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Abstract—With an estimated 50 billion internet-enabled devices 
deployed by 2020, the arrival of the Internet of Things (IoT) or 
Internet of Everything (IoE) raises many questions regarding the 
suitability and adaptability of current computer security 
standards to provide privacy, data integrity and end entity 
authentication between communicating peers. In this paper we 
present a new protocol which combines zero-knowledge proofs 
and key exchange mechanisms to provide secure and 
authenticated communication in static machine-to-machine 
(M2M) networks. This approach addresses all of the 
aforementioned issues while also being suitable for devices with 
limited computational resources and can be deployed in wireless 
sensor networks. 

While the protocol requires an a-priori knowledge about the 
network setup and structure, it guarantees perfect forward 
secrecy. 

Keywords—Zero knowledge proof; GMW protocol; Diffie- 
Hellman key exchange. 

I.  INTRODUCTION 
Data encryption, data integrity and device authentication 

are essential features of secure computer communication. 
There are various approaches (based on symmetric or 
asymmetric keys) to provide network security, but today’s de-
facto internet standard is based on the Transport Layer Security 
(TLS) protocol [1], X.509 digital certificates [2] and public key 
infrastructures (PKI). However, all these standardisation efforts 
have been hampered by a range of design and implementation 
insufficiencies / flaws. The “catastrophic” consequences of the 
recently discovered Heartbleed bug serve as a strong reminder 
of how easily major weaknesses in the current infrastructure 
can go unnoticed for a prolonged period of time [3]. Other 
recently disclosed vulnerabilities include Apple’s iOS SSL bug 
[4], null-prefix attack on SSL certificates [5] and the Commodo 
certificate authority breach [6]. 

The imminent emergence of the Internet of Things (IoT) or 
Internet of Everything (IoT) with an estimated global 
deployment of 50 billion devices by 2020 [7] will only enlarge 
these problems as well as likely creating new ones. Another 
twist is that the IoT revolution will largely be based on low-

cost, poorly protected and un-supervised small embedded 
systems (ES) – e.g. 8 or 16 bit, memory and performance-
constrained architectures - deployed across many different 
application domains. These ES are potentially far more 
vulnerable to malicious attacks than, for example, the standard 
internet-enabled PC, which at least has some decent defense 
mechanism in form of a built-in firewall or virus scanner. 

Also, many of these deployments will operate on wireless 
standards based on 802.11 and 802.15, which are prone to 
eavesdropping, packet injections, selective scrambling, etc., 
therefore requiring strong link-layer symmetric key encryption 
based on AES-128.  

There are also question marks over proposed cipher suits 
that are suitable for resource constrained devices: While 
elliptical curve cryptography (ECC) requires in principal much 
shorter keys to provide the same level of security as classical 
algorithms like for example RSA, there is a certain amount of 
skepticism in the security community about the underlying 
elliptic curves [8] as standardised by NIST and other 
organisations. 

 Static small to medium sized machine-to-machine 
(M2M) networks can in principal incorporate privacy, data 
integrity and end-entity authentication by means of one or 
more pre-shared symmetric link keys, which are deployed on 
all network devices or end-entities prior to their deployment. 
While this approach has been successfully applied in ZigBee 
[9], it does not provide perfect forward secrecy (PFS) [10], 
which is deemed necessary following the recent discovery of 
Heartbleet vulnerability in OpenSSL as well as the disclosure 
of widespread capture and storage of encrypted network 
communication for retrospective cryptanalysis as done by 
various government agencies. 

In this paper we propose an alternative method for peer-to-
peer authentication and encryption based on the Goldreich-
Micali-Wigderson (GMW) graph isomorphism zero-
knowledge protocol and the Diffie-Hellman key exchange. It is 
structurally similar to a pre-shared symmetric link-key 
approach. While our method lacks the flexibility of a public-
key cryptosystem (e.g. our key directories have to be setup pre-
deployment), it avoids the complexity of a public-key 
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infrastructure-based approach and this may offer the flexibility 
to have greater potential for devices with a wide range of 
computational resources (including IoT / IoE devices). 

In summary, our approach provides end-entity 
authentication and session key negotiation between peers over 
a potentially unsecure communication channel. Because of the 
zero-knowledge property no security credentials are 
exchanged, while compromised devices can only reveal their 
own credentials, but not any shared keys. 

