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Abstract—Web database crawling is a promising solution for 
Deep Web data integration. To the best of our knowledge, the 
existing approaches only focused on how to crawl all records in a 
web database. Due to the high dynamic of most web databases, it 
is not practical to harvest a small proportion of new records by 
crawling the whole database. This paper studies the problem of 
incremental web database crawling, which targets at crawling the 
new records from a web database efficiently. In the proposed 
approach, a new graph model, query related graph, is proposed 
to transform a incremental crawling task into a graph traversal 
process. Based on this graph model, appropriate queries are 
generated for crawling which are guided by the samples of the 
web database. Extensive experimental evaluations over real Web 
databases validate the effectiveness of our techniques and 
provide insights for future efforts in this direction. 

Index Terms - Web database, Deep Web data integration, Web 
database crawling 

I.  INTRODUCTION 
The Deep Web refers to the data residing in web databases, 

and most of its content is in form of structured data records[1]. 
The Deep Web is believed to be the largest source of structured 
data on the Web and hence Deep Web data integration has been 
a long standing challenge in the field of Web data management. 
A promising solution for Deep Web data integration is web 
database crawling[2]. Crawling-based solution targets at 
gathering structured records from web databases to make users 
search and mine the Deep Web in a centralized manner. The 
rapid development of computer hardware and Internet makes 
this solution more practical than before. 

To the best of our knowledge, previous efforts[3][4][5][6] 
only focus on crawling the whole web database with the goal of 
maximizing the coverage of the web database. We call this 
approach “exhaustive crawling”. As it is widely known, most 
web databases are highly dynamic, e.g. new records are always 
being inserted constantly. To assure the local database is 
consistent to the integrated web databases, the maintenance 
operation has to be performed. However, it is not affordable to 
always apply the exhaustive-crawling approach to harvest a 
small quantity of new records(compared to the whole web 
database), which can result in the heavy burdens for both web 
databases and the network. In this paper, we study a crucial but 
largely unresolved problem in the crawling-based solution: 

how to obtain the new records without crawling the whole web 
database? 

To this end, we propose a sample-guided incremental-
crawling approach. The basic idea of this approach is described 
as follows. First, a small number of random samples are 
harvested from the web database. Then, by analyzing the 
deviation between the samples and the history version of the 
web database, an appropriate record is selected to generate the 
promising query for crawling new records. In this approach, we 
propose query-related graph model, and hence, any given web 
database can be represented as an undirected graph based on 
the model. The incremental crawling task is thus transformed 
into a graph traversal process in which the crawler starts with 
the graph of the samples of the web database and at each step a 
vertex v is selected and an appropriate query is generated using 
the selected vertex for crawling. Since the only general way of 
accessing a web database is through its query interface, 
automatic query generation is the key of our approach. Our 
goal is to maximize the coverage of the new records and 
minimize the coverage of the old ones of at the same time. 

As the initial effort to address the incremental web database 
crawling problem, the contribution of the paper is summarized 
as follows. First, we identify this novel problem of incremental 
web database crawling. Contrary to the previous exhaustive-
crawling works, we demonstrate that a central issue of efficient 
web database crawling lies in the consistency between the local 
database and the integrated web databases. Second, we provide 
a theoretical framework that formally models query-based web 
database crawling as graph traversal. Different to the attribute-
level graph models proposed by previous works(e.g. [3]), our 
graph model is on record level, which can characterize whether 
any two records are query related in a straightforward way. 
Third, based on the graph model, we propose simple and smart 
methods for the key problems in the incremental-crawling 
approach, which aims at generating promising queries to 
harvest the new records as many as possible. 

