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Summary. The patterns of background or ongoing in vivo activity, even in the absence of any external 
stimulus, are quite irregular showing no clear structure or repetitiveness in the neuronal firing sequences. 
Consequently, the ongoing firing pattern of a neuron is mostly considered as a neuronal noise which is 
traditionally modeled as a stochastic Point process, i.e., renewal process which is devoid of any 
correlation between successive inter-spike-interval (ISI). But a recently emerging alternative view is that 
the ongoing activity may possess sptaio-temporally coherent patterns, a feature of fractal process with 
long-range correlation. Here, we investigated the nature of irregular fluctuations of ongoing neuronal 
firing pattern of neurons located in human hippocampus by the following methods: (i) detrended 
fluctuation analysis (DFA) , (ii) multiscale entropy (MSE) analysis, and (iii) convergence of the statistical 
moment analysis (CMA). Neuronal activity was recorded in the absence of any explicit cognitive task 
while the subjects were awake. Both the DFA and MSE analysis clearly show that the ongoing firing 
patterns are not well described by a renewal process, rather they show long-range power-law correlations, 
representing ongoing memory effects, which possibly arises from a fractal process. Further, these neurons 
showed slow convergence of statistical moments.  Such long-range correlations are also corroborated by 
statistical control sequences. Neurons which exhibit long-range correlations also exhibit statistically non-
significant correlations with other neighboring neurons. The presence of long-range correlations is a 
characteristic of fractal-like dynamics, representing memory or history in the firing patterns. We propose 
that this type of spatio-temporal correlations may be used to optimize information transfer and storage at 
hippocampal synapses. The presence of correlation in the ongoing pattern also suggests the influence of 
pre-stimulus sequence on shaping the post-stimulus responses. Further, these findings call for the 
modification of the existing neural modeling approaches.  

1 Introduction 

Spontaneous electrical activity, the neuronal activity which is observed in the absence 
of obvious external stimuli, is a prominent characteristic of the electrical activity of the 
central nervous system. Such ongoing or background activity is found from the 
microscopic level, recorded in the form of action potentials of a single neuron, to the 
macroscopic level, recorded in the form of global cortical oscillations. The principal 
feature of spontaneous activity is its extremely irregular fluctuations, i.e. lack of 
repetitiveness. The spontaneous activity is traditionally assumed as merely ‘noise’ in the 
nervous system which does not carry any meaningful information [1,2]. The obvious 
consequence of this assumption is that the post-stimulus response is uncorrelated to the 
pre-stimulus or ongoing responses. While analyzing single unit (i.e. neuron) data, the 
mean firing rate is proposed to possess the relevant stimulus-related information, while 
the temporal dependencies between successive action potentials (i.e. spikes) are 
completely ignored. In this framework, the inter-spike-interval (ISI) sequence of a 
single in vivo neuron is theoretically considered as a realization of a homogenous 
Poisson point process (HPP), i.e. renewal process (RP) [3]. The HPP is memoryless: the 
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occurrence of a spike at any time t1 is independent of the presence or absence of spikes 
at other times t t1. Hence, both the spike intervals and the spike counts form the 
sequences of independent, identically distributed random variables: there is no 
significant correlation present in the spike train generated by a HPP process, and the 
HPP interval process is completely described by the inter-spike-interval distribution 
function, which is a static measure.  

Contrary to this assumption, recent findings [4-9] show that there are 
long-term correlations among ISIs. This long-range correlation is indicative of a fractal 
point process, which is statistically self-similar or scale-invariant. For a renewal 
process, higher-order interval and count distributions can be computed knowing only 
the first-order ISI distribution, but for fractal process, correlations and memory effects 
in the ISI sequence cannot be explained by the first-order ISI distribution. However, 
detection of the long-range correlation in ISI sequence with finite number of spikes is 
not a trivial task since it is shown [10-11] that certain signals may appear as a long-
range correlated process according to one method but not necessarily according to 
another method. Thus, instead of emphasizing the results of one method, we 
recommend to perform multiple and complementary tests of correlation and compare 
the results to exclude the spurious findings of long-range correlation.  

