
Peer to Peer Authentication for Small Embedded
Systems

A zero-knowledge-based approach to security for the Internet of Things

Pádraig Flood, Michael Schukat
OSNA Cyber Security Research Group

NUI Galway
Galway, Ireland

p.flood1@nuigalway.ie, michael.schukat@osna-solutions.com

Abstract—With an estimated 50 billion internet-enabled devices
deployed by 2020, the arrival of the Internet of Things (IoT) or
Internet of Everything (IoE) raises many questions regarding the
suitability and adaptability of current computer security
standards to provide privacy, data integrity and end entity
authentication between communicating peers. In this paper we
present a new protocol which combines zero-knowledge proofs
and key exchange mechanisms to provide secure and
authenticated communication in static machine-to-machine
(M2M) networks. This approach addresses all of the
aforementioned issues while also being suitable for devices with
limited computational resources and can be deployed in wireless
sensor networks.

While the protocol requires an a-priori knowledge about the
network setup and structure, it guarantees perfect forward
secrecy.

Keywords—Zero knowledge proof; GMW protocol; Diffie-
Hellman key exchange.

I. INTRODUCTION
Data encryption, data integrity and device authentication

are essential features of secure computer communication.
There are various approaches (based on symmetric or
asymmetric keys) to provide network security, but today’s de-
facto internet standard is based on the Transport Layer Security
(TLS) protocol [1], X.509 digital certificates [2] and public key
infrastructures (PKI). However, all these standardisation efforts
have been hampered by a range of design and implementation
insufficiencies / flaws. The “catastrophic” consequences of the
recently discovered Heartbleed bug serve as a strong reminder
of how easily major weaknesses in the current infrastructure
can go unnoticed for a prolonged period of time [3]. Other
recently disclosed vulnerabilities include Apple’s iOS SSL bug
[4], null-prefix attack on SSL certificates [5] and the Commodo
certificate authority breach [6].

The imminent emergence of the Internet of Things (IoT) or
Internet of Everything (IoT) with an estimated global
deployment of 50 billion devices by 2020 [7] will only enlarge
these problems as well as likely creating new ones. Another
twist is that the IoT revolution will largely be based on low-

cost, poorly protected and un-supervised small embedded
systems (ES) – e.g. 8 or 16 bit, memory and performance-
constrained architectures - deployed across many different
application domains. These ES are potentially far more
vulnerable to malicious attacks than, for example, the standard
internet-enabled PC, which at least has some decent defense
mechanism in form of a built-in firewall or virus scanner.

Also, many of these deployments will operate on wireless
standards based on 802.11 and 802.15, which are prone to
eavesdropping, packet injections, selective scrambling, etc.,
therefore requiring strong link-layer symmetric key encryption
based on AES-128.

There are also question marks over proposed cipher suits
that are suitable for resource constrained devices: While
elliptical curve cryptography (ECC) requires in principal much
shorter keys to provide the same level of security as classical
algorithms like for example RSA, there is a certain amount of
skepticism in the security community about the underlying
elliptic curves [8] as standardised by NIST and other
organisations.

 Static small to medium sized machine-to-machine
(M2M) networks can in principal incorporate privacy, data
integrity and end-entity authentication by means of one or
more pre-shared symmetric link keys, which are deployed on
all network devices or end-entities prior to their deployment.
While this approach has been successfully applied in ZigBee
[9], it does not provide perfect forward secrecy (PFS) [10],
which is deemed necessary following the recent discovery of
Heartbleet vulnerability in OpenSSL as well as the disclosure
of widespread capture and storage of encrypted network
communication for retrospective cryptanalysis as done by
various government agencies.

