

 :ارائه شده توسط

ه فا �� سايت ��

� مرجع �� ه شده جديد�� �� مقا�ت ��

ت معت � �# از ن%$

http://tarjomefa.com/

A Sample-Guided Approach to Incremental Structured
Web Database Crawling

Wei Liu, Jianguo Xiao, Jianwu Yang
Institute of Computer Science & Technology

Key Laboratory of Computational Linguistics (Peking
University), MOE
Peking University

Beijng China, 100871

{liuwei, xjg, yangjianwu}@icst.pku.edu.cn

Abstract—Web database crawling is a promising solution for
Deep Web data integration. To the best of our knowledge, the
existing approaches only focused on how to crawl all records in a
web database. Due to the high dynamic of most web databases, it
is not practical to harvest a small proportion of new records by
crawling the whole database. This paper studies the problem of
incremental web database crawling, which targets at crawling the
new records from a web database efficiently. In the proposed
approach, a new graph model, query related graph, is proposed
to transform a incremental crawling task into a graph traversal
process. Based on this graph model, appropriate queries are
generated for crawling which are guided by the samples of the
web database. Extensive experimental evaluations over real Web
databases validate the effectiveness of our techniques and
provide insights for future efforts in this direction.

Index Terms - Web database, Deep Web data integration, Web
database crawling

I. INTRODUCTION
The Deep Web refers to the data residing in web databases,

and most of its content is in form of structured data records[1].
The Deep Web is believed to be the largest source of structured
data on the Web and hence Deep Web data integration has been
a long standing challenge in the field of Web data management.
A promising solution for Deep Web data integration is web
database crawling[2]. Crawling-based solution targets at
gathering structured records from web databases to make users
search and mine the Deep Web in a centralized manner. The
rapid development of computer hardware and Internet makes
this solution more practical than before.

To the best of our knowledge, previous efforts[3][4][5][6]
only focus on crawling the whole web database with the goal of
maximizing the coverage of the web database. We call this
approach “exhaustive crawling”. As it is widely known, most
web databases are highly dynamic, e.g. new records are always
being inserted constantly. To assure the local database is
consistent to the integrated web databases, the maintenance
operation has to be performed. However, it is not affordable to
always apply the exhaustive-crawling approach to harvest a
small quantity of new records(compared to the whole web
database), which can result in the heavy burdens for both web
databases and the network. In this paper, we study a crucial but
largely unresolved problem in the crawling-based solution:

how to obtain the new records without crawling the whole web
database?

To this end, we propose a sample-guided incremental-
crawling approach. The basic idea of this approach is described
as follows. First, a small number of random samples are
harvested from the web database. Then, by analyzing the
deviation between the samples and the history version of the
web database, an appropriate record is selected to generate the
promising query for crawling new records. In this approach, we
propose query-related graph model, and hence, any given web
database can be represented as an undirected graph based on
the model. The incremental crawling task is thus transformed
into a graph traversal process in which the crawler starts with
the graph of the samples of the web database and at each step a
vertex v is selected and an appropriate query is generated using
the selected vertex for crawling. Since the only general way of
accessing a web database is through its query interface,
automatic query generation is the key of our approach. Our
goal is to maximize the coverage of the new records and
minimize the coverage of the old ones of at the same time.

As the initial effort to address the incremental web database
crawling problem, the contribution of the paper is summarized
as follows. First, we identify this novel problem of incremental
web database crawling. Contrary to the previous exhaustive-
crawling works, we demonstrate that a central issue of efficient
web database crawling lies in the consistency between the local
database and the integrated web databases. Second, we provide
a theoretical framework that formally models query-based web
database crawling as graph traversal. Different to the attribute-
level graph models proposed by previous works(e.g. [3]), our
graph model is on record level, which can characterize whether
any two records are query related in a straightforward way.
Third, based on the graph model, we propose simple and smart
methods for the key problems in the incremental-crawling
approach, which aims at generating promising queries to
harvest the new records as many as possible.

The rest of this paper is organized as follows: Section 2
presents the preliminaries. Section 3 introduces the query-
related graph model. The query selection method based on the
query-related graph model is proposed in Section 4. We discuss
our experimental findings in Section 5. Section 6 reviews some
related work. Section 7 concludes this paper.