In this current study, we analyze the variability of spontaneous activity of in vivo
single neuron recorded from human hippocampus. Our main aim is to investigate which 
process, renewal process or a fractal like process, better characterizes the fluctuations of 
the ISI patterns? A battery of methods was adopted. We observed that majority of the 
neurons showed long-range power-law correlations in their firing patterns and these 
neurons presented statistically significant inter-neuronal correlations. The presence of 
such long-range correlations is a strong signature of the fractal like process governing 
the neuronal dynamics.  

2 Materials and Methods 

2.1 Subjects & Data Recording 

In this study, we analyzed the data recorded from a single subject (32 yr. male) who had 
pharmacologically intractable medial temporal lobe epilepsy. At the time of recording, 
the subject was in the hospital and had hybrid depth electrodes implanted for the precise 
localization of the epileptic focus. The surgery was performed by a neurosurgeon 
(A.M.); the electrode placement was solely guided by the clinical requirement. The 
complete clinical recording period lasted for 2 weeks and the research recordings were 
obtained using microwire bundles implanted within the depth electrodes. The microwire 
electrodes consisted of 8 identical Pt/Ir wires, which were insulated along the entire 
length, and protruded into the tissue approximately 5 mm beyond the tip of the depth 
electrode. The electrode locations were verified by post-implantation MRI. The research 
protocol was approved by the Institutional Review Boards; the patient provided written 
consent before the recording started.   

Single unit data were sampled, at the rate of 32 kHz, and stored by the 
CheetahTM data acquisition system (Neuralynx Inc., Arizona, USA). In order to separate 
the ISI sequences of individual neuron, standard cluster cutting (using MClust version 
2.0) computation was conducted. After carefully removing the ISI sequences which 
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were noise-corrupted, 9 data sequences were selected for further processing. All 
recorded neurons were located in the left hippocampus. The subject was awake during 
the considered segment of recording and no external stimulus was presented to him.    

2.2 Data Analysis  

As stated earlier, the present study emphasized the importance of simultaneous usages 
of complimentary methods of fractal time series analysis. Briefly, the methods are 
sketched as follows.  

2.2.1 Detrended Fluctuation Analysis (DFA) 
This method was introduced by Peng et al. [12] and consisted of the following steps: 
(a) For any ISI sequence {I(t), t=1,2,…, N}, calculate the integrated sequence: 

k

t
ItIkY

1
)()(      (1) 

where I  is the mean of the whole ISI sequence.  
(b) Cut the sequence Y(k) into [N/n] nonoverlapping segments or boxes of size n. Since 
the record length N may not be a integer multiple of n, a short part at the end of the 
integrated sequence will remain. In order to take care of this remaining part, the same 
procedure of segmentation is repeated starting from the other end of the sequence. Thus, 
2[N/n] boxes are produced.  

Figure 1: Illustration of the DFA method to investigate the scale-invariance and long-range correlations. 
Upper: Inter-spike-interval (ISI) time series, I(n) of a hippocampal neuron. Middle: The solid 
profile indicates the integrated time series, y(k), which is then divided into equal boxes of size 
n=100 spikes. The vertical lines show the boundaries between different boxes. The straight lines 
are the trends estimated in each box by a linear least-squares fit. It is to be noted that the 
ntegrated profile fluctuates around these trends. Lower: The root-mean-square deviations of 
these fluctuations, F(n), are plotted against box size, n, on a log-log scale. If a straight line is 
found to be the best fit, the presence of power-law scaling is confirmed. The slope of the line 
provides the scaling exponent, .    
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(c) Calculate the local trend within each box by a least-square fit. Then, detrend the 
sequence against the estimated linear fit. It is to be noted that higher order detrending 
can also be employed instead of linear one [13]. 
(d) For each of the 2[N/n] boxes, calculate the variance of the detrended sequence which 
was then averaged and the square root was taken to obtain the fluctuation function F(n).
(e) Finally, calculate the fluctuation function for all possible box sizes (in this study, we 
vary n=3 to N/3].  