In this paper we propose an alternative method for peer-to-
peer authentication and encryption based on the Goldreich-
Micali-Wigderson (GMW) graph isomorphism zero-
knowledge protocol and the Diffie-Hellman key exchange. It is
structurally similar to a pre-shared symmetric link-key
approach. While our method lacks the flexibility of a public-
key cryptosystem (e.g. our key directories have to be setup pre-
deployment), it avoids the complexity of a public-key

68 978-1-4799-3303-7/14/$31.00 ©2014 IEEE

infrastructure-based approach and this may offer the flexibility
to have greater potential for devices with a wide range of
computational resources (including IoT / IoE devices).

In summary, our approach provides end-entity
authentication and session key negotiation between peers over
a potentially unsecure communication channel. Because of the
zero-knowledge property no security credentials are
exchanged, while compromised devices can only reveal their
own credentials, but not any shared keys.

The paper is structured as follow: Section II provides an
introduction into zero-knowledge proofs (ZKP), while section
III introduces graph isomorphism and the Goldreich-Micali
Widgerson ZKP. The introduction finishes with section IV
which briefly outlines the Diffie-Hellman (DH) key exchange
algorithm. Section V outlines our GMW protocol
implementation, followed by a few optimisations listed in
section VI. Section VII entails how the GMW and DH protocol
are combined in the new proposed protocol, while section VIII
outlines its performance characteristics. The paper closes with
conclusions and future work in section IX.

II. ZERO-KNOWLEDGE PROOFS
Zero-knowledge proofs (ZKP) [11] are challenge /

response authentication protocols, in which parties are
required to provide the correctness of their secrets without
revealing any information which could be used to help
another party deduce these secrets.

During the authentication procedure, a prover (e.g. Alice)
must respond to challenges issued by a verifier (e.g. Bob) over
a number of accreditation rounds. Alice must be able to
answer all challenges successfully to prove her identity
beyond reasonable doubt. Bob’s confidence in Alice’s identity
increases with every single round.

In zero-knowledge proof protocols, the verifier cannot
learn anything from the authentication procedure. Moreover,
the verifier is unable to cheat the prover because he cannot
calculate the prover's secret. Furthermore, the verifier cannot
cheat the prover because the protocol is repeated as long as the
verifier is not convinced; due to the random selection of a
challenge selection the verifier cannot pretend to be the prover
to a third party.

The computational overhead required for Alice to prove
her identity can potentially be significantly less than that
required for other approaches of authentication without the
need for a trusted third party such as that of RSA [12], while
still remaining very difficult for an intruder to cheat (due to
being based upon a NP problem). Due to these characteristics,
ZKPs were, upon their invention, immediately considered to
be very well suited to providing security to resource-limited
systems (e.g. smart cards) [13][14] and these same
characteristics make them a viable option for IoT small, e.g.
resource constrained 8-32 bit embedded systems.

III. THE GOLDREICH-MICALI-WIGDERSON ZKP
The GMW protocol is based on graph isomorphism [15].

Two graphs H = (V1,E1) and G0 = (V2,E2) that have the same

number of vertices are isomorphic, if there exists a permutation
π0 on vertices of H, so that any edge between vertices (u, v) in
H can be mapped onto G0. An example is depicted in Figure 1.

Figure 1: Building an isomorphic graph of H (G0) using a permutation (π0)

with corresponding edges labelled to display the isomorphism

The graph isomorphism problem is NP, as there is no
known polynomial time algorithm that solves it. For example,
an exhaustive search for an isomorphism between 2 regular
graphs with 34 vertices is computationally as complex as the
exhaustive search for a 128 bit symmetric key (~3E38 steps).

In the GMW protocol the prover’s secret is a graph
permutation π that is the isomorphism between two publically
known graphs G0 and G1. At the beginning of an accreditation
round the prover generates a random permutation � and
transforms either of the 2 graphs (e.g. a = 0 or a = 1 in Figure
2). The resulting initiation graph H is sent to the verifier. The
verifier in turn picks randomly either graph G0 or G1 (e.g. b = 0
or b = 1 in Figure 2) and asks the prover to show an
isomorphism between this graph and H. Depending on the
(randomly picked) values for a and b the prover might or might
not require the secret graph permutation π to provide the
correct answer (e.g. permutation σ), which is sent back to the
verifier and validated by him.

