\o ana Ay

( Tar} omeFa.Com

ij:? oS dfab‘

oL chﬂlm q‘j.,\g‘b -3

ine Sl


http://tarjomefa.com/

JOURNAL OF CHEMICAL PHYSICS VOLUME 116, NUMBER 16 22 APRIL 2002

Grand canonical ensemble simulation studies of polydisperse fluids

Nigel B. Wilding®
Department of Mathematical Sciences, The University of Liverpool, Liverpool L69 7ZL, United Kingdom

Peter Sollich
Department of Mathematics, King’s College, University of London, Strand, London WC2R 2LS,
United Kingdom

(Received 26 November 2001; accepted 5 February 2002

We describe a Monte Carlo scheme for simulating polydisperse fluids within the grand canonical
ensemble. Given some polydisperse attribtte¢he state of the system is described by a density
distribution p(o) whose form is controlled by the imposed chemical potential distribyti¢e).

We detail how histogram extrapolation techniques can be employed tauuresuch as to traverse

some particular desired path in the spacep¢tr). The method is applied in simulations of
size-disperse hard spheres with densities distributed according to Schulz and log-normal forms. In
each case, the equation of state is obtained along the dilution line, i.e., the path along which the scale
of p(o) changes but not its shape. The results are compared with the moment-based expressions of
Monsooriet al.[J. Chem. Physb4, 1523(1971)] and Salacuse and Stgll. Chem. Physz7, 3714

(1982]. It is found that for high degrees of polydispersity, both expressions fail to give a
quantitatively accurate description of the equation of state when the overall volume fraction is
large. © 2002 American Institute of Physic§DOI: 10.1063/1.1464829

I. INTRODUCTION ing this line involves adding a prescribed quantity of colloid
o ) o of some known degree of polydispersity to a vessel of fixed

_Statlstlcal mephanlcs was 9ngm_al|y formulated to de'volumev, the remaining volume being occupied by a sol-
scribe the properties of systemsidéntical particles s_uch S yent. The number distribution of colloidal particléy o)
atoms or small molecules. However, many materials of inetermines the density distribution of the suspensig)
dustrial and commercial importance do not fit neatly into th'SEN(a)/v. Since in a given substance, the relative propor-
framework. For example, the particles in a colloidal suspensgns of the number of particles of eactare fixed, changing
sion are never precisely identical to one another, but have g« amount of colloid added simply alters tsealeof p(o)
range of radii(and possibly §urface cha_rges, shapes). etc o+ its shape Thus, by varyingN() at fixed V (or vice
This dependence of the particle properties on one or MOrGe sy one traces out a locus in the phase diagram in which
continuous parameters is known as polydispersity. only the overall scale ob(o) changes.

To process a polydisperse colloidal material, one needs ~ag regardstheoretical studies of phase behavior, these

to know its phase behavior, i.e., the conditions of temperag ica|ly endeavor to calculate the system free energy as a
ture and pressure under which a given structure is thermody;,ntion of a set of density variables. The difficulty in

namically stable. The main obstacles to gaining this informazchieving this for a polydisperse system is that the free en-
tion arise from t.he effectlyely infinite number qf particle ergy f[p(o)] is a functional ofp(c), and therefore itself
species present in a polydisperse system. Labeling these e pies an infinite dimensional space. This renders intrac-
the continuous polydispersity attribute the state of the sys- 516 the task of identifying phase boundaries, and obliges
tem must be described by a density distribufidr), rather  onq {4 resort to approximation schemes. Of these, perhaps
than a finite number of density variables. The phase diagrafye most simple is a generalization of the van der Waals
is therefore infinite dimensional, a feature that poses Serio“épproximation to polydisperse systef# more sophisti-
problems to experiment and theory alike. , cated approach involves approximating the full free energy
The chief difficulty faced inexperimentalstudies of 5 go.called “moment free energy” containing the full
polyd|sp§rse systems is that the infinite dlmensmnahty of thgjeal gas contribution plus an excess part that depends only
phase diagram precludes a complete mapping of the phagg, certain principal moments of the full excess free enrgy.
behavior. Instead one is forced to focus attention on partlcuDoing so reduces the problem to a finite number of density
lar low dimensional manifoldsslices of the full diagram. | 5iables and allows calculation of phase coexistence prop-
Typically this involves determining the system propertiesg ties within a systematically refinable approximation
along some desired trajectory through the space(@).  gcheme. Additionally the theory delivet®or the given free
Such a strategy Is often pursued in experiments on colloidglnergy exact results for the location of spinodals, critical
suspensm_n’s,. wh_ere the phase. behavior is studied along aboints, and the cloud and shadow curves. Use of this ap-
so-calleddilution line. The experimental procedure for track- proach promises to enhance significantly our understanding
of phase behavior in polydisperse systems.
dElectronic mail: n.b.wilding@bath.ac.uk In view of the approximations inherent in theoretical ap-
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proaches, it is natural to consider deploying computer simuedology for tracking a particular path through the space of
lation to study the phase behavior of polydisperse colloidap(a). In Sec. lll we apply the method to the problem of
fluids. Although simulationglike experimenk are restricted obtaining the dilution line properties of three types of size-
to studying limited regions of the phase diagram such as thdisperse hard sphere fluids. The chemical potential distribu
dilution line, they have the advantage that can be used ttion of these fluids is determined as a function of volume
investigate thesamemodel systems as studied theoretically. fraction and the results compared with the predictions of two
Furthermore, they deliveimodulo finite-size effecjsessen- commonly used equations of state. Finally in Sec. IV, we
tially exact results, providing invaluable benchmarks againstliscuss our findings and their implications.
which to test theoretical predictions. Sometimes too, the
physical insight gleaned from simulations serves as the im-
petus for fresh theoretical advances. Il. METHOD