890978-1-4244-5704-5/10/$26.00 ©2010 IEEE

Proceedings of the 2010 IEEE
International Conference on Information and Automation

June 20 - 23, Harbin, China

II. PRELIMINARIES

A. Samples of WDB
The samples of WDB refers to a set of records which are

selected randomly from WDB. Since the only general way of
accessing a web database is through its query interface,
traditional random sampling techniques cannot be easily
applied as we do not have full access to WDB. Fortunately, [17]
proposed a random walk approach to sampling web database.
In this approach, probabilistic rejection based techniques are
used to improve the sample quality, and the size of samples can
be tuned by setting the parameters. In this paper, we assume the
samples of have been already obtained. In fact, the samples are
impossible to be truly unbiased whatever approaches are
applied because the queries for sampling are biased. In the
experiments, we will give a discussion for the impact on
performance which is brought by biased samples.

B. History Version of WDB
As we have mentioned, the Deep Web is highly dynamic.

We use WDBh to denote the history version of WDB, i.e. the
records of WDB which were crawled previously and stored in
the local database. In this paper, we only consider the scenario
of record insertion which is common in many domains, such as
research domain and job domain. We use WDB-WDBh to
denote the new records being inserted during the period. The
history version of WDB can be easily obtained from the local
database by issuing SQL ‘‘select * from WDB’’ to the local
database. In this way, the history version of WDB can be
regarded as a virtual view of the local database.

C. Discretizing the Value Ranges of Attributes
In this paper, we assume that the value range of any

attribute in the query interface is a set of discrete values. In fact,
there are three types of input choices provided for users to fill a
query interface: keyword, selecting and range. “selecting”
attribute has already meet this requirement. For “keyword”
attribute, its values are all possible none-stop keywords
appearing in records on this attribute. As a result, more than
one values may appear in the attribute of a record. For example,
the title of a research paper usually contains several
values(keywords). For “rang” attribute, its value range is
divided into a set of small ranges. In this way, all attributes can
be processed without difference.

D. Performance of Incremental Crawling
The goal of incremental web database crawling is to crawl

as many new records as possible while minimizing the
communication costs. As a result, two factors have to be
considered: coverage rate and crawling cost. The former is used
to measure the effectiveness, while the latter is used to measure
the efficiency.

Coverage rate
In the exhaustive-crawling works, coverage rate refers to

the ratio between the number of crawled unique records and all
the records of the web database, and it is denoted as TCR
(Total Coverage Rate) in this paper. For the incremental web
database crawling, the ratio between the number of crawled
unique new records and the number of all new records is also

considered, and it is denoted as ICR(Incremental Coverage
Rate). Formally, the definitions of them are given below:

TCR=�������	

���
��
��	���������

�����
 (1)

A B
r 1 a1 b1, b2
r 2 a2 b2, b3
r 3 a3 b3

A B
r 1 a1 b1, b2
r 2 a2 b2, b3
r 3 a3 b3
r 4 a3 b3, b4
r 5 a2 b2, b5

Figure 1. An example to illustrate the query related graph model

ΙCR=�������	
���
��
��	��

�������������
 (2)

Crawling cost
The crawling cost in this paper refers to the proportion of

the new records in all the of returned records(including the
duplicated records crawled with different queries) during the
crawling process, and it is denoted as PNR(PProportion of NNew
Records). The formal definition is given below:

PNR=
�������	
���
��
��	��

����
������	
��
��	��
 (3)

Obviously, given CCR and ICR, larger PNR is, more
efficient the crawler is. For instance, if 100 new records have
been crawled and 1000 records were returned by WDB after the
incremental process, then PNR=0.1. To this end, we must try to
elaborately select the queries which can harvest more new
records and maximize the ratio between the crawled new
records and the number of all crawled records.

III. QUERY-RELATED GRAPH MODEL
A query-related graph (QRG), G(V,E), for WDB is an

undirected graph that can be constructed as follows: for each
record ri , there exists a unique vertex vi�V. An undirected edge
(vi,vj)�E i.f.f. ri and rj satisfy at least one query q that can be
represented in the query interface, i.e. both ri and rj are in the
query result of q.