Figure 2: The GMW Protocol

IV. DIFFIE-HELLMAN KEY EXCHANGE
The GMW protocol allows end-entity authentication, but

provides no further means to authenticate or encrypt data for
inter-link communication.

Diffie-Hellman (see Figure 3) on the other hand is a
common key negotiation protocol. For our considerations it is
assumed that the multiplicative group of integers modulo p
(with p being a prime) as well as the primitive root g is known

The 10th International Conference on Digital Technologies

978-1-4799-3303-7/14/$31.00 ©2014 IEEE 69

to all devices. RFC 2412 [16] defines a set of recommended
parameters with p being either 768 bit or 1024 bit long. Unlike
RSA, Diffie-Hellman does not provide user authentication but
for the purposes of our protocol, it is not necessary.

Figure 3: Diffie-Hellman Key Exchange

V. THE PROPOSED PROTOCOL
The proposed protocol is designed to operate on static

deployments consisting of a fixed number of interconnected
devices.

Prior to deployment a network manager creates a random
regular public graph GP (in a regular graph all vertices have the
same degree, e.g. the same number of edges) that is stored in
all devices. Each device i also receives a random secret
permutation si. The resulting graph permutation Gi = si(Gp) is
stored in a hash table (with a device’s MAC address as the hash
key). The completed hash table (consisting of n entries for n
devices) is stored on all devices.

After the deployment of a network a peer-to-peer
connection begins with a handshake initiated by a device. Since
we have a mutual authentication each device is both prover and
verifier. During the handshake both entities extract the other
party’s MAC address to retrieve its public graph Gi. They
negotiate the number of authentication rounds and define a
session identifier Id.

In each round a device sends an authentication frame to the
other device. It has the following format:

< IG || i || Id || Success || SOL || CHL >

- IG is the initiation graph for round i.

- i is the round index.

- Id is the unique session identifier.

- Success is a flag indicating if the other device could
successfully answer the last challenge.

- SOL is the device’s response to the other side’s last
challenge.

- CHL is the new challenge for the other device.

Note that the first authentication frame does not contain the
fields Success and SOL, while the last frame does not contain
the fields IG and CHL.

The handshake fails, if any side cannot respond to the other
side’s challenge correctly, e.g. if Success is set to zero.

VI. PROTOCOL OPTIMISATION

Following the GMW protocol in each round a permutation
σ needs to be send from the prover to the verifier, therefore the
permutation must be serialised.

σ can be interpreted as a byte vector of length y, with y
being the number of vertices of the graph.

Alternatively, a memory-efficient encoding scheme for |σ| =
2X can be used, as only X bits per vertice are required.

For example, a permutation for a graph with 32 vertices
requires either 256 bits if stored uncompressed in a simple
array, or 160 bits if stored efficiently.

Figure 4: Graph Representation

Multiple graphs have to be stored efficiently in a device’s
hash table, while in each round an initiation graph has to be
transmitted from the prover to the verifier.

A graph can be represented in a binary matrix as shown in
Figure 4. Because of the symmetry of the matrix only the upper
right triangle has to be considered (e.g. serialised), therefore
only requiring lg = (y2 / 2) – (y / 2) bits of storage for a graph
with y vertices.

VII. KEY EXCHANGE

So far the protocol provides zero-knowledge authentication
of two peers, but it does not provide any means for the
encryption (using a symmetric key) or authentication (using an
encrypted hash) of exchanged data after the completion of the
authentication phase.

Since all peers share a potential unsecure or open network
medium, replay, injection and packet manipulation attacks by a
third party are possible. While this has limited consequences
for the ZK authentication (i.e. it results eventually in the
termination of the authentication protocol because an incorrect
response has been injected) it means that the key exchange
(e.g. public keys A and B in Figure 2) has to be tightly knitted
into the authentication phase. If both authentication and key
exchange are independent (and for example only share a
common single data frame for data transport), a potential
attacker could capture this frame, replace the public key
material with its own public key, and re-inject the frame into
the network, therefore creating a classical man-in-the-middle
attack situation.