One simulation approach for obtaining the thermody-
namic properties of a polydisperse system is to simply mimic?- Statistical mechanics
the experimental procedure. This can be achieved by em- \we consider a classical fluid of polydisperse particles
ploying a canonical ensemblCE) formalism wherein a  confined to a volume/=L¢. The system is assumed to be
simulation box of fixed volumeV is populated by a pre- thermodynamically open, so that the particle-number distri-
scribed number of particleNl, whose sizes are distributed pution N(o) is a statistical quantity. The associated grand

according to the desired(o). It practice, however, it tran- canonical partition function takes the form:
spires that the CE represents a far from optimal framework

for simulating polydisperse fluids. The principal difficulty _ 1 *
lies with the limited range of computationally accessible par- ZV_N:o NIy [ jvdr‘ fo da‘] exp( = BHn(r, o))
ticle numbers which, in any simulation, is typically many (2.1
orders of magnitude smaller than found in an experimen(t:}Nith
The resulting finite-size effects are particularly pronounce
in a CE simulation because the specific realization of the N
disorderN(o) is fixed This suppresses large scale fluctua- HN({r'“}):q)({r"’})_;l p(ai). (22
tions inp(o) and potentially leads to sampling deficiencies. ) . .
Additionally, the CE suffers other drawbacks familiar from Here N is the overall particle number, whilg=(kgT) *
simulation studies of monodisperse fluids. For instance, re@nd u(o) are, respectively, the prescribed inverse tempera-
laxation times are extended because density fluctuations dédre and chemical potential distributior{r,o} denotes
cay solely via diffusion; there is no direct access to informa{he configuration i.e., the complete set r{,o1),
tion on chemical potentials; metastability and hysteresidf2,92)"**(fn,on) of particle position vectors and polydis-
hinder the study of phase transitions. perse attr_lbutes. The corre_spo_ndlng conflgur_atl(_)na! energy

Experience with the simulation of monodisperse fluids®({r-o}) is assumed to reside in a sum of pairwise interac-
has shown that use of the grand canonical ensef@BE) is ~ 1ONS
highly effective in circumventing many of the aforemen- N
tioned problems associated with the EE.As we shall O({r,o})= 2 o(|ri—ril,o1,09), (2.3
show, its application in the context of polydisperse fluids <=1
retains many of the benefits of the monodisperse case. Morgvhere ¢ is the pair potential.
over, it provides the key to improved sampling of the density  The particle number distribution is defined by
distribution p(o). This is because within the GCE frame- N
v_vork N(a) quctuatesgs a wholethereby capturing fluctua- N(O’)EE So—ay), (2.4)
tions in p(o) on all simulation length scales. Notwithstand- i=1
ing these advantages, however, the GCE might appear,
first sight, unsuitable for the purpose of traversingaaticu-
lar trajectory through the space of the density distribution
p(o). This is because(o) ostensibly lies out-with the di-
rect control of the simulator, its form being instead deter-  p(o0)=N(a)/V, (2.5
mined by the imposed chemical potgntial distributj@(n). and the configurational energy density
Nevertheless, it turns out to be possiblaudoe (o) within
a histogram extrapolation scheme, in such a way as to realize u=o{r,a})/V.
a specific desired form gb(o). We shall demonstrate that The statistical behavior of these observables is completely
this dual use of the GCE and histogram extrapolation methdescribed by their joint probability distributi®n
ods permits a chosen phase space path to be followed effi-
ciently. _ _y-1

The layout of our paper is as follows. In Sec. Il A we Pulp().ul (5(u v @(r,g}))l;[ olpla)
formulate the statistical mechanics for a polydisperse fluid
within the grand canonical ensemble. We then desd$ae.
[I1B) the combined GCE plus histogram extrapolation meth-or more explicitly

fith o the continuous polydispersity attribute and
=[N(o)do. We shall be concerned with the fluctuations in
the associated density distribution

-V~ IN(0)), (2.6)
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1> 1N o B. Implementation
Pvlp(e).ul= Z_szo _!i[[l { fvdrifo dai) We have employed Monte Car(®IC) simulation within
the grand canonical ensemble to study the dilution line prop-
xexp(—BHN{r,0})) erties of systems of size-disperse hard spheres. This section
details the principal aspects of our simulation and analysis
xsu—=V-to{r,e 1 8(p(o) procedure.
1. Program, data structure, and acquisition
~V-IN(0)). 2.7) 9 q