The paper is structured as follow: Section II provides an 
introduction into zero-knowledge proofs (ZKP), while section 
III introduces graph isomorphism and the Goldreich-Micali 
Widgerson ZKP. The introduction finishes with section IV 
which briefly outlines the Diffie-Hellman (DH) key exchange 
algorithm. Section V outlines our GMW protocol 
implementation, followed by a few optimisations listed in 
section VI. Section VII entails how the GMW and DH protocol 
are combined in the new proposed protocol, while section VIII 
outlines its performance characteristics. The paper closes with 
conclusions and future work in section IX. 

II. ZERO-KNOWLEDGE PROOFS 
Zero-knowledge proofs (ZKP) [11] are challenge / 

response authentication protocols, in which parties are 
required to provide the correctness of their secrets without 
revealing any  information which could be used to help 
another party deduce these secrets.  

During the authentication procedure, a prover (e.g. Alice) 
must respond to challenges issued by a verifier (e.g. Bob) over 
a number of accreditation rounds. Alice must be able to 
answer all challenges successfully to prove her identity 
beyond reasonable doubt. Bob’s confidence in Alice’s identity 
increases with every single round. 

In zero-knowledge proof protocols, the verifier cannot 
learn anything from the authentication procedure. Moreover, 
the verifier is unable to cheat the prover because he cannot 
calculate the prover's secret. Furthermore, the verifier cannot 
cheat the prover because the protocol is repeated as long as the 
verifier is not convinced; due to the random selection of a 
challenge selection the verifier cannot pretend to be the prover 
to a third party.  

The computational overhead required for Alice to prove 
her identity can potentially be significantly less than that 
required for other approaches of authentication without the 
need for a trusted third party such as that of RSA [12], while 
still remaining very difficult for an intruder to cheat (due to 
being based upon a NP problem). Due to these characteristics, 
ZKPs were, upon their invention, immediately considered to 
be very well suited to providing security to resource-limited 
systems (e.g. smart cards)  [13][14] and these same 
characteristics make them a viable option for IoT small, e.g. 
resource constrained 8-32 bit embedded systems. 

III. THE GOLDREICH-MICALI-WIGDERSON ZKP 
The GMW protocol is based on graph isomorphism [15]. 

Two graphs H = (V1,E1) and G0 = (V2,E2) that have the same 

number of vertices are isomorphic, if there exists a permutation 
π0 on vertices of H, so that any edge between vertices (u, v) in 
H can be mapped onto G0. An example is depicted in Figure 1. 

 
Figure 1: Building an isomorphic graph of H (G0) using a permutation (π0) 

with corresponding edges labelled to display the isomorphism 

The graph isomorphism problem is NP, as there is no 
known polynomial time algorithm that solves it. For example, 
an exhaustive search for an isomorphism between 2 regular 
graphs with 34 vertices is computationally as complex as the 
exhaustive search for a 128 bit symmetric key (~3E38 steps). 

In the GMW protocol the prover’s secret is a graph 
permutation π that is the isomorphism between two publically 
known graphs G0 and G1. At the beginning of an accreditation 
round the prover generates a random permutation � and 
transforms either of the 2 graphs (e.g. a = 0 or a = 1 in Figure 
2). The resulting initiation graph H is sent to the verifier. The 
verifier in turn picks randomly either graph G0 or G1 (e.g. b = 0 
or b = 1 in Figure 2) and asks the prover to show an 
isomorphism between this graph and H. Depending on the 
(randomly picked) values for a and b the prover might or might 
not require the secret graph permutation π to provide the 
correct answer (e.g. permutation σ), which is sent back to the 
verifier and validated by him.    

 
Figure 2: The GMW Protocol 

IV. DIFFIE-HELLMAN KEY EXCHANGE 
The GMW protocol allows end-entity authentication, but 

provides no further means to authenticate or encrypt data for 
inter-link communication.   

Diffie-Hellman (see Figure 3) on the other hand is a 
common key negotiation protocol. For our considerations it is 
assumed that the multiplicative group of integers modulo p 
(with p being a prime) as well as the primitive root g is known 
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to all devices. RFC 2412 [16] defines a set of recommended 
parameters with p being either 768 bit or 1024 bit long. Unlike 
RSA, Diffie-Hellman does not provide user authentication but 
for the purposes of our protocol, it is not necessary. 

