect at busbar nodes .5;. The number of households H; in a
line is chosen randomly in such a manner that the total number
of households equals n and each feeder connects to at least one
household. Cost functions are designed as follows:

1) All households consume 1 power unit with infinite utility.

2) 70% of households additionally possess a decentralized
power generation system able to produce between 3 and
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net producuon
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Fig. 4. Exemplary Distribution Grid. (a) Structure of the passive distribution network supplied through the transformer. Triangle size encodes household demand
and the grey round node denotes the transformer. Understanding the network as a tree with the transformer as the root node, lines are drawn according to the ratio
of their capacity and the accumulated power demand of the sub-tree below the line. Two lines denote a capacity more than twice the accumulated demand of the
sub-tree, three lines more than threefold, four lines more than fourfold and solid lines more than the fivefold accumulated demand. (b) Structure of a future active
distribution grid. Circles denote net production nodes, where large circles are decentral CHP plants of different sizes, yellow boxes PV installations and triangles
net demand nodes. The color-coding denotes the result of our proposed dispatch approach. Note that when using MILP scheduling without line constraints, six
line capacity violations result (red dashed lines). (a) Today’s distribution grid. (b) Future Smart Grid.

6 units. The cost functions C, are polynomials with max-
imal degree three and randomized parameters.

3) Busbar nodes do not produce or consume any power.

4) The medium voltage transformers act as slack nodes and
supply any needed power at a constant-per-unit cost.

All low-voltage branches possess a capacity of 3 power units,
medium voltage lines a capacity of 6. The discretization in-
terval is uniformly 1 unit. Both optimization approaches are
fed the same 10 independent network samples per network size
n € [300,30000]. Timing tests are run on a virtual windows
machine with 8 GB of RAM and a 3.20-GHz CPU. To ensure
a comparison on equal terms the solvers called by GAMS are
restricted to run on one processor only and to solve the prob-
lems to optimality, i.e., with no remaining optimality gap. The
run-time per problem was limited to 3000 s.

When running these problems, all methods yielded the same
optimal values up to machine precision. The different timings
are shown in Fig. 3. In the first set of experiments, shown as
dashed lines, the generator cost functions are chosen to be
convex within the operating range. Convexity is a common
assumption in economic dispatch. It allows MILP to run with
one binary variable per generator node only. Nevertheless, the
SCIP branch-and-bound algorithm still scales exponentially
in the network size. The CPLEX algorithm performs much
better due to highly optimized pre-solve routines. Our proposed
approach, however, outperforms both methods in absolute
numbers over the whole tested range of problem sizes. In the
second set of experiments, shown as dashed lines, we examine
non-convex generator cost functions. These are for example
needed to describe the cost curves of real gas engines [18]. The
MILP formulation then needs additional binary variables, one
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o
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Fig. 5. Relative optimality gap for the iterative implementation of the proposed
approach for 100 independent realizations of the exemplary smart distribution
grid, see Fig. 4. Each interval is discretized with 25-50 points and the re-dis-
cretization in each iteration takes into account a band of 2, 2.5, or 3 times the
previous discretization interval.

for each discretization interval per generator. In this case the
run-time of the MILP solvers soars, while for our proposed
approach no difference is observed.

Note also that the MILP approaches show a large variation
in run-time, due to the fact that the pre-solving might, but is
not guaranteed, to find a good starting point for the branch-and-
bound algorithm that is applied afterward. In contrast, our pro-
posed method has a deterministic run-time.

In sum, our method is the only one whose run-time scales
linearly in the problem size. With the given time limit of 3000 s,
it is the only method to be able to compute optimal solutions for
non-convex networks with more than 10 k nodes. This may not
be unrealistic in future smart distribution grids.
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Fig. 6. Total cost change for a local demand variation—assuming that the rest of the network stays the same. For three nodes from the network in Fig. 4, the
marginal cost approach derived from the MILP optimal dual variables is compared with the exact, locally computable result in our message based of approach

(GM). (a) Node 25. (b) Node 72. (c) Node 36.

C. Exemplary Smart Distribution Grid in Detail

We now examine a smart distribution network of the future
in closer detail. We construct such a grid based on experience
with real projects in Southern Germany. Due to confidentially
reasons, however, the original grid data could not be used.

We base our work on the 123-node test distribution feeder
[19]. We compute the power line transmission limits using Eu-
rope’s 230-V distribution grid voltage and scale the given con-
sumer demands such that the smallest consumption of any node
is 1.2 kW, a typical German household consumption. Note that
the grid is tree-structured given the network switch states spec-
ified in [19].

The resulting grid model, see Fig. 4(a), shows features of a
typical distribution grid of today. The line capacities are dimen-
sioned to cover all demands from the transformer node alone
and are rather large in comparison with individual household
consumptions. Line capacities are thus unlikely to pose an active
limitation for dispatch problems. This allows applying common
algorithms such as MILP formulation without line constraints.
The situation, however, changes in the future when additional
generation and consumption units are deployed decentralized
throughout the grid, as is demonstrated with our example here.

We model the following new technologies, see Fig. 4(b):

1) One electric vehicle per household chargeable with a max-
imal 20 kW and a utility function with marginal costs in
the range 0.6—1 Euro per kW.