Our simulated system comprises a variable number of
Integrating over the energy fluctuations yields the probabilityhard spheres contained within a periodic box of voluvhe
distribution function of the denSity distribution = Ld_ The dimensionless p0|ydispersity variablevas taken
to be the particlediameterexpressed in units of the mean
pylp(o)]= J pylp(o),uldu. (2.8)  diameten(see Sec. I). An upper boundr. was placed on the
permitted range of diameters, and the simulation volume was
Our specific concern is with the average formp¢#r), given  partitioned into an array df cells each of linear dimension
by o, SothatL =lo.. This strategy aids efficient identification
of particle interactions by ensuring that interacting particles
ﬁg):f p(a)pylp(a)]dp(a). (2.9  occupy either the same cell or directly neighboring ones.
The grand canonical ensemble Monte CA(E€MC) al-
Given a prescribed chemical potential distributjofo) and ~ gorithm employed has a Metropolis fothend invokes four
temperatures, the form ofp(o) can be determined by simu- types of operation: particle displacements, particle insertions,
lation. Except in the ideal gas limit, however, no exact rela-Particle deletions, and particle resizing; each is attempted
tionship betweed (o) and (o) will generally be available. ~With equal frequency. Specific to the polydisperse case is the
Thus one Cannoﬁrom a “bare” GCE Simu|ati0m read”y reSiZing Operation, which entails attemptlng to Change the
determine thatu(o) corresponding to a particular desired diameter of a nominated particle by an amount drawn from a
target density distributionp,(c). Subject to certain restric- uniform random deviate constrained to lie in some pre-
tions however, this can be achieved via use of histograngcribed range. This rangenaximum diameter step-sizés
extrapolation. chosen to provide a suitable balance between efficient sam-
The key idea of histogram extrapolatidris that a mea- Pling and a satisfactory acceptance rate at the prevailing
sured distributionpy[ p(o),u] accumulated at one set of number density. As regards the remaining types of moves,
model parameters (o), 8 can be reweighted to yield esti- these proceed in a manner similar to the monodisperse
mates of the distribution appropriate to other parameter§ase;’ except that for insertion attempts the new particle
' (o), B’. Inits simplest form the reweighting is given by diangter]is drawn with uniform probability from the range
oe|0,0.].
pulp(o),ulu’ (o), B 1=wpy[p(o),ulu(a),B8], (2.10 As primaryinput, the program takes the chemical poten-
tial distribution (), which is required for the accept/reject
Monte Carlo lottery. This distribution is stored in the form of
N a histogram, constructed by dividing the truncated interval
WZGXP( 241 [B'n (o) =Bu(o)]=V(B = pu]. 0<o<o, into a prescribed numbev of subintervals or
(217  ‘bins.” 12 All particles whose diameters fall within the scope
of a given bin are associated with the same value of the
By tuning the form ofu’ (o) and the value oB” within the  chemical potential.
reweighting scheme, it is possible to scan the spagg o}, The principal observableof interest is the probability
thereby “homing in” on the target density distribution. To gjstribution pvlp(o)] [cf. Eq. (2.8)]. Operationally it is im-
this end it is expedient to defineadst functionmeasuring  practical to construct the full form of this distribution in a

where the reweighting factar takes the form

the deviation ofp(o|u'(0),8") from the target form simulation because to do so would entail forming a histo-
gram over histograms—the memory storage costs of which
A(,LL'(O'),B,)EJ [p(0)—pi(o)|y(o)do. (2.12 would be prohibitive. The procedure adopted, therefore, was

to sample theinstantaneousdensity histogramp(o) [dis-
Here, for numerical convenience, we have incorporated aretized in the same manner a$o)], and append succes-
weight functiony(o) into our definition, the role of which sive measurements of this quantity to a fitelhe set of all
(as described in the followings to ensure that comparable such samples constitutedist representing a sequential his-
contributions to the cost function arise from all sampled re-tory of the individual data measuremeft$his data list is
gions of thes domain. Within this framework, the task of postprocessed by an analysis program which reads in each of
determining those values @f’ (o), B' that yield the target the individual list entries and averages over all of them to
distribution p(o) reduces to that of functionally minimizing construct a histogram approximation to the average density
the cost functionA with respect tow' (o), B'. As we de- distributionp(o). If desired, the analysis program addition-
scribe in Sec. Il B, this is achievable using standard algoally implements histogram reweighting of the data in order to
rithms. enable extrapolation to neighboring values of the model pa-
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rameters. This extrapolation is achieved by assigning &or achieving this operates as follows. Starting from some
weight to each list entry of the form given by E@.11). The initial guess for the desiregt(o) (e.g.,u’(o)=In[p(0)]) a
complete set of weights permits construction of the re-series of short simulations are carried out in whjicfw) is

weighted histogram. iterated according to
; In(pi(0)) |°
2. Tracking a phase space path M+ )= (M g) + ' 21
w™ Do) = pM0) +| TS (213