According to the definition of this model, the graph
complexity of a given WDB is determined by two factors: the
number of records and the query capability of the query
interface. Here the query capability refers to the number of
attributes contained in the query interface and the value ranges
of attributes. In other words, more attributes and more large
size of the value ranges of the attributes will result in more
edges in the graph. An interesting property of QRG is: if a
vertex v is selected for query generation, the corresponding

891

vertexes of the returned records must be some of the neighbors
of v. Intuitively, if a vertex has many neighbors, more records
are possible to be returned. We will use this character for
vertex selection by making an approximate estimation for the
number of the returned records.

By characterizing structured web databases using QRG, a
incremental crawling task is transformed into a graph traversal
process in which the crawler starts with the graph of the history
version of WDB and at each step a vertex v is selected for
crawling(query formulation) and the new records which are the
neighbors of v will be harvested and stored for future crawling.

Fig. 1 shows an example to illustrate the proposed graph
model. Fig. 1(a) shows WDB and WDBh, each record consist
the values over two attributes A and B. Fig. 1(b) is the query-
related graphs of WDB and WDBh respectively. And r4 and r5
are the new records in WDB. There are different choices to
crawl r4 and r5. For example, one choice is selecting r1 and then
using ‘‘b2’’ on B to crawl r5, and selecting r3 and using ‘‘a3’’ on
B to crawl r4, another choice is selecting r2 and using ‘‘b2’’ and
‘‘b3’’ on B to crawl r4 and r5. Obviously, different choices result
in different coverage rate and crawling cost. In the next section,
we will present our approach to crawl the new records based on
QRG by making good choices.

IV. APPROACH OF INCREMENTAL WEB DATABASE
CRAWLING

A. Approach Overview
Incremental Web Database Crawling Algorithm
Input: S, WDBh //The samples of WDB and the history version of WDB
Output: NRS // the set to store the crawled new records
Begin

1 Produce the query-related graphs GS and Gh for S and WDBh
respectively;

2 While the terminate criteria is not met
3 r=RecordSelection(GS, Gh);
4 q=QueryGeneration(r);
5 RS=RecordExtraction(q);
6 NRS.Add(RS);
7 Return NRS;
End

Figure 2. The overview of the proposed approach

We first overview the proposed approach. The basic idea of
our approach is to crawl the new records from WDB by
analyzing the deviation between the samples and the history
version of the web database. We assume the unbiased samples
of WDB have been obtained and stored in the local database.
We use S to denote the samples. Formally, our problem can be
depicted as follows: given S and WDBh, how to get the new
records�WDB-WDBh?

Fig.2 shows the overview of our approach, which is a loop
process. The functions of the three components in each round
are listed below.

RecordSelection: select a record from S�WDBh.

QueryGeneration: generate a query using the selected record.

RecordExtraction: extract the records from the result pages.

Record selection and query generation are the key
components in our approach. Record extraction belongs to the

research field of web data extraction, which has been widely
studied, so no more discussion is given for it in this paper. The
stop criteria of the crawling process is no new records were
crawled within 10 queries. In the rest part of this section, we
will introduce the underlying techniques for record selection
and query generation.

B. Record Selection
Record Selection Algorithm
Input: GS, Gh

Output: v // the selected vertex in GS�Gh
Begin
1 For each vertex v in GS�Gh do
2 Compute Sel(v);
3 Sel_Sum=������ � � �GS�Gh
4 For each vertex v in GS�Gh do

5 Prob(v)=
!"#�$�

��%&'()
; //the probability of selecting v

6 Randomly select a vertex v from GS�Gh according to Prob(v);
7 Return v;
End

Figure 3. Record Selection Algorithm

When the query-related graphs GS and Gh have been
produced, the record selection problem is how to select a vertex
from GS�Gh whose neighbors are new records as many as
possible. According to the definition of PNR, the selected
vertex at each round must make the proportion of the new
vertexes among its neighbors in G as much as possible. In other
words, the distance of the selected vertex and the new
vertexes(i.e. the vertex in G-Gh) must be as near as possible and
the distance of the selected vertex and the old vertexes(i.e. the
vertex in Gh) must be as far as possible. However, G is not
known yet, and we use GS as the representative of G under the
consumption that S is unbiased. Based on such consideration,
the vertex selection criteria is represented with the following
formula.