This problem can be averted by piecewise encoding the
public key of a given device into its serialised initiation graph.
Over multiple rounds the entire public key will be transferred

Peer to Peer Authentication for Small Embedded Systems

70 978-1-4799-3303-7/14/$31.00 ©2014 IEEE

and because the key is tied to the ZKP a manipulation by a
third party is not possible.

The implementation of this concept is as follow: Assuming
a public key segment consists of k bits with k << lg (e.g. k < lg
/ 4) we pick a permutation (and consequently build an initiation
graph), so that the first k bits of the serialised graph match the
public key segment.

Figure 5: Initial Graph before Permutation

Figure 5 to Figure 7 show in a simple example how a given
2-bit public key segment {0, 1} can be embedded into an
initiation graph. All cell values are indexed to increase
readability, while swapped cells are highlighted in red.

The first bit (12) needs to be 0, therefore vertice 1 is
swapped with vertice 3. The resulting graph can be seen in
Figure 6.

Figure 6: Initial Graph after 1st Permutation

In the next step the second bit has to be set to 1 and
therefore vertice 2 is swapped with vertice 4 (Figure 7).

The resulting permutation vector is {0, 3, 4, 1, 2}.

In contrast to the example above the majority of permutations
are purely random and do not encode parts of the public key.
Also, every vertice can only be swapped once and only vertices
with an index > k can be swapped to accommodate the encoded
public key. The number of vertices of the graph must be
significantly larger than k in order to provide sufficient swap
candidates; the example in Figure 5 – Figure 7 has been
deliberately chosen to work for the public key segment {0, 1} –
it would fail for the public key segment {0, 0}.

Figure 7: Final Graph after 2nd Permutation

VIII. PERFORMANCE CHARACTERISTICS

The generation of a permutation and the generation of a
permutated graph are simple list operations that can be done in
polynomial (e.g. linear) time. From this perspective the
protocol is well suited for resource-constrained devices.

However, the authentication protocol creates some
communication overheads as shown in Table 1. The results
shown in the table are based on

• an authentication phase consisting of 32 rounds
(which results in a verifier confidence of 100 x (1 - 1
/ 232) % (~99.99999999%) about the true identity of
the prover),

• an uncompressed response permutation and

• protocol overheads (like for example the session ID)
of another 10 bytes per packet.

In the current implementation we utilise graphs with the
order 128 to transport 24 bits of a public key per round (e.g.
768 bits over 32 rounds).

However, an initiation graph of the order 64 seems to be the
most economical solution, while providing an algorithmic
complexity (in terms of an exhaustive search of a graph
isomorphism), which is in the order of 10E11 larger than a
brute force attack on a 256 bit symmetric key.

Nonetheless any key exchange algorithm (like Diffie
Hellman) creates computational overheads that are well
documented in literature [17] and in this regard a conventional
pre-shared link-key approach is superior. On the other hand,
pre-shared link-keys do not provide perfect forward secrecy
[10].

Table 1: Protocol Communication Overheads

The 10th International Conference on Digital Technologies

978-1-4799-3303-7/14/$31.00 ©2014 IEEE 71

IX. CONCLUSION AND FUTURE WORK

In this paper we propose a new method to provide privacy,
data integrity and end-entity authentication among peers in a
static IoT / IoE network, primarily focusing on the issue of
security in small embedded systems. It is based on a zero-
knowledge proof and has two unique features, e.g. it provides
mutual authentication based on the GMW protocol, while
integrating a public key transport mechanism for a
complementary key negotiation protocol.

The proposed protocol provides perfect forward secrecy,
but requires the distribution of credentials (e.g. graphs) pre-
deployment, which does not scale well with large deployments.
However, it avoids computational and management overheads
created by alternative solutions that provide PFS, e.g. X.509
certificates and public key infrastructures.