The strategy we have adopted is to traverse the phase
space path of interest in a stepwise fashion, utilizing histowhere 0<6<1 is a damping factor, the value of which may
gram extrapolation to proceed from one step to the next. i€ tuned to optimize convergence. Although one could cer-
the general case of particles having a finite potential, thdainly envisage more sophisticated and efficient schemes, we
phase space path may involve changes in the temperature B@ve found this method to operate satisfactorily.
well the form of p(o). For simplicity of illustration, how-
ever, let us presume that the path is isotheria., 8
=constant and that the form of the chemical potential dis- ||| DILUTION LINE STUDIES OF POLYDISPERSE
tribution, «(®(o) say, is known at some arbitrary point HARD SPHERE FLUIDS
p©(o) along the path. The procedure is then as follows. , , _
From simulations at the known state point, data forA' System and simulation details
pyv[p(o),u] can be accumulated directly. Histogram re- We have obtained the dilution line propertigs. Sec. )
weighting is then applied to this data to extrapolate somef size-disperse hard sphéfdluids with diameter distribu-
distance along the path to a new pohﬁf)(o)l,’d??d to pro-  tion N(o) assigned one of two forms:
vide an estimate of the corresponding formwof’(o). The . o
latter quantity is then employed in a fresh simulation, the(!.) Schulz dIStrIt.)u'[I.Oﬂ,.
results of which are extrapolated to a point further along the(") log-normal distribution.

. . . I) . . . . .
patrgi,+gnd 50,0, By(iltle)ratmg this procedu?]é (9) " These distributions are conveniently expressed in terms of a
—p (o), p(0)—put" (o), one traces out the entire 1\, ajized size functiom(o)=N(o)/N. For the Schulz,

z+1

z+1

g

phase space path. ) ) this takes the form

The implementation of the extrapolation stage necessi-
tates a prior choice for the step size, that is the difference 1 ztl ,
between the measurgd o) and the next targes,(o). The no)=2r oTexy - : @
magnitude of this difference should be chosen to be as large . . . .
as possible, consistent with remaining within the range oiWhereU_ is the average partlcl_e d_|am_eter anis a parameter
reliable extrapolation. A good indicator that this is in fact thecgnt_rolll_ng the W'(.jth of th_e d|_str|b_ut|on. For the log-normal
case is that the individual densities of the target distributiorF'Str'bUt'on’ the size function is given by

pi(o) each overlap with the range of typical fluctuations 1+ W2
appearing in the simulation dagg o). n(o)=—
Once a suitable step size has been determined, the ex- oy2mIn(1+W?)
trapolation procedure proceeds by minimiziagithin the [In( /) + (3/2)In(1+W?)]?
reweighting schemethe cost functionA introduced in Eq. ><exp< - 2 In(1+WP) , (3.2

(2.12. For all but the lowest densities, this task is compli-
cated by the existence of strong coupling betweeruthari-  with W the standard deviation in units of. Note that both
ables, deriving from the fact that the number density for eachof these distribution are normalized, thatfi§n(o)do=1,

o depends on thevholechemical potential distribution. For- and vanish agr— 0, implying a natural lower limit tar. By
tunately, efficient algorithms for performing multidimen- contrast, there is no finite upper limit and consequently, for
sional functional minimization are widely availableand, at  simulation purposes, it was necessary to impose an upper
least for the cases we have considered, appear to operdieund(cutoff) o (see also Sec. IIB

effectively. The sole difficulty encountered was that, on oc-  We have studiethreedistinct size distributions—two of
casion, the minimization failed to fully converge fevalues the Schulz form and one of the log-normal form. For the
in the wings of p;(o). To remedy this problem, a weight Schulz distribution, width-parameter values ¥ 15 andz
function y(o) was incorporated in the cost functief. Eq. =5 were considered, with cutoff valueg.=3 ando.=4,
(2.12], the purpose of which is to enhance the contributionrespectively. For the log-normal distribution, the single case
to A from o values for whichp;(o) is small. Good results W=2.5 with o,=12 was studied. In each instance we set

were obtained by setting(o) o[ p;(o)] 1.1 o=1. Cell array sizescf. Sec. I B ) of linear dimensior
It should be stressed that the above-mentioned method=3,4,5 were used. In absolute dimensionless unlis (
ology presumes the availability of a form pf(o) for some  =lo.) these correspond to=9,12,15, respectively, for the

starting point on the phase space path of interest. This mag=15 Schulz, toL=12,16,20 for thez=5 Schulz, and to
be obtained straightforwardly if the path passes through & =36,48,60 for the log-normal distribution. The histogram
region of low density where reliable analytical estimates fordiscretization parametécf. Sec. Il B was set tdM =75 and
u(o) can be employed. Otherwise the method must be bootM =100 for thez=15 andz=5 Schulz distributions, respec-
strapped by other means. One simple but effective approadively, and toM =120 for the log-normal distribution.
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The average density distribution can be expressed in
terms of the normalized size function multiplied by the over-
all number densityo=N/V, i.e.,

plo)=pon(o). 3.3

The procedure for tracking the dilution line utilized this
overall density as a measure of the location along the line.
The tracking procedure was initiated at a small valug @f

by approximating the chemical potential distribution accord-
ing to the ideal gas relatiop (o) =Inp(o).'® Histogram ex-
trapolation was applied to the resulting simulation data in
order to refine the initial estimate qf(c). Thereafter the
strategy described in Sec. II B 2 was implemented to follow
the dilution line to higher densities. At each step this entailed
setting a target form fop(o) corresponding to a value pf,
larger than that used at the previous step. The cost function
measuring the discrepancy betwgsr) and the target was
then minimized to yield an estimate for the appropriate
n(o). On efficiency grounds, this minimization was per- FIG. 1. Snapshots of configuration) Schulz distribution ¢=15), 7
formed in two stages; an initial approximation g§o) was  =0.43,L=12. (b) Schulz distribution £=5), »=0.38, L=16. (c) Log-
obtained from a one-dimensional minimization in which thenormal distribution=0.29, L =48.

activity distribution expf(o)) was multiplied by an overall

factor. Thereafter the complete functional minimization was. . . . :
. is true in the polydisperse context for insertions of large par-
performed to yield a more accurate form fefo).