Sel(v)=
'*��+��+,�+*�$-
.��

'*��+��+,�+*�$-
./�
 (4)

where ShortestPath(v, Gh) refers to the average shortest path
between v and the vertexes in Gh, and ShortestPath(v, Gh)
refers to the average shortest path between v and the vertexes
in GS. As a result, given a vertex v, larger Sel(v) is, more
possible v is to connect to new vertexes. With Equ. (4), the
algorithm of record selection is given in Fig. 3.

C. Query Generation
After a vertex(record) has been selected, we will generate an
appropriate query using the vertex. Each query can be
modeled as a set of equality predicates, such as the query
‘‘position=Software Engineer and company=IBM” for
searching jobs. Same to the existing works on web database
crawling, we also focus on the simplest selection queries with
only one equality predicate. Given a record, multiple queries
can be generated. For example, three queries ‘‘A=a1’’,
‘‘B=b1’’, and ‘‘B=b2’’ can be generated using r1 in Fig. 1.
 Considering the crawling cost measure ICR, the goal of query
generation is to select the most effective one from all possible
queries. We define the effectiveness of a query below:

892

TABLE I
The dataset used in our experiment

Web database Home page Queriable Attributes Start time End time
Zhaopin.com(ZP) www.zhaopin.com Position, Company,

Location 2007/06/01 2007/08/31 51Job.com(5J) www.51job.com
Journal of software(JOS) www.jos.org.cn Title, Author, Key

Words 2006/01/01 2008/12/31 Chinese Journal of
Computers(CJC)

cjc.ict.ac.cn

(a) (b)

Fig. 4 The versions of the web databases: (a) Zhaopin and Chinaren from 2007/06 to 2007/08; (b) JOS and CJC from 2006 to 2008.

eff�(q)�=

�(0+����-1��
�(0+�����-1�

�(0+�����-1�
 (5)

where count(WDB, q) refers to the number of returned records
when issuing q to WDB. count(WDB, q) can be got by
extracting the hit number from the result page, such as “3,850”
in “1 - 10 of 3,850, (0.093) seconds”. According to our
statistics to a large number of web databases[16], more than
98.4% web databases present the hit numbers in their result
pages to indicate the number of returned records for each query.
And a method has been proposed by [15] to extract the hit
numbers. count(WDBh, q) can be got by issuing “select count(*)
from WDBh where q” to the local database. As a result,
count(WDB, q)-count(WDBh, q) is the number of new records
we will obtain.

Based on Eq. (5), a simple method for query generation is
described as follows. First, generate all one-equality-predicate
queries using the selected record. Second, compute the
effectiveness for each query. At last, the query with the max
effectiveness is used for crawling.

V. EXPERIMENTAL EVALUATION
In this section, we first present the dataset used in our

experiment, then a set of experiments are conducted to
evaluate the performance of the crawler implemented based on
the proposed approach. Both the crawler and the local database
are hosted by a 2.66G Windows server with 3.25G RAM
running on MySQL 5 RDBMS.

A. Dataset
To evaluate the crawler precisely and objectively, our

dataset is the history data of four real web databases from job
and research domains which is provided by
JobTong(www.jobtong.cn) and C-DBLP(www.cdblp.cn). The
four web databases are Zhaopin.com(ZP), 51Job.com(5J),
Journal of software(JOS), and Chinese Journal of

Computers(CJC). The details of the dataset are shown in Table
1. In Table I, the second column shows the attributes that can
be queried in the query interfaces. The third and the fourth
columns give all the history versions in our experiment being
produced during this period. Fig. 4 shows the sizes of the
history versions. x-axis refers to the number of records, and y-
axis refers to the time line. For job domain, there are 3 versions
for each web database(time interval: one month); for research
domain, there are also 3 versions for each web database(time
interval: one year). The average growth speed on job domain is
about 9.5% per month, and the average growth speed on job
domain is about 12.1% per year.