The rest of this paper is organized as follows: Section 2 
presents the preliminaries. Section 3 introduces the query-
related graph model. The query selection method based on the 
query-related graph model is proposed in Section 4. We discuss 
our experimental findings in Section 5. Section 6 reviews some 
related work. Section 7 concludes this paper. 
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II. PRELIMINARIES 

A. Samples of WDB 
The samples of WDB refers to a set of records which are 

selected randomly from WDB. Since the only general way of 
accessing a web database is through its query interface, 
traditional random sampling techniques cannot be easily 
applied as we do not have full access to WDB. Fortunately, [17] 
proposed a random walk approach to sampling web database. 
In this approach, probabilistic rejection based techniques are 
used to improve the sample quality, and the size of samples can 
be tuned by setting the parameters. In this paper, we assume the 
samples of have been already obtained. In fact, the samples are 
impossible to be truly unbiased whatever approaches are 
applied because the queries for sampling are biased. In the 
experiments, we will give a discussion for the impact on 
performance which is brought by biased samples. 

B. History Version of WDB 
As we have mentioned, the Deep Web is highly dynamic. 

We use WDBh to denote the history version of WDB, i.e. the 
records of WDB which were crawled previously and stored in 
the local database. In this paper, we only consider the scenario 
of record insertion which is common in many domains, such as 
research domain and job domain. We use WDB-WDBh to 
denote the new records being inserted during the period. The 
history version of WDB can be easily obtained from the local 
database by issuing SQL ‘‘select * from WDB’’ to the local 
database. In this way, the history version of WDB can be 
regarded as a virtual view of the local database. 

C. Discretizing the Value Ranges of Attributes 
In this paper, we assume that the value range of any 

attribute in the query interface is a set of discrete values. In fact, 
there are three types of input choices provided for users to fill a 
query interface: keyword, selecting and range. “selecting” 
attribute has already meet this requirement. For “keyword” 
attribute, its values are all possible none-stop keywords 
appearing in records on this attribute. As a result, more than 
one values may appear in the attribute of a record. For example, 
the title of a research paper usually contains several 
values(keywords). For “rang” attribute, its value range is 
divided into a set of small ranges. In this way, all attributes can 
be processed without difference. 

D. Performance of Incremental Crawling 
The goal of incremental web database crawling is to crawl 

as many new records as possible while minimizing the 
communication costs. As a result, two factors have to be 
considered: coverage rate and crawling cost. The former is used 
to measure the effectiveness, while the latter is used to measure 
the efficiency. 

Coverage rate 
In the exhaustive-crawling works, coverage rate refers to 

the ratio between the number of crawled unique records and all 
the records of the web database, and it is denoted as TCR 
(Total Coverage Rate) in this paper. For the incremental web 
database crawling, the ratio between the number of crawled 
unique new records and the number of all new records is also 

considered, and it is denoted as ICR(Incremental Coverage 
Rate). Formally, the definitions of them are given below: 

TCR=�������	

���
��
��	���������

�����
       (1) 

A B
r 1 a1 b1, b2
r 2 a2 b2, b3
r 3 a3 b3

A B
r 1 a1 b1, b2
r 2 a2 b2, b3
r 3 a3 b3
r 4 a3 b3, b4
r 5 a2 b2, b5

 
Figure 1.  An example to illustrate the query related graph model 
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Crawling cost 
The crawling cost in this paper refers to the proportion of 

the new records in all the of returned records(including the 
duplicated records crawled with different queries) during the 
crawling process, and it is denoted as PNR(PProportion of NNew 
Records). The formal definition is given below: 

PNR=
�������	
���
��
��	��

����
������	
��
��	��
                   (3) 

Obviously, given CCR and ICR, larger PNR is, more 
efficient the crawler is. For instance, if 100 new records have 
been crawled and 1000 records were returned by WDB after the 
incremental process, then PNR=0.1. To this end, we must try to 
elaborately select the queries which can harvest more new 
records and maximize the ratio between the crawled new 
records and the number of all crawled records. 

III. QUERY-RELATED GRAPH MODEL 
A query-related graph (QRG), G(V,E), for WDB is an 

undirected graph that can be constructed as follows: for each 
record ri , there exists a unique vertex vi�V. An undirected edge 
(vi,vj)�E i.f.f. ri and rj satisfy at least one query q that can be 
represented in the query interface, i.e. both ri and rj are in the 
query result of q. 