For long-range power-law correlations in the ISI sequence, F(n) n . The 
scaling exponent, , can be estimated by plotting F(n) on a double-logarithmic scale. 
Fig. 1 shows the different steps involved in the computation of .
For uncorrelated sequence and short-range correlations, = 0.5, while 0.5 <  1 
indicates long-range correlations or power-law distributed values. Thus,  is an 
important measure to investigate the statistical correlation properties of a sequence.   

2.2.2 Multi-Scale-Entropy (MSE) Analysis 
A fractal process essentially represents a scale-invariant dynamics showing structures 
on multiple spatio-temporal scales. Because of that, the complexity (or entropy) of a 
long-range correlated ISI sequence should not depend on the resolution of the time scale 
of measurement. Here, we applied the measure of multi-scale-entropy (MSE) as 
introduced by Costa et al. [14]. First, the ISI sequence was coarse-grained by averaging 
a successively increasing number of data points in nonoverlapping windows. Each data 
point of the coarse-grained sequence, )( jI CG , was calculated as follows: 

j

jt

CG tIjI
1)1(

)(1)(  where  is the scale factor and 1 j N/ . The sample entropy [15] 

of the coarse grained sequence was calculated. The profile of sample entropy against the 
scale factor is called the multi-scale-entropy, Z. Sample entropy reflects the conditional 
probability that the two pattern sequences of m consecutive data points which are in 
close resemblance to each other will also be similar when the pattern length increases by 
one point.   
 The multi-scale-entropy, Z, for uncorrelated or short-range correlated ISI 
sequence will monotonically decrease with  whereas Z will remain approximately 
constant for a long-range correlated or a fractal sequence.  

2.2.3 Cumulative Moment Analysis 
If a data sequence is long-range correlated, there does not exist any single average or 
mean value which can completely characterize the data. It indicates that as we collect 
more data points, the mean value continues to increase/decrease and the sample mean 
does not converge to population mean. But for nonfractal sequences, sample means 
exhibit quick convergence towards population mean. Here, we calculated the profile of 
cumulative mean for ISI sequence and qualitatively studied the convergent property. 
Although slow convergence of mean is not a definite proof of a fractal process, it 
provides complimentary, and often corroboratory, information to that obtained by the 
earlier methods.  

2.2.4 Inter-neuronal Correlation Analysis 
Earlier methods investigate history effects by analyzing the temporal correlation. 
However, it must be noted that history or memory in the firing pattern of a neuron needs  
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Figure 2: Applications of the battery of adopted methods to two simulated ISI sequences: (a) 
uncorrelated, random ISI, and (e) scale-invariant fractal ISI. The two sequences have identical 
mean, and amplitude histogram. The results based on DFA, MSE and CMA for the random ISI 
sequence are shown in (b)-(d) respectively. Similar for the fractal ISI are shown in (f)-(h).   

to be stored somewhere but time is not a suitable substrate for the information storage. 
An immediate alternative medium of storage can be space, in the formation of a 
neuronal network. The possibilities of modification of the strengths of synapses and of 
the network architecture render the substrate medium to be dynamic. Our hypothesis 
was that those ISI sequences which were   long-range correlated would present stronger 
coupling with one another than the other neurons showing renewal dynamics. The 
degree of inter-neuronal coupling was measured by calculating the correlation 
coefficient between two ISIs.  

2.2.5 Statistical Control 
Our null hypothesis was that the spike patterns were generated by HPP interval process. 
For this purpose, the original ISI sequences were randomly shuffled. Shuffling 
preserves the original mean, variance, and distribution information but destroys any 
correlation present in the original sequence. All of the earlier methods were also applied 
for a set of shuffled ISI sequences, which we termed as surrogate data set (we used 20 
surrogates for each ISI sequence). To quantify the differences between the original and 
surrogate data set, the following score was computed: shuffshuff RstdRRQ /

where R is the value of any measure (e.g., , Z) for the original sequence, {Rshuff} is the 
set of values for same measure for the set of surrogates, and and std are the mean and 
standard deviation operator, respectively. If Q >1.96, the null hypothesis of HPP or 
renewal process can be rejected with 95% statistical confidence. 
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3 Results 