2) 60% of all households have an installed PV capacity of
14.9 kW, , and offer their power output at prices between
0-0.2 Euro per kW.

3) All PV owners additionally have a battery of equal size to
the PV plant, generating a utility between 0.4—0.5 Euro per
kW for charging.

4) Ten CHP plants with a power rating of 140 kW, are
present in the network, preferably located at nodes with
large demand. The generator model follows [18] where
the cost functions are neither convex nor concave and a
minimum load of 35 kW, applies in running state.

5) Households without CHP have an electric heater con-
suming maximally 10 kW p, , while providing a utility of
0.2-0.3 Euro per kW.

The addition of these new prosumers to the distribution

grid means that the network’s line capacities can be violated
for some dispatch assignments. For example in Fig. 4(b) it is

shown that MILP algorithm without our additionally-intro-
duced line constraints leads to 6 line violations for this network
instance. In contrast, our approach always yields feasible
dispatch results.

Due to the large difference between line and generator capaci-
ties, we had to resort in this example to an iterative re-discretiza-
tion scheme as described above. The procedure is not guaran-
teed to find the global optimum, but it mostly finds a solution
very close to the optimum as is demonstrated by the following
test, see Fig. 5. We sampled 100 independent realizations of the
exemplary smart distribution grid and computed the optimal dis-
patch with the MILP and with our proposed approach. Since the
MILP approach with line constraints is guaranteed to find the
optimal solution, we used it to benchmark the quality of our al-
gorithm’s results. With 50 discretization points for each interval
and a re-discretization band of 2.5 times the discretization in-
terval of the previous iteration, the sub-optimality of the itera-
tive approach is less than 1% in more than 75% of the cases, and
less than 4.2% in the worst case.

Next, we show that our proposed approach—despite hiding
individual cost functions—delivers very broad information
about the sensitivity of the solution. Remember that the optimal
dual variables of a MILP approach denote the incremental total
system cost for an infinitesimal demand change in one node.
In contrast, the messages in our approach allow one to deduce
the exact total system cost increments for all possible demand
changes. The difference is especially large in the case where
a small step in the local demand leads the MILP problem to
change its set of active constraints and the local linearization as
expressed in the dual variables is thus no longer valid.

In Fig. 6, we plot for three exemplary nodes the sum of the
incoming messages plus the local node potential as a function
of the local demand, minimized over all other local variables
in the expression. With this local operation we then derive the
curve of total system cost changes as well as its derivatives. For
comparison we also plot the local linearization as derived from
the optimal dual variables of the MILP approach. The differ-
ence between the local linearization of MILP and the holistic
view derived from the local messages of our approach is espe-
cially obvious for nodes close to highly loaded lines, see, e.g.,
Fig. 6(b). In this case even a small change in local demand may
lead to an infeasibility, and the linear continuation of the MILP
costs is not valid any more.
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VI. CONCLUSION

We have presented a novel economic dispatch algorithm for
radial distribution networks. It is based on graphical model
methods from the computational statistics community. The
algorithm utilizes the grid topology to decompose the economic
dispatch problem into decentralized computable parts. Only
a finite number of messages are passed between the nodes of
the network. The algorithm finds the globally optimal solution
for discretized variables. It does so in linear time with respect
to the network size. The approach protects the privacy of
local cost functions while giving a comprehensive picture as
to how the system cost would change for local, finite-size
demand variations. The sum of all these features makes our
algorithm optimally suited for economic dispatch in future
large, multi-owner smart distribution grids.

Power dispatch problems are naturally formulated with
continuous dispatch variables. Whether the discretization ap-
proach of this paper is suitable depends on the structure of the
individual problem. If the sizes of producers and consumers
are relatively similar and the line capacities are not too large
in comparison, such an approach can work well as shown in
the first example of this paper. However, the second example
already shows the arising problems with strongly differing
line and generator/consumer sizes. For such problems as well
as computations with the AC power flow model with higher
dimensional messages a truly continuous approach would be
needed. The proposed divide and conquer trick (5) could still
be used in this case. However, the messages, which are then
functions of continuous parameters, can and will typically
become arbitrarily complex for growing graph sizes. Thus,
neither their exact representation nor their exact computation is
feasible in general. Only for a special class of functions, namely
quadratic functions, can one show that the complexity of the
messages stays limited and exact updates can be computed,
see Gaussian belief propagation [6]. In all other cases—and
we think useful dispatch problems would mostly fall into this
category—one will generally approximate the messages with a
finite-dimensional representation and approximate the update
computations. Many algorithms exist for this approximate
inference task, see [15]. Global optimality can typically not
be proven but the locality and scaling properties of belief
propagation persists and state-of-the-art optimization results
are obtained with these methods in many application areas, see
[15], [6], and references therein. A detailed examination of this
field of work with respect to its application for power dispatch
problems will be a major focus of our future work.

Another open point is the generalization of our method
to networks with loops. Loopy belief propagation has been
successfully used in the graphical model community [15], [6],
but our initial tests with dispatch in loopy electrical networks
showed that defining a reasonable initial solution is non-trivial.
A similar problem holds for scheduling over multiple time
steps. This problem can also be understood as optimization on
a loopy graph, since each node’s dispatch decision at one time
is dependent on the decision at the previous time as well as on
the decisions of its neighbors at the same time step.
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