Figure 3: Diffie-Hellman Key Exchange 

V. THE PROPOSED PROTOCOL 
The proposed protocol is designed to operate on static 

deployments consisting of a fixed number of interconnected 
devices.  

Prior to deployment a network manager creates a random 
regular public graph GP (in a regular graph all vertices have the 
same degree, e.g. the same number of edges) that is stored in 
all devices. Each device i also receives a random secret 
permutation si. The resulting graph permutation Gi = si(Gp) is 
stored in a hash table (with a device’s MAC address as the hash 
key). The completed hash table (consisting of n entries for n 
devices) is stored on all devices. 

After the deployment of a network a peer-to-peer 
connection begins with a handshake initiated by a device. Since 
we have a mutual authentication each device is both prover and 
verifier. During the handshake both entities extract the other 
party’s MAC address to retrieve its public graph Gi. They 
negotiate the number of authentication rounds and define a 
session identifier Id. 

In each round a device sends an authentication frame to the 
other device. It has the following format:  

< IG || i || Id || Success || SOL || CHL > 

- IG is the initiation graph for round i. 

- i is the round index. 

- Id is the unique session identifier. 

- Success is a flag indicating if the other device could 
successfully answer the last challenge. 

- SOL is the device’s response to the other side’s last 
challenge. 

- CHL is the new challenge for the other device. 

Note that the first authentication frame does not contain the 
fields Success and SOL, while the last frame does not contain 
the fields IG and CHL.   

The handshake fails, if any side cannot respond to the other 
side’s challenge correctly, e.g. if Success is set to zero. 

VI. PROTOCOL OPTIMISATION

Following the GMW protocol in each round a permutation 
σ needs to be send from the prover to the verifier, therefore the 
permutation must be serialised. 

σ can be interpreted as a byte vector of length y, with y 
being the number of vertices of the graph. 

Alternatively, a memory-efficient encoding scheme for |σ| = 
2X can be used, as only X bits per vertice are required.  

For example, a permutation for a graph with 32 vertices 
requires either 256 bits if stored uncompressed in a simple 
array, or 160 bits if stored efficiently. 

Figure 4: Graph Representation 

Multiple graphs have to be stored efficiently in a device’s 
hash table, while in each round an initiation graph has to be 
transmitted from the prover to the verifier. 

A graph can be represented in a binary matrix as shown in 
Figure 4. Because of the symmetry of the matrix only the upper 
right triangle has to be considered (e.g. serialised), therefore 
only requiring lg = (y2 / 2) – (y / 2) bits of storage for a graph 
with y vertices. 

VII. KEY EXCHANGE

So far the protocol provides zero-knowledge authentication 
of two peers, but it does not provide any means for the 
encryption (using a symmetric key) or authentication (using an 
encrypted hash) of exchanged data after the completion of the 
authentication phase. 

Since all peers share a potential unsecure or open network 
medium, replay, injection and packet manipulation attacks by a 
third party are possible. While this has limited consequences 
for the ZK authentication (i.e. it results eventually in the 
termination of the authentication protocol because an incorrect 
response has been injected) it means that the key exchange 
(e.g. public keys A and B in Figure 2) has to be tightly knitted 
into the authentication phase. If both authentication and key 
exchange are independent (and for example only share a 
common single data frame for data transport), a potential 
attacker could capture this frame, replace the public key 
material with its own public key, and re-inject the frame into 
the network, therefore creating a classical man-in-the-middle 
attack situation. 

This problem can be averted by piecewise encoding the 
public key of a given device into its serialised initiation graph. 
Over multiple rounds the entire public key will be transferred 
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and because the key is tied to the ZKP a manipulation by a 
third party is not possible. 

The implementation of this concept is as follow: Assuming 
a public key segment consists of k bits with k << lg (e.g. k <  lg 
/ 4) we pick a permutation (and consequently build an initiation 
graph), so that the first k bits of the serialised graph match the 
public key segment. 