According to the definition of this model, the graph 
complexity of a given WDB is determined by two factors: the 
number of records and the query capability of the query 
interface. Here the query capability refers to the number of 
attributes contained in the query interface and the value ranges 
of attributes. In other words, more attributes and more large 
size of the value ranges of the attributes will result in more 
edges in the graph. An interesting property of QRG is: if a 
vertex v is selected for query generation, the corresponding 
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vertexes of the returned records must be some of the neighbors 
of v. Intuitively, if a vertex has many neighbors, more records 
are possible to be returned. We will use this character for 
vertex selection by making an approximate estimation for the 
number of the returned records. 

By characterizing structured web databases using QRG, a 
incremental crawling task is transformed into a graph traversal 
process in which the crawler starts with the graph of the history 
version of WDB and at each step a vertex v is selected for 
crawling(query formulation) and the new records which are the 
neighbors of v will be harvested and stored for future crawling. 

Fig. 1 shows an example to illustrate the proposed graph 
model. Fig. 1(a) shows WDB and WDBh, each record consist 
the values over two attributes A and B. Fig. 1(b) is the query-
related graphs of WDB and WDBh respectively. And r4 and r5 
are the new records in WDB. There are different choices to 
crawl r4 and r5. For example, one choice is selecting r1 and then 
using ‘‘b2’’ on B to crawl r5, and selecting r3 and using ‘‘a3’’ on 
B to crawl r4, another choice is selecting r2 and using ‘‘b2’’ and 
‘‘b3’’ on B to crawl r4 and r5. Obviously, different choices result 
in different coverage rate and crawling cost. In the next section, 
we will present our approach to crawl the new records based on 
QRG by making good choices. 

IV. APPROACH OF INCREMENTAL WEB DATABASE 
CRAWLING 

A. Approach Overview 
Incremental Web Database Crawling Algorithm 
Input: S, WDBh //The samples of WDB and the history version of WDB
Output: NRS // the set to store the crawled new records 
Begin 

1 Produce the query-related graphs GS and Gh for S and WDBh 
respectively; 

2 While the terminate criteria is not met 
3 r=RecordSelection(GS, Gh); 
4 q=QueryGeneration(r); 
5 RS=RecordExtraction(q); 
6     NRS.Add(RS); 
7 Return NRS; 
End 

Figure 2.  The overview of the proposed approach 

We first overview the proposed approach. The basic idea of 
our approach is to crawl the new records from WDB by 
analyzing the deviation between the samples and the history 
version of the web database. We assume the unbiased samples 
of WDB have been obtained and stored in the local database. 
We use S to denote the samples. Formally, our problem can be 
depicted as follows: given S and WDBh, how to get the new 
records�WDB-WDBh? 

Fig.2 shows the overview of our approach, which is a loop 
process. The functions of the three components in each round 
are listed below. 

RecordSelection: select a record from S�WDBh.  

QueryGeneration: generate a query using the selected record.  

RecordExtraction: extract the records from the result pages. 

Record selection and query generation are the key 
components in our approach. Record extraction belongs to the 

research field of web data extraction, which has been widely 
studied, so no more discussion is given for it in this paper. The 
stop criteria of the crawling process is no new records were 
crawled within 10 queries. In the rest part of this section, we 
will introduce the underlying techniques for record selection 
and query generation. 