In its current implementation the protocol uses Diffie-
Hellman key-exchange. Cryptographically strong Diffie-
Hellman implementations require public keys in the order of
768 or 1024 bits (as recommended in RFC2412), which result
in combination with the protocol in either large graphs or an
appropriate number of rounds for key exchange, therefore
resulting in communication overheads as indicated in Table 1.

As a result we are currently investigating the use of an
alternative key negotiating protocol based on Curve25519.
Curve25519 was first published by Daniel J. Bernstein [18] as
an alternative to NIST approved ECC curves. It is designed for
the elliptic curve Diffie–Hellman key agreement scheme
(ECDH), but requires only parameters of 256 bit length, while
providing similar levels of security as RFC2412.

This will be complemented by further investigations into
benchmarking and protocol performance analysis.

Another possibility to improve the performance and
bandwidth requirements of the proposed protocol is an optimal
balance between the length of public key segments and the
order of the initiation graph. This requires further analysis of
the dependency between the size of the graph, the order of its
vertices, the length of a public key segment and its
composition.

REFERENCES
[1] Dierks, T. and E. Rescorla, “The Transport Layer Security (TLS)

Protocol Version 1.2,” RFC 5246, August 2008
[2] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W.

Polk, “Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile,” RFC 5280, May 2008

[3] Schneier, B., “Schneier on Security - Heartbleed”
https://www.schneier.com/blog/archives/2014/04/heartbleed.html

[4] Apple Computers, “About the security content of iOS 7.0.6”,
http://support.apple.com/kb/HT6147

[5] M. Marlinspike, “More Tricks For Defeating SSL”, DEFCON 17, Las
Vegas, 2009

[6] Comodo Group, “Report of incident on 15-MAR-2011”,
https://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html

[7] Cisco, “The Internet of Things”, http://share.cisco.com/internet-of-
things.html

[8] B.Schneier, “Schneier on Security – Elliptic Curve Crypto Primer”
https://www.schneier.com/blog/archives/2013/11/elliptic_curve.html#c2
200076

[9] E. Holohan, M. Schukat, “Authentication using Virtual Certificate
Authorities - A new Security Paradigm for Wireless Sensor Networks”,
The 9th IEEE International Symposium on Network Computing and
Applications (IEEE NCA10), July 2010

[10] A. Sui, “An improved authenticated key agreement protocol with perfect
forward secrecy for wireless mobile communication”, Wireless
Communications and Networking Conference, 2005 IEEE

[11] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity
of interactive proof-systems”. In STOC '85: Proceedings of the
seventeenth annual ACM symposium on Theory of computing, pages
291-304, New York, NY, USA, 1985. ACM Press.

[12] C.P. Schnorr, "Efficient signature generation by smart cards." Journal of
cryptology 4.3 (1991): 161-174.

[13] H. Aronsson, “Zero Knowledge Protocols and Small Systems”
Department of Computer Science, Helsinki University of Technology
(1995).

[14] T. Beth, "Efficient zero-knowledge identification scheme for smart
cards." Advances in Cryptology—EUROCRYPT’88. Springer Berlin
Heidelberg, 1988.

[15] O. Goldreich, S. Micali, A. Widgerson, “Proofs that Yield Nothing But
Their Validity or All Languages in NP Have Zero-Knowledge Proof
Systems” Journal of the ACM, Vol. 38, No. 3, July 1991, pp. 691-729

[16] H. Orman, “The OAKLEY Key Determination Protocol” RFC 2412,
November 1998

[17] P.C. Kocher, “Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems”, CRYPTO '96 Proceedings of the 16th
Annual International Cryptology Conference on Advances in Cryptology

[18] D. J. Bernstein. “Curve25519: new Diffie-Hellman speed records”,
Proceedings of PKC 2006

Peer to Peer Authentication for Small Embedded Systems

72 978-1-4799-3303-7/14/$31.00 ©2014 IEEE