The battery of methods was first evaluated on simulated ISI sequences, random and 
fractal ISIs, and the results are shown in Fig. 2. Although these two sequences have 
same mean, variance and interval distribution function, their scaling and correlation 
properties differ from each other in a clear and convincing fashion. Further, mean of the 
randomly distributed ISI sequence quickly achieves a steady value (Fig. 2(d)), whereas 
mean of the fractal sequence does not show (Fig. 2(h)) any clear sign of convergence. 
Thus, these three methods offer confirmatory and conclusive evidences about the 
underlying correlated structure in the data sequence.   
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Figure 3: Detrended Fluctation Analysis. (a) ISI sequence of a single neuron. (b) Log-log plot of DFA 
method. The asterisks represent the original ISI sequence and the open circles are for the 
shuffled ISI sequence. (c) The scaling exponents for all nine neurons (‘*’). The errorbars 
(mean std) were calculated on the basis of 20 shuffled ISI sequences.         

Next, we present the results of each analysis method of the true ISI sequences. 
Fig. 3(a) shows a segment of an ISI sequence of a typical neuron; a clear straight line fit 
was found in the log-log DFA plot (Fig. 3(b)) with  = 0.687. When the ISI sequence 
was randomly shuffled,  is changed to 0.52 indicating the presence of long-range 
correlation in the original sequence. Fig. 3(c) summarizes the results of all 9 ISI 
sequences corresponding to 9 neurons. Seven ISI sequences showed significantly higher 
(Q > 3)  than their surrogate counterpart. Only one ISI sequence (neuron #6) could not 
be distinguished from its surrogates, and the remaining other neuron (#7) was found to 
be marginally significant. 
 Fig. 4 shows the MSE analysis. Like fractal process, many ISI sequences 
(Neurons #1,2,4,5,8) presented steady state entropy values at higher scale factor, while 
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Figure 4: Multi-scale-entropy (MSE) analysis. Results are presented for each original ISIs (‘*’) and their 
surrogates. Error bars indicate the mean std of Z values for the set of surrogates.     

their surrogates showed primarily drooping entropy profiles against scale factor. 
Interestingly, some ISI sequences (Neurons #3,9) also showed gradually decreasing 
profiles but their entropy values at higher scale factor were still higher than that of the 
shuffled ISIs, thus rejecting the null hypothesis of renewal process.  

Next the profiles of the running mean are shown (Fig. 5) for all ISI sequences 
along with their surrogates. Almost no neuron showed any sign of quick convergence to 
a steady average value but their surrogates, unequivocally, showed a fast convergence. 
Except neuron #6, a clear consistency was achieved among the first three methods of 
analysis.  

We must point out an observation that the ISI sequences of neurons #6,7 were 
closest to the null hypothesis of renewal process and at the same time their firing rate 
was the lowest among all neurons. We firmly believe that these neurons also are fractal 
in nature but due to limited number of spikes in the considered ISI sequences (965 and 
978 spikes, respectively), we could not conclusively prove the underlying long-range 
correlations. 

Fig. 5 shows the results of spatio-temporal correlation analysis. Neurons which 
earlier rejected, with Q > 1.96, the null hypothesis of renewal process showed higher 
degree of correlated firing. Interestingly, there is a close match between the values of Q
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Figure 5:  Cumulative moment analysis. The profiles of running or cumulative mean for ISIs (solid). The 
confidence levels (dotted) were estimated on the basis of shuffled sequences. Note the slow 
convergence of mean values for original sequences. Initial fluctuations and final matches are 
mainly due to boundary effects and should be ignored.  

and the strength of correlated firing, possibly a signature of the formation of tightly 
coupled neuronal network composed of fractal neurons.    

4 Discussion 

Long-range power-law correlations has been observed in diverse kind of complex 
systems (See [16,17] for review) including brain. Here, we briefly mention the studies 
of long-range correlation phenomenon in the human brain spanning from extreme 
global, behavioral performances, to the extreme local, firing of a single neuron.   