Although (within the specific context of the tracking pro- ticles, space can often be found for placing a small particle.

. . . This facilitates fluctuations in the overall particle numbgr
cedurg p, provides a convenient measure of the location on P b

the dilution line, it conveys little information regarding the Wahlile re;:,{'g? &F;iri?]c;?@gp (i)r?;ae?’;frl]ueg c;yeat lzrrgtJiZI::s?s/EIr_e
degree of packing within a polydisperse system. We shaff2” 9 g farge p

therefore find it convenient to quote values for the overallcomlmed proper sampling of the density d_lstrlbutlop.
) ! The measured forms fqu(o) as a function ofy differ
volume fraction of the system given by

qualitatively between the Schulz and the log-normal density
_ Ucd T o5 distributions, and accordingly we discuss them separately.
=], "9%67 p(0). (3.4 Beginning with the Schulz case, Figs. 2 and 3 show the
measure (o) and the corresponding(o) for the two flu-
It is this quantity (rather thanpo) which is featured in the jds at a selection of volume fractions along their respective
presentation of our results, to which we now turn. dilution lines. The range of values shown is that for which
the simulations delivered data of reasonable statistical qual-
ity. One notes that for both the=15 andz=5 cases, the
tails marking the larger vestiges of the distributions fall
Owing to the computational complexity of the simula- considerably short of the respective cutaifs. Indeed, we
tions, we have obtained the complete dilution line for eacthave verified that in the course of the simulations, no par-
fluid only for thel =3 cell array size. For the larger system ticles of diameters approaching the cutoff diameter occurred
sizes, only a few spot measurements were made along thlen the simulation time scale, implying that our data are un-
dilution line, each of which was bootstrapped by appeal taaffected by its imposition. As regards the forms of the chemi-
the measuregi (o) obtained from théd =3 systems. cal potential distributions, one sees that for smalthey
The dilution lines for the three fluids were tracked to thedisplay a maximum near the peakjfic)—behavior that is
highest computationally accessible volume fraction, termi-of course mandated at sufficiently lowby the known prop-
nating only once the relaxation time scale became excesrties of the ideal gas limit. For largef, however, the peak
sively large. The maximum volume fractions attained wereis lost andu (o) increases monotonically. The increase of
7=0.445 andn=0.40 for the Schulz density distributions u(o) in the regime of larges indicates that the excess
with z=15 andz=5, respectively, andy=0.33 for the log- chemical potentialmeasuring the work associated with in-
normal case. Snapshot configurations for all three fluids arserting a sphepggrows faster withr than the decrease in the
shown in Fig. 1 fory values slightly below the maximum ideal contribution associated with the decayp®fr).
attained in each case. We mention in passing that, at least for Turning now to the log-normal case, Fig(@# demon-
the cases of the two Schulz distributions, the maximum volstrates thap(o) decays extremely slowly with increasiiag
ume fractions reached are somewhat larger than would b&he peak in the distribution therefore occurs at much smaller
readily attainable for GCMC simulations of monodispersecs than for the two Schulz forms although the average diam-
hard spheres. The latter, of course, become highly inefficiergter ¢ is identical in all three cases. As a practical conse-
at largen because the acceptance rate for particle insertionguence of the slow decajand notwithstanding the imposi-
falls rapidly as the free volume diminishes. Whilst the sametion of a very large value of.), ranges of particle diameters

B. Results
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distribution (=5, o.=4), for system sizé =12. (a) Data points show the
measured density distributiga{o) at a selection of values of volume frac-

FIG. 2. Dilution line properties of hard spheres having the Schulz densityion 77 @long the dilution line; dotted lines correspond to the target distribu-
distribution =15, o= 3.0) for system size& = 9. (a) Data points show the tioN p(@). (b) The corresponding chemical potential distributjo(or).

measured density distributign( o) at a selection of values of volume frac-
tion » along the dilution line; dotted lines correspond to the target distribu- ] )
tion p,(o). (b) The corresponding chemical potential distributipiic). (PY) theory. Both are reproduced in the Appendix, and ex-

Statistical errors do not exceed the symbol sizes. pressu (o) in terms of an expansion to third orderdn with
coefficients given in terms of the first three moments of
p(o). We have compared the predictions of the EOS for

extending up to the cutoff value were observed in the systemeach of the three fluids studied, with the finite-size simula-

Indeed it was not feasible within the computational con-tion data at three values of, namely a low, a moderate, and

straints to utilize a cutoff for which this did not occur, and a high value. We describe our findings for each fluid in turn.

hence truncation effects are always significant in this  The results for the Schulz distribution witx= 15 at the

system—a point to which we shall return in the following. low volume fractions=0.056 are shown in Fig.(8). At first