Figure 5: Initial Graph before Permutation 

Figure 5 to Figure 7 show in a simple example how a given 
2-bit public key segment {0, 1} can be embedded into an 
initiation graph. All cell values are indexed to increase 
readability, while swapped cells are highlighted in red. 

The first bit (12) needs to be 0, therefore vertice 1 is 
swapped with vertice 3. The resulting graph can be seen in 
Figure 6.  

Figure 6: Initial Graph after 1st Permutation 

In the next step the second bit has to be set to 1 and 
therefore vertice 2 is swapped with vertice 4 (Figure 7). 

The resulting permutation vector is {0, 3, 4, 1, 2}. 

In contrast to the example above the majority of permutations 
are purely random and do not encode parts of the public key. 
Also, every vertice can only be swapped once and only vertices 
with an index > k can be swapped to accommodate the encoded 
public key. The number of vertices of the graph must be 
significantly larger than k in order to provide sufficient swap 
candidates; the example in Figure 5 – Figure 7 has been 
deliberately chosen to work for the public key segment {0, 1} – 
it would fail for the public key segment {0, 0}. 

Figure 7: Final Graph after 2nd Permutation 

VIII. PERFORMANCE CHARACTERISTICS

The generation of a permutation and the generation of a 
permutated graph are simple list operations that can be done in 
polynomial (e.g. linear) time. From this perspective the 
protocol is well suited for resource-constrained devices. 

However, the authentication protocol creates some 
communication overheads as shown in Table 1. The results 
shown in the table are based on  

• an authentication phase consisting of 32 rounds
(which results in a verifier confidence of  100 x (1 - 1
/ 232) % (~99.99999999%) about the true identity of
the prover),

• an uncompressed response permutation and

• protocol overheads (like for example the session ID)
of another 10 bytes per packet.

In the current implementation we utilise graphs with the 
order 128 to transport 24 bits of a public key per round (e.g. 
768 bits over 32 rounds).  

However, an initiation graph of the order 64 seems to be the 
most economical solution, while providing an algorithmic 
complexity (in terms of an exhaustive search of a graph 
isomorphism), which is in the order of 10E11 larger than a 
brute force attack on a 256 bit symmetric key. 

Nonetheless any key exchange algorithm (like Diffie 
Hellman) creates computational overheads that are well 
documented in literature [17] and in this regard a conventional 
pre-shared link-key approach is superior. On the other hand, 
pre-shared link-keys do not provide perfect forward secrecy 
[10]. 

Table 1: Protocol Communication Overheads 
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IX. CONCLUSION AND FUTURE WORK

In this paper we propose a new method to provide privacy, 
data integrity and end-entity authentication among peers in a 
static IoT / IoE network, primarily focusing on the issue of 
security in small embedded systems. It is based on a zero-
knowledge proof and has two unique features, e.g. it provides 
mutual authentication based on the GMW protocol, while 
integrating a public key transport mechanism for a 
complementary key negotiation protocol.  

The proposed protocol provides perfect forward secrecy, 
but requires the distribution of credentials (e.g. graphs) pre-
deployment, which does not scale well with large deployments. 
However, it avoids computational and management overheads 
created by alternative solutions that provide PFS, e.g. X.509 
certificates and public key infrastructures.  

In its current implementation the protocol uses Diffie-
Hellman key-exchange. Cryptographically strong Diffie-
Hellman implementations require public keys in the order of 
768 or 1024 bits (as recommended in RFC2412), which result 
in combination with the protocol in either large graphs or an 
appropriate number of rounds for key exchange, therefore 
resulting in  communication overheads as indicated in Table 1.  

As a result we are currently investigating the use of an 
alternative key negotiating protocol based on Curve25519. 
Curve25519 was first published by Daniel J. Bernstein [18] as 
an alternative to NIST approved ECC curves. It is designed for 
the elliptic curve Diffie–Hellman key agreement scheme 
(ECDH), but requires only parameters of 256 bit length, while 
providing similar levels of security as RFC2412. 

This will be complemented by further investigations into 
benchmarking and protocol performance analysis.  

Another possibility to improve the performance and 
bandwidth requirements of the proposed protocol is an optimal 
balance between the length of public key segments and the 
order of the initiation graph. This requires further analysis of 
the dependency between the size of the graph, the order of its 
vertices, the length of a public key segment and its 
composition.  
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