B. Experiment on coverage rate and crawling cost
TABLE II.

 EXPERIMENTAL RESULTS ON COVERAGE RATE AND CRAWLING COST
WDB Measure 07 08

ZP
CCR 97.9% 99.1%
ICR 86.3% 91.5%
PNR 19.9% 26.2%

5J
CCR 97.2% 98.6%
ICR 80.8% 91.3%
PNR 28.5% 35.1%
(a) Job domain

WDB Measure 2007 2008

JOS
CCR 96.2% 97.5%
ICR 64.0% 73.4%
PNR 18.4% 20.4%

CJC
CCR 98.6% 98.7%
ICR 80.7% 81.9%
PNR 23.5% 24.6%

(b) Research domain

We evaluate the performance of the crawler on both the
coverage rate(CCR and ICR) and the crawling cost(PNR) over
the four web databases. A family of experiments are conducted,
and Table 2 shows the experimental results. We use the last
version as the history version to crawl the next version. For
example, the head of the 3th column of Table 2(a) means we use
06 version to crawl the new records in version 07. The

0

50000

100000

150000

200000

2007/06 2007/07 2007/08

ZP 5J

0

1000

2000

3000

4000

5000

2006 2007 2008

JOS CJC

893

(a) ZP (b) 5J

(c) JOS (d) CJC

Figure 4. Experiment on different size of samples

ratio of the samples in each web database is set as 15%. The
samples are selected randomly As it can be seen from Table 2,
the crawler based on our approach can achieve very high
performance on both coverage rate and crawling cost. For CCR,
all ones are larger than 96% and some even close to 100%.
This means almost all the records in current version of WDB
can be got by us. For ICR, the ones(>80%) on job domain are
better the ones(>64%) on research domain. We think the reason
is that the sizes of job web databases are much larger than
thoseof research web databases, which makes more edges exist
among the records in their query related graphs. For PNR, all
ones are in a stable range(job domain: 19.9%-35.1%; research
domain: 18.4%-24.6%). This indicates that: (1)the crawler is
very robust, which means its performances will not fluctuate
significantly over different web databases; (2) the proportion of
the new records in all the crawled records.

Compared with the approaches on exhaustive crawling, our
incremental crawling approach is significantly superior to them
on the measures CCR and PNR. To the best of our knowledge,
[3] is the state-of-art work on exhaustive crawling. The best
performance on CCR reported in its experimental result is
about 90%, which is far less than our average CCR(98%).
According to the crawling cost reported in its experimental
result, the returned records is 1.2-1.5 times of the crawled
unique records. If the growth speed of WDB is 10%, its ICR is
(1.1-1)/(1.1*1.2)<10%.

C. Experiment on different size of samples
 In the last experiment, the ratio of the samples in each web

database is set as 15%. To evaluate the influence of this ratio
on the performance, we set the ratio as different values and
carry out the incremental crawling experiment again. For job
domain, the crawling target is 08 version; for research domain,
the crawling target is 2008 version. Fig. 5 shows the
experimental results on different ratios. There are two
conclusions can be made. First, the size of samples has the
distinct influence to CCR, ICR. In general, when the ratio is

larger than 15%, CCR and ICR tend to be stable. So the ration
can be set as 15% in practice because obtaining a large size of
samples is also a heavy burden. Second, there is no evidence
that the ratio has an influence on PNR. The reason is more
versions will make a better choice for record selection, which
can improve the proportion of new records in the returned
records of each query.