B. Record Selection 
Record Selection Algorithm
Input: GS, Gh

Output: v // the selected vertex in GS�Gh 
Begin
1 For each vertex v in GS�Gh do 
2 Compute Sel(v);
3 Sel_Sum=������ �  � �GS�Gh 
4 For each vertex v in GS�Gh do 

5     Prob(v)=
!"#�$�

��%&'()
; //the probability of selecting v 

6 Randomly select a vertex v from GS�Gh according to Prob(v); 
7 Return v;
End

Figure 3.  Record Selection Algorithm 

When the query-related graphs GS and Gh have been 
produced, the record selection problem is how to select a vertex 
from GS�Gh whose neighbors are new records as many as 
possible. According to the definition of PNR, the selected 
vertex at each round must make the proportion of the new 
vertexes among its neighbors in G as much as possible. In other 
words, the distance of the selected vertex and the new 
vertexes(i.e. the vertex in G-Gh) must be as near as possible and 
the distance of the selected vertex and the old vertexes(i.e. the 
vertex in Gh) must be as far as possible. However, G is not 
known yet, and we use GS as the representative of G under the 
consumption that S is unbiased. Based on such consideration, 
the vertex selection criteria is represented with the following 
formula. 

Sel(v)=
'*��+��+,�+*�$-
.��

'*��+��+,�+*�$-
./�
                       (4) 

where ShortestPath(v, Gh) refers to the average shortest path 
between v and the vertexes in Gh, and ShortestPath(v, Gh) 
refers to the average shortest path between v and the vertexes 
in GS. As a result, given a vertex v, larger Sel(v) is, more 
possible v is to connect to new vertexes. With Equ. (4), the 
algorithm of record selection is given in Fig. 3. 

C. Query Generation 
After a vertex(record) has been selected, we will generate an 
appropriate query using the vertex. Each query can be 
modeled as a set of equality predicates, such as the query 
‘‘position=Software Engineer and company=IBM” for 
searching jobs. Same to the existing works on web database 
crawling, we also focus on the simplest selection queries with 
only one equality predicate. Given a record, multiple queries 
can be generated. For example, three queries ‘‘A=a1’’, 
‘‘B=b1’’, and ‘‘B=b2’’ can be generated using r1 in Fig. 1. 
 Considering the crawling cost measure ICR, the goal of query 
generation is to select the most effective one from all possible 
queries. We define the effectiveness of a query below: 
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TABLE I 
The dataset used in our experiment 

Web database Home page Queriable Attributes Start time End time 
Zhaopin.com(ZP) www.zhaopin.com Position, Company, 

Location 2007/06/01 2007/08/31 51Job.com(5J) www.51job.com 
Journal of software(JOS) www.jos.org.cn Title, Author, Key 

Words 2006/01/01 2008/12/31 Chinese Journal of 
Computers(CJC) 

cjc.ict.ac.cn 

 

      
(a)                                                                                     (b) 

Fig. 4 The versions of the web databases: (a) Zhaopin and Chinaren from 2007/06 to 2007/08; (b) JOS and CJC from 2006 to 2008.

eff�(q)�=


�(0+����-1��
�(0+�����-1�


�(0+�����-1�
               (5) 

where count(WDB, q) refers to the number of returned records 
when issuing q to WDB. count(WDB, q) can be got by 
extracting the hit number from the result page, such as “3,850” 
in “1 - 10 of 3,850, (0.093) seconds”. According to our 
statistics to a large number of web databases[16], more than 
98.4% web databases present the hit numbers in their result 
pages to indicate the number of returned records for each query. 
And a method has been proposed by [15] to extract the hit 
numbers. count(WDBh, q) can be got by issuing “select count(*) 
from WDBh where q” to the local database. As a result, 
count(WDB, q)-count(WDBh, q) is the number of new records 
we will obtain. 

Based on Eq. (5), a simple method for query generation is 
described as follows. First, generate all one-equality-predicate 
queries using the selected record. Second, compute the 
effectiveness for each query. At last, the query with the max 
effectiveness is used for crawling. 

V. EXPERIMENTAL EVALUATION 
In this section, we first present the dataset used in our 

experiment, then a set of  experiments are conducted to 
evaluate the performance of the crawler implemented based on 
the proposed approach. Both the crawler and the local database 
are hosted by a 2.66G Windows server with 3.25G RAM 
running on MySQL 5 RDBMS. 