In the behavioral domain, memory effects, in the formation of long-range 
correlation, are reported in a human sensorimotor coordination experiment [18] in 
which a subject synchronizes his finger tapping with an external periodic stimulus. 
While investigating the patterns of eye movements in a visual search experiment, 
significant scaling properties emerge in difference across eye positions and their relative 
dispersion [19].  Such memory across eye movements may facilitate our ability to select 
our ability to emphasize certain useful information from the noisy environment [19]. 
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It is recently demonstrated [20] that envelope of the amplitude fluctuations of 10 
and 20 Hz oscillations recorded from the scalp of human brain are correlated over 
thousands of cycles and these fluctuations obey power-law scaling behavior; scaling 
exponents are found to be subject-invariant. The power-law behavior of the global 
cortical oscillations is undisturbed by the presentation of sensory stimulus but the 
scaling exponents are decreased [11]. In addition, it is found that scaling exponents are 
consistent and reproducible for subjects over a span of days [21]. The temporal 
variability of human brain activity as measured by functional-MRI also shows power-
law scaling behavior, which is, further, related with underlying neural activity [22]. 
Mentally active zones with larger haemodynamic responses, an indicator of activations, 
are described by highly temporally correlated processes, whereas mentally inactive 
zones are described by a random walk process. The degrees of long-range correlations 
in the global oscillations are found to be affected by the alertness [21], sensory 
perturbations [11], sleep stages [23].  
 Power-law scaling phenomenon is also observed in the spontaneous activities of 
intracortical field potential recordings from epileptic subjects [24]. Moreover, the 
degree of temporal correlations differ between epileptogenic and non-epileptogonic 
hippocampus [25]. 
 However, in neurophysiology, it is the spontaneous firing pattern of neuron 
which was first investigated for the presence of spatio-temporal correlation [26-28]. By 
using methods derived from fractal time series analysis, long-range correlations have 
been shown in the rate of neurotransmitter secretion at Xenopus neuromuscular 
junctions [29], in medullary sympathetic neurons in cats [5,7,30], in auditory neurons 
[6] or in visual neurons [4] in cats (See [31] for review), in red nucleus of rostral 
midbrain in rats [32], in cultured neuronal networks [33] etc.   
 This paper shows for the first time that in vivo neurons of human hippocampus 
presented spike patterns which were correlated over long time scales. The presence of 
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such long-range temporal correlations has been verified by the simultaneous application 
of different methods. It as also shown that the power-law scaling behavior was not due 
to the inter event interval distribution function. Further, it was shown that temporal 
correlations have been transformed into spatial correlations which may provide the 
substrate for information storage. 
All these findings clearly point out that the power-law long-range correlation is an 
inherent characteristic of the neuronal dynamics present across many spatial and 
temporal scales. Immediately, two important questions arise: (i) What are the 
advantages of the long-range temporal correlations? (ii) What are the neural 
mechanisms based on which the long-range correlation emerges? Unfortunately, there 
has been no clear information available on the benefits of long-range correlation in the 
neuronal firing sequences. It has been proposed that many natural images are fractal [4], 
thus the underlying fractal dynamics might help in improving matched-filter 
performance of neuronal networks. Presence of temporal correlation can also facilitate 
the detection of weak sensory signals in noisy and changing environments [8,34,35]. 
Recently, it was shown [36] that activity of basal ganglia neurons in rats present long-
range fractal dynamics, whose disruption would be related to the basal ganglia 
pathologies like Parkinsonian disease, which might support the relationship between 
fractality and the formation of active neuronal networks [37]. There has also been no 
consensus on the neurophysiological mechanisms which cause the fractal or long-range 
correlated firing pattern. Several candidate models, such as self organized criticality 
[38], fractal-rate point process [39,40], correlated noise driven integrate-and-fire model 
with time varying threshold [41] etc. have been proposed to reproduce the long memory 
in the spiking sequences. However more studies are needed to establish a direct 
relationship between the neuronal coding and the fractal firing pattern. 
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