D. Experiment on biased samples

(a) ZP (b) 5J

(a) JOS (b) CJC
Figure 5. Experimental results on biased samples

In practice, it is impossible to obtain real unbiased samples,
so it is necessary to evaluate our approach on approximate
unbiased samples. We adopt the naïve method proposed in [17]
to obtain the approximate unbiased samples. The ratio is also
set as 15%. Form the experimental results shown in Fig. 6, we

50%

60%

70%

80%

90%

100%

5% 10% 15% 20% 25%

CCR ICR

0%

10%

20%

30%

40%

50%

5% 10% 15% 20% 25%

PNR

50%

60%

70%

80%

90%

100%

5% 10% 15% 20% 25%

CCR ICR

0%

10%

20%

30%

40%

50%

5% 10% 15% 20% 25%

PNR

50%

60%

70%

80%

90%

100%

5% 10% 15% 20% 25%

CCR ICR

0%

10%

20%

30%

40%

50%

5% 10% 15% 20% 25%

PNR

50%

60%

70%

80%

90%

100%

5% 10% 15% 20% 25%

CCR ICR

0%

10%

20%

30%

40%

50%

5% 10% 15% 20% 25%

PNR

0%

20%

40%

60%

80%

100%

CCR ICR PNR

biased unbiased

0%

20%

40%

60%

80%

100%

CCR ICR PNR

biased unbiased

0%

20%

40%

60%

80%

100%

CCR ICR PNR

biased unbiased

0%

20%

40%

60%

80%

100%

CCR ICR PNR

biased unbiased

894

can find that the overall performance over unbiased samples is
slightly better than that over approximate unbiased samples.
This indicates that our approach on approximate unbiased
samples can also achieve a high performance.

VI. RELATED WORK
[4] is the first work on web database crawling, which is

presented to automatically extract and analyze the interface
elements and submits queries through these query interfaces. [7]
studies the construction of keyword queries to obtain
documents from large web text collections. [8] proposes similar
keyword query selection techniques for downloading the
textual content from web databases. [5] reduces the problem of
selecting an optimal set of queries from a sample of the data
source into the well-known set-covering problem. [6] models
web database crawling as a set covering problem and
developed a new set covering algorithm to address this problem.
All the works above focus on how to crawl the whole web
database, which is not practical for highly dynamic web
databases. Different with them, we study the incremental
crawling problem. Though being a follow-up work to previous
works, it is indispensable in the real deep web data integration
systems. Web database sampling is similar to web database
crawling: it also harvests the records from a web database by
issuing queries to the query interface. Different to web database
crawling, web database sampling targets at obtaining a small
proportion of records(not all) which are distributed uniformly
in the web database. [17] is the first work on web database
sampling. It proposed a random walk approach to sampling
web database. In this approach, probabilistic rejection based
techniques are used to improve the sample quality, and the size
of samples can be tuned by setting the parameters.

Another important related area is web data extraction,
which is also a key component in the incremental crawler. Lots
of solutions have been proposed for this issue. [9] and [10]
study the problem of fully automatic data extraction by
exploring the repeated patterns from multiple template
generated result pages. [11] utilizes the information on the
‘‘detailed’’ record pages pointed by the current result page to
identify and extract data records. Note that Web data extraction
is orthogonal to the query selection problem investigated in this
paper. Recently, the efforts on this field pay more attention to
vision-based solutions which are independent of web page
programming languages, such as [18] and [19]. There has been
an active research interest in understanding the semantics of the
query interfaces of the structured Web databases. [12]
introduces WISE-integrator that employs comprehensive meta-
data, such as element labels and default value of the elements
to automatically identify matching attributes. [13] proposes an
instance-based schema matching scheme that uses domain
specific query probes to discover the attribute mappings. [14]
uses statistical models to find the hidden domain-specific
schema by analyzing co-appearance of attribute names.

VII. CONCLUSION AND FUTURE WORK
The high dynamic of web databases makes the exhaustive

crawling approach impractical to maintain the data consistency
between the local database of the Deep Web data integration

system and the integrated web databases. In this paper, we
studied the incremental web database crawling problem, and
proposed an efficient and effective method to address this
problem. The extensive experiment on four real web databases
shows our approach can significantly reduce the crawling cost
without the loss of coverage rate.

As the future work, we will improve the crawling cost by
combining the total number of issued queries into PNR, which
can measure the crawling cost more objectively.