A. Dataset 
To evaluate the crawler precisely and objectively, our 

dataset is the history data of four real web databases from job 
and research domains which is provided by 
JobTong(www.jobtong.cn) and C-DBLP(www.cdblp.cn). The 
four web databases are Zhaopin.com(ZP), 51Job.com(5J), 
Journal of software(JOS), and Chinese Journal of 

Computers(CJC). The details of the dataset are shown in Table 
1. In Table I, the second column shows the attributes that can 
be queried in the query interfaces. The third and the fourth 
columns give all the history versions in our experiment being 
produced during this period. Fig. 4 shows the sizes of the 
history versions. x-axis refers to the number of records, and y-
axis refers to the time line. For job domain, there are 3 versions 
for each web database(time interval: one month); for research 
domain, there are also 3 versions for each web database(time 
interval: one year). The average growth speed on job domain is 
about 9.5% per month, and the average growth speed on job 
domain is about 12.1% per year. 

B. Experiment on coverage rate and crawling cost 
TABLE II. 

 EXPERIMENTAL RESULTS ON COVERAGE RATE AND CRAWLING COST 
WDB Measure 07 08

ZP 
CCR 97.9% 99.1%
ICR 86.3% 91.5%
PNR 19.9% 26.2%

5J 
CCR 97.2% 98.6%
ICR 80.8% 91.3%
PNR 28.5% 35.1%
(a) Job domain 

WDB Measure 2007 2008

JOS 
CCR 96.2% 97.5%
ICR 64.0% 73.4%
PNR 18.4% 20.4%

CJC 
CCR 98.6% 98.7%
ICR 80.7% 81.9%
PNR 23.5% 24.6%

(b) Research domain 
 

We evaluate the performance of the crawler on both the 
coverage rate(CCR and ICR) and the crawling cost(PNR) over 
the four web databases. A family of experiments are conducted, 
and Table 2 shows the experimental results. We use the last 
version as the history version to crawl the next version. For 
example, the head of the 3th column of Table 2(a) means we use 
06 version  to crawl the new records in version 07. The  
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(a) ZP                                                                                                                                (b) 5J 

        
(c) JOS                                                                                                                          (d) CJC 

Figure 4.  Experiment on different size of samples 

ratio of the samples in each web database is set as 15%. The 
samples are selected randomly As it can be seen from Table 2, 
the crawler based on our approach can achieve very high 
performance on both coverage rate and crawling cost. For CCR, 
all ones are larger than 96% and some even close to 100%. 
This means almost all the records in current version of WDB 
can be got by us. For ICR, the ones(>80%) on job domain are 
better the ones(>64%) on research domain. We think the reason 
is that the sizes of job web databases are much larger than 
thoseof research web databases, which makes more edges exist 
among the records in their query related graphs. For PNR, all 
ones are in a stable range(job domain: 19.9%-35.1%; research 
domain: 18.4%-24.6%). This indicates that: (1)the crawler is 
very robust, which means its performances will not fluctuate 
significantly over different web databases; (2) the proportion of 
the new records in all the crawled records. 

Compared with the approaches on exhaustive crawling, our 
incremental crawling approach is significantly superior to them 
on the measures CCR and PNR. To the best of our knowledge, 
[3] is the state-of-art work on exhaustive crawling. The best 
performance on CCR reported in its experimental result is 
about 90%, which is far less than our average CCR(98%). 
According to the crawling cost reported in its experimental 
result, the returned records is 1.2-1.5 times of the crawled 
unique records. If the growth speed of WDB is 10%, its ICR is 
(1.1-1)/(1.1*1.2)<10%. 