The measured forms q&(o) for the log-normal fluid are sight there is good agreement between lthe9 andL =12

shown in Fig. 4b). In contrast to the Schulz distributions, simulation data and both the BMCSL and PY equations of

they display(for all accessiblen) a narrow maximum close state over the entire region of However, closer inspection

to the peak irnp(o) at smallp. Thereafter with increasing  reveals appreciable discrepancies between theory and simu-

there is a slow fall to a broad minimum, whereafjefo) lation, not visible on the scale @f(o). These are apparent if

increases strongly. one suppresses the dominant ideal gas contribution to expose

Having outlined the main qualitative features of the re-the excessshemical potential, given bgsee the Appendix

lationship betweem(o) and (o), it is instructive to per-

form a d?atailed C(;Pngp;rison/t)(et\)/veen our measuremznts and Hed )= (o) =Inlpon(a)]. (3.9

the predictions of analytical equations of steE©S appear- This quantity is plotted in the inset of Fig(&, from which

ing in the literature. For hard spheres, two commonly usesne sees that compared to the simulation results, the EOS

equations are that due to Boublik, Mansoori, Carnahan, Staslightly underestimate.(o).

ling, and Leland(BMCSL)'®?° based on the Carnahan— Figure §b) shows the results for the=15 Schulz dis-

Starling equation for monodisperse hard spheres, and thatbution at the moderate volume fractiop=0.257. Again

due to Salacuse and Stél,based on the Percus—Yevick there is good agreement between the9 andL =12 simu-
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FIG. 4. Dilution line properties of hard spheres having the log-normal den-
sity distribution (W=2.5, o.=12) for system sizé.=36. (a) Data points
show the measured density distributipfic) at a selection of values of
volume fraction# along the dilution line; dotted lines correspond to the
target distributionp,(¢). The inset shows the region of smatl (b) The
corresponding chemical potential distributigiio). Statistical errors do not
exceed the symbol sizes.

lation data suggesting that finite-size effects are insignificant.
Here, however, discrepancies between the BMCSL and PY
equations of state are larger than at the lower valuey,of
being evident on the scale of thdsolutechemical potential.
One sees that both EOS significantly underestinpdie) for
large o, although they agree quite well with one another. A
similarly high level of agreement between the data from the
L=9 andL=12 system sizes is manifest at the higher vol-
ume fractiony=0.426, Fig. %c). Here the PY equation of L .
state is seen to fare somewhat better than the BMCSL equa- 40, 05 1 15 >
tion although both underestimatg o) substantially toward o
the upp_er_end (_)f the range. . ... FIG. 5. Chemical potential distribution(o?) for the Schulz density distri-

A similar picture emerges for the Schulz distribution pytion =15, #,=3), for system sizet =9 andL=12. (a) 7=0.056.
with z=5 (Fig. 6). Again both equations of state underesti- Here the inset shows the excess chemical potential given by Eq(i8.5;
mateu (o), even at the lowest volume fraction, although the 7=0.257;(c) 7;=0.426._Also shown in eac_h case are the predictions of the
PY equation corresponds significantly more closely to theg;\:ln%ill_s?zneds PY equations of state. Statistical errors do not exceed the
simulation results at high volume fractions than does the
BMCSL equation. We could again discern no evidence for
appreciable finite-size effects in the simulation results. order to facilitate a fair comparison with theory, the analytic

In seeking to compare the results for the log-normal sysform of w(o) must therefore be calculated using the mo-
tem with the EOS predictions it is essential to bear in mindments of thesametruncated distribution as employed in the
the importance of truncation effects. The moments of a trunsimulations. The results of performing this comparison are
cated log-normal distribution can differ dramatically from presented in Fig. 7. At low volume fraction, there is good
those of the full distribution even for large values@f. In  agreement between the EOS predictions and the simulation

(o)
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FIG. 7. Chemical potential distributiop (o) for the log-normal density
distribution W=2.5, o,=12) for system sizesL=36,48,60. (a) %
=0.126, the inset shows the excess chemical potential given by3Es),

(b) »=0.307. Also shown in both cases are the predictions of the BMCSL
and PY equations of state. Statistical errors do not exceed the symbol sizes.

The above-presented results indicate that the BMCSL
and PY equations fail to provide a quantitatively accurate
description of the chemical potential distribution, particularly
when the volume fraction is large. It is instructive to examine
the implications of this finding for calculations densities
which depend very sensitiveljndeed exponentially $oon
, the chemical potential. To this end we have studied the de-

0 0.5 1 L5 2 25 3 gree to which the form of.(o) calculated via the BMCSL
equation from some prescribgs o), actually yields this
FIG. 6. Chemical potential distribution (o) for the Schulz density distri- ~ density distribution when input to a simulation. The results
bution (z=5, 0,=4). (8 7=0.048,L=12,16, the inset shows the excess of performing this comparison are shown in Figéa)8 8(c)

chemical potential given by Eq3.5; (b) =0.231, L=12,16; (c) 7 - : :
=0.36 L=12,16,20. Also shown in each case are the predictions of the}cor each of the three fluids at a high volume fraction. In each