VIII. ACKNOWLEDGMENT
We would like to thank the anonymous reviewers for useful

comments. This work was supported in part by the China
Postdoctoral Science Foundation funded project under grant
20080440256 and 200902014, NSFC (60875033), National
High-tech R&D Program (2008AA01Z421) and National
Development and Reform Commission High-tech Program of
China (2008-2441). Any opinions, findings, conclusions,
and/or recommendations in this material, either expressed or
implied, are those of the authors and do not necessarily reflect
the views of the sponsors listed above.

REFERENCES
[1] B. He, M. Patel, Z. Zhang, and K. C.-C. Chang. Accessing the Deep

Web: A survey. Communications of the ACM, 50(5) 2007.
[2] J. Madhavan, L. Afanasiev, L. Antova, A. Y. Halevy: Harnessing the

Deep Web: Present and Future. In CIDR 2009
[3] P. Wu, J.-R. Wen, H. Liu, W.-Y. Ma: Query Selection Techniques for

Efficient Crawling of Structured Web Sources. In ICDE 2006
[4] S. Raghavan, H. Garcia-Molina: Crawling the Hidden Web. In VLDB

2001: 129-138
[5] J. Lu, Y. Wang, J. Liang, J. Chen, J. Liu: An Approach to Deep Web

Crawling by Sampling. In Web Intelligence 2008
[6] Y. Wang, J. Lu, J. Chen: Crawling Deep Web Using a New Set

Covering Algorithm. In ADMA 2009
[7] L. Barbosa, J. Freire: Siphoning Hidden-Web Data through Keyword-

Based Interfaces. In SBBD 2004
[8] A. Ntoulas, P.Zerfos and J. Cho. Downloading textual hidden Web

content through keyword queries. In JCDL, 2005.
[9] H. Zhao, W. Meng, Z. Wu, V. Raghavan, C. T. Yu: Fully automatic

wrapper generation for search engines. In WWW 2005
[10] Y. Zhai, B. Liu: Web data extraction based on partial tree alignment. In

WWW 2005
[11] K. Lerman, L.Getoor, S. Minton and C. Knoblock. Using the structure of

Web sites for automatic segmentation of tables. In SIGMOD, 2004.
[12] H. He, W. Meng, C, Yu and Z. Wu. WISE-Integrator: an automatic

integrator of Web search interfaces for E-commerce. In VLDB, 2003.
[13] J. Wang, J. Wen, F. H. Lochovsky, and Wei-ying Ma. Instancebased

Schema Matching for Web Databases by Domain-specific Query
Probing. In VLDB, 2004.

[14] B. He, and K. C. Chang. Statistical Schema Matching across Web Query
Interfaces. In SIGMOD, 2003.

[15] Y. Ling, X. Meng, W. Meng: Automated Extraction of Hit Numbers
from Search Result Pages. In WAIM 2006

[16] http://idke.ruc.edu.cn/news/2008/dataset.htm
[17] A. Dasgupta, G. Das, H. Mannila: A random walk approach to sampling

hidden databases. In SIGMOD 2007

895

� مقا�، از �ی �
ه مقا�ت ا �� ن سايت شده �� ��ه فاراي �� در PDFكه #� فرمت ميباشد ��

ان قرار � ايل ميتوانيد #� 6يک �� روی د3ه های ز�� گرفته است. اختيار -, عز�� از در صورت :�

اييد:سا�� مقا�ت � استفاده :� ن<�

ه شده از �� � مقا�ت �� �
 ه فا ؛ مرجع جديد�� �� ت معت<� خار�B سايت �� �# ,Dن

http://tarjomefa.com/
http://tarjomefa.com/%D8%AF%D8%A7%D9%86%D9%84%D9%88%D8%AF+%D9%85%D9%82%D8%A7%D9%84%D9%87+isi+%D8%A8%D8%A7+%D8%AA%D8%B1%D8%AC%D9%85%D9%87+%D8%B1%D8%A7%DB%8C%DA%AF%D8%A7%D9%86
http://tarjomefa.com/%D8%AC%D8%B3%D8%AA%D8%AC%D9%88-%D8%A8%D9%87-%D8%B1%D9%88%D8%B4-%D8%AA%D8%B1%D8%AC%D9%85%D9%87-%D9%81%D8%A7
http://isidl.com/