C. Experiment on different size of samples 
 In the last experiment, the ratio of the samples in each web 

database is set as 15%. To evaluate the influence of this ratio 
on the performance, we set the ratio as different values and 
carry out the incremental crawling experiment again. For job 
domain, the crawling target is 08 version; for research domain, 
the crawling target is 2008 version. Fig. 5 shows the 
experimental results on different ratios. There are two 
conclusions can be made. First, the size of samples has the 
distinct influence to CCR, ICR. In general, when the ratio is 

larger than 15%, CCR and ICR tend to be stable. So the ration 
can be set as 15% in practice because obtaining a large size of 
samples is also a heavy burden. Second,  there is no evidence 
that the ratio has an influence on PNR. The reason is more 
versions will make a better choice for record selection, which 
can improve the proportion of new records in the returned 
records of each query.  

D. Experiment on biased samples 

 
(a)  ZP                                                             (b) 5J 

 

(a)  JOS                                                             (b) CJC 
Figure 5.   Experimental results on biased samples 

In practice, it is impossible to obtain real unbiased samples, 
so it is necessary to evaluate our approach on approximate 
unbiased samples. We adopt the naïve method proposed in [17] 
to obtain the approximate unbiased samples. The ratio is also 
set as 15%. Form the experimental results shown in Fig. 6, we 
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can find that the overall performance over unbiased samples is 
slightly better than that over approximate unbiased samples. 
This indicates that our approach on approximate unbiased 
samples can also achieve a high performance. 

VI. RELATED WORK 
[4] is the first work on web database crawling, which is 

presented to automatically extract and analyze the interface 
elements and submits queries through these query interfaces. [7] 
studies the construction of keyword queries to obtain 
documents from large web text collections. [8] proposes similar 
keyword query selection techniques for downloading the 
textual content from web databases. [5] reduces the problem of 
selecting an optimal set of queries from a sample of the data 
source into the well-known set-covering problem. [6] models 
web database crawling as a set covering problem and 
developed a new set covering algorithm to address this problem. 
All the works above focus on how to crawl the whole web 
database, which is not practical for highly dynamic web 
databases. Different with them, we study the incremental 
crawling problem. Though being a follow-up work to previous 
works, it is indispensable in the real deep web data integration 
systems. Web database sampling is similar to web database 
crawling: it also harvests the records from a web database by 
issuing queries to the query interface. Different to web database 
crawling, web database sampling targets at obtaining a small 
proportion of records(not all) which are distributed uniformly 
in the web database. [17] is the first work on web database 
sampling. It proposed a random walk approach to sampling 
web database. In this approach, probabilistic rejection based 
techniques are used to improve the sample quality, and the size 
of samples can be tuned by setting the parameters. 

Another important related area is web data extraction, 
which is also a key component in the incremental crawler. Lots 
of solutions have been proposed for this issue. [9] and [10] 
study the problem of fully automatic data extraction by 
exploring the repeated patterns from multiple template 
generated result pages. [11] utilizes the information on the 
‘‘detailed’’ record pages pointed by the current result page to 
identify and extract data records. Note that Web data extraction 
is orthogonal to the query selection problem investigated in this 
paper. Recently, the efforts on this field pay more attention to 
vision-based solutions which are independent of web page 
programming languages, such as [18] and [19]. There has been 
an active research interest in understanding the semantics of the 
query interfaces of the structured Web databases. [12] 
introduces WISE-integrator that employs comprehensive meta-
data, such as element labels and default value of the elements 
to automatically identify matching attributes. [13] proposes an 
instance-based schema matching scheme that uses domain 
specific query probes to discover the attribute mappings. [14] 
uses statistical models to find the hidden domain-specific 
schema by analyzing co-appearance of attribute names. 

VII. CONCLUSION AND FUTURE WORK 
The high dynamic of web databases makes the exhaustive 

crawling approach impractical to maintain the data consistency 
between the local database of the Deep Web data integration 

system and the integrated web databases. In this paper, we 
studied the incremental web database crawling problem, and 
proposed an efficient and effective method to address this 
problem. The extensive experiment on four real web databases 
shows our approach can significantly reduce the crawling cost 
without the loss of coverage rate. 

As the future work, we will improve the crawling cost by 
combining the total number of issued queries into PNR, which 
can measure the crawling cost more objectively. 
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