BMCSL and PY equations of state. Statistical errors do not exceed théhstance, the _SOlid ”ne_ shows the input density qiStribUtion
symbol sizes. p(o) from which w(o) is calculated. The data points show

the simulation results obtained using this formgofo) for
three different system sizes. As Fig$aB-8(c) clearly dem-
results, while at high volume fraction the EOS underestimat@nstrate, the measured form p{o) deviate substantially
the measureg (o) considerably, with the degree of discrep- from the prediction.
ancy increasing toward the tail of the distribution. Once  Finally in this section, we examine the moment structure
again we could discern no evidence of finite-size effectof the excess chemical potential,(o) given by Eq.(3.5).
within the statistical uncertainties of our data. Both the BMCSL and PY equations assume thaj(o) is
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© Te-01 bution (o) for the Schulz density distributiorz&5) at =0.377, for
& system sizd.=12. The solid lines shows a fit to the data of the form given
1e-02} & by Eq.(3.6). (b) Values of the fit coefficient&, a,, a3 for a selection of
values of the volume fractios. The solid lines show the predictions of the
0.05 1e-03} BMCSL equation. Statistical errors do not exceed the symbol sizes.
8 1e-04 |
[&8 5 3
Hed 0)=—IN(1— 7))+ a0+ a0+ azo, (3.6
0.025 1e 05 o : _
' where the constant term is fixed by the requirement that in
¢ L-seBMCSL the limit o—0 the probability of inserting a sphere is pro-
2ot portional to 1- . We find that all our data are fitted very
. well by this expression; Fig.(8) shows a typical fit for the
O N L |

0 2 4 6
c

8 10

12

case of the Schulz fluid wita=5 at »=0.377. Also shown
[Fig. 9b)] are the fit coefficientsy;, a,, a3 for various
values of », together with the predictions of the BMCSL

FIG. 8. The measured density distributipio) obtained using forms of - . .
(o) predicted by the BMCSL equation of state at the stated volume frac€duation of state. One sees that at high volume fraction, the

tion. (a) Schulz g=15), »=0.427, L=9,12,15; (b) Schulz ¢=5), 7 BMCSL underestimates all coefficients, the relative discrep-

=0.36, L=12,16,20;(c) log-normal distribution,»=0.307,L=36,48,60,  ancy being marginally larger for the,; coefficient than for
the inset shows the same data on a log scale. In each case the densﬂ;{e others

distribution from whichu (o) derives is shown as a solid line. Statistical ’

errors do not exceed the symbol sizes.

IV. DISCUSSION AND CONCLUSIONS

expressible in terms of a cubic polynomial dn Bartlett has In summary, we have presented a grand canonical simu-
reached the same conclusion using geometrical argumeniation method for studying polydisperse fluids. The method
inspired by scaled particle thed?y.We have investigated utilizes histogram extrapolation techniques to track effi-
this proposal by fitting our data to ciently an arbitrary path of interest through the space of the
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density distributionp(o).?> We have applied it to the spe- tion results and the predictions of the polydisperse equations
cific problem of obtaining the dilution line properties of size- of state, we find that neither the BMCSL nor PY equations
disperse hard spheres. It should also prove useful in studyingffer a quantitatively accurate description of the thermody-
more general species of polydisperse fluids and their phasgamics of hard spheres for large polydispersity and at high
transitions, both in the bulk and confined geometries. Wevolume fractior®> Both equations underestimaie o) at all
intend to report on such extensions in future communicafluid densities over the entire range @f implying that they
tions. underestimate the Helmholtz free energy density
Previous simulation studies of polydisperse fluids have= fgolu(0'|p6n(0'))d0' dp, and hence overestimate the sta-
generally operated within a semi-grand canonicalbility of the fluid. The magnitude of this overestimate be-
framework* in which a fixed number of particles are studied comes more pronounced the greater the volume fraction. In-
either at constant pressufsee, e.g., Ref. 35or within a  terestingly we find that in this regime the PY equation
Gibbs ensemble MC scherigIn common with the present performs appreciably better than the BMCSL equation de-
work, these studies utilized a fluctuating particle size distri-spite the factcf. the Appendix that the latter derives from a
bution, realized by means of MC resizing moves controlledmonodisperse hard sphere equation of state which has been
by a chemical potential distributidf.In contrast to our ap- found to be superior to the PY approximation. It remains to
proach, however, thermodynamic properties were studied dse seen to what extent the overestimate of fluid stability
a function of the shape of the activity distribution epff)); impinges on the results of existing calculations of depletion-
no constraints were placed on the conjugate density distribtforce induced phase separation based on the BMCSL and PY
tion, which was consequently free to adopt whichever func-approximation€®2°In any case, our results should provide a
tional form minimized the free energy for the imposey). useful testing ground for any future improvements to the
In view of this, one might question the extent to which theexisting polydisperse equations of stéte.
simulation results reflect the actual situation in realistic sys-
tems. One situation in which the lack of a constrained denaACkKNOWLEDGMENTS

sity distribution might be relevant is the interesting issue of . . .
the influence of polydispersity on the freezing of hard N.B.W. acknowledges helpful discussions with Marcus

sphere<® This was investigated in Ref. 25, using semi-grandMu"er' _He is al_so gra’FefuI to F. Escobedo for bringing Ref.
canonical MC and Gibbs—Duhem integration. It would be of23 t0 his attention. This work was supported by The Univer-
considerable interest to harness the approach described in ALY of Liverpool Research Develop.ment_Fund and the UK
present work to investigate the effects on the freezing beha\F—:CPS group. P.S. acknowledges financial support through
ior of varying the width of the density distribution whilst = SRC Grant No. GR/R52121.
constraining its shape to some physically realistic form.

In the present study, attention was focused on fluids havAPPENDIX: = POLYDISPERSE HARD SPHERE
ing a high degree of polydispersity. The motivation for this EQUATIONS OF STATE

choice was twofold. First, models exhibiting a wide density The equations of state that we guote here express the
distribution provide a suitably testing challenge againsichemical potential as a function the sphere diametéFhe
which to gauge the effectiveness of our method. Secondsxpression due to Salacuse and 8té#l a generalization of

there exist in the literature a number of interesting predicthe Percus—Yevick result for monodisperse hard spheres:
tions concerning the role of depletion forces in highly poly- n(1— %)

disperse systems. For instance, it has been suggested by sev- mev(o)=In[pon(o)] =
eral authors that attractive depletion forces might engender d3lo+30%L,+30¢,
novel phase transitions in polydisperse hard sphéres.

l_
Specifically, Sear has suggested that a fluid of hard spheres &
having a log-normal size distribution will be unstable with 303,10+ 90253/2 30352
respect to crystallization of the large particlesadit finite + (1—¢3)2 + (1-¢9)% (A1)

volume fractions’ By contrast, Cuest has predicted that a _ 4920
sufficiently wide log-normal distribution will exhibit fluid— The BMCSL equation of state;”"on the other hand, gener-

fluid phase separation at some finite density. It seems likel§tliZ€S the Camnahan—Starling expression, which for monodis-
that for a truncated size distribution a phase transition willP€rse hard spheres is more accurate than the Percus—Yevick

not occur for arbitrarily small volume fraction because of the'®Sult: It is given by

absence of the largest particles which mediate the greate;&tBMCSL(U):|n[p0n(g)]+(302§§/§§_zg3§g/§§)
depletion forces. Thus our simulation results for the trun-

cated distribution are able neither to conclusively confirm o3(Lo— 13125 + 30201+ 30,

nor refute these predictions. It suffices to say that we ob- xIn(1-¢%)+ 1-¢;

served no evidence of crystallization in the particular trun- 3 3 2 5.2

cated log-normal fluid studied, up to a volume fraction of n 0°(341l2— {5 83) + 307451 5

7=0.33. Similarly, within the range of accessible volume (1—£3)?

fractions, no evidence for phase transitions was observed in 3.3

either of the two Schulz fluids studied. + 20705 (A2)
Turning finally to the comparison between our simula- {3(1-¢9)%
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where ¢,= mpym,/6 and m, is the nth moment ofp(o);
note that{;= #, the volume fraction of hard spheres.

Both equations of state include the ideal contribution to
the chemical potentialuigea o) =In[pgn(c)]. For general
temperature—remember that we sgt=1 for our hard
sphere system—this contribution would reg@jigea( o)

N. B. Wilding and P. Sollich

12There is some license with regards to the choice of valuesf@ndM.

Clearly, where computationally practicat, should be chosen to exceed

the maximum value otr for which significant weight occurs ip(o) at

any point along the phase space path of interest. The choibkt stiould

strike a suitable balance between data resolution and smoothness of the
histogram.

3For anything other than hard particles, the enarghould also be written

=Inp(o). Because there has been some discussion in they the list, because it is required for histogram reweighting.
literature regarding how the ideal chemical potential for'*Note that by construction’ (o) is tuned so thap’(o) matches the in-

polydisperse systems should be assig(sa#, e.g., Ref. 21
it may be helpful to note that, within the grand canonical
framework,uigeaf o) is unambiguously defined via the grand

trinsically smoothtarget function. Thus, in contrast to most implementa-
tions of histogram reweighting, departure from the range of reliable ex-
trapolation isnot signaled by a histogram that appears ragged in its
extremal regions.

canonical partition function. Indeed, for an ideal system!®we have found good results using the DFP version of a quasi-Newton

(HNy=0), one readily finds from Eq{(2.1) that p(o)
=expBu(0)), giving Buijealo)=Inp(c) as before. One

may worry about dimensions in the argument of the log herejs

but the definition in Eq(2.1) already implies that dimension-
less units are used for lengths and tarWere this not the
case, the integrals over and o; would need to be normal-
ized by a unit volumeay and a unit valuer, for the poly-

read B uigeal o) = In[vgoop(a)], with the argument of the log

18
disperse attribute, and the ideal chemical potential would

algorithm described in Sec. 10.7 biumerical Recipesedited by W. H.
Press, S. A. Teulolsky, W. T. Vetterling, and B. P. FlannéBambridge
University Press, Cambridge, 1992

Once the extrapolation has been made, and a new simulation performed, it
is advisable to check the reliability of the extrapolation by comparing the
measureg (o) with the target function.

70wing to the lack of a temperature scale in hard sphere systems, we

implicitly adopt the convention of assigning= 1.

For the case of hard spheres, the form gdir) could equally well have
been bootstrapped at low densities using the predictions of one of the
analytical equations of stat®efs. 19-21
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