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We describe a Monte Carlo scheme for simulating polydisperse fluids within the grand canonical
ensemble. Given some polydisperse attributes, the state of the system is described by a density
distributionr(s) whose form is controlled by the imposed chemical potential distributionm(s).
We detail how histogram extrapolation techniques can be employed to tunem(s) such as to traverse
some particular desired path in the space ofr(s). The method is applied in simulations of
size-disperse hard spheres with densities distributed according to Schulz and log-normal forms. In
each case, the equation of state is obtained along the dilution line, i.e., the path along which the scale
of r(s) changes but not its shape. The results are compared with the moment-based expressions of
Monsooriet al. @J. Chem. Phys.54, 1523~1971!# and Salacuse and Stell@J. Chem. Phys.77, 3714
~1982!#. It is found that for high degrees of polydispersity, both expressions fail to give a
quantitatively accurate description of the equation of state when the overall volume fraction is
large. © 2002 American Institute of Physics.@DOI: 10.1063/1.1464829#
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I. INTRODUCTION

Statistical mechanics was originally formulated to d
scribe the properties of systems ofidenticalparticles such as
atoms or small molecules. However, many materials of
dustrial and commercial importance do not fit neatly into t
framework. For example, the particles in a colloidal susp
sion are never precisely identical to one another, but hav
range of radii~and possibly surface charges, shapes, e!.
This dependence of the particle properties on one or m
continuous parameters is known as polydispersity.

To process a polydisperse colloidal material, one ne
to know its phase behavior, i.e., the conditions of tempe
ture and pressure under which a given structure is thermo
namically stable. The main obstacles to gaining this inform
tion arise from the effectively infinite number of partic
species present in a polydisperse system. Labeling thes
the continuous polydispersity attributes, the state of the sys
tem must be described by a density distributionr(s), rather
than a finite number of density variables. The phase diag
is therefore infinite dimensional, a feature that poses ser
problems to experiment and theory alike.

The chief difficulty faced inexperimentalstudies of
polydisperse systems is that the infinite dimensionality of
phase diagram precludes a complete mapping of the p
behavior. Instead one is forced to focus attention on part
lar low dimensional manifolds~slices! of the full diagram.
Typically this involves determining the system propert
along some desired trajectory through the space ofr(s).
Such a strategy is often pursued in experiments on collo
suspensions,1,2 where the phase behavior is studied along
so-calleddilution line. The experimental procedure for trac

a!Electronic mail: n.b.wilding@bath.ac.uk
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ing this line involves adding a prescribed quantity of collo
of some known degree of polydispersity to a vessel of fix
volume V, the remaining volume being occupied by a so
vent. The number distribution of colloidal particlesN(s)
determines the density distribution of the suspension,r(s)
[N(s)/V. Since in a given substance, the relative prop
tions of the number of particles of eachs are fixed, changing
the amount of colloid added simply alters thescaleof r(s),
not its shape. Thus, by varyingN(s) at fixed V ~or vice
versa! one traces out a locus in the phase diagram in wh
only the overall scale ofr(s) changes.

As regardstheoreticalstudies of phase behavior, thes
typically endeavor to calculate the system free energy a
function of a set of density variables. The difficulty i
achieving this for a polydisperse system is that the free
ergy f @r(s)# is a functional ofr(s), and therefore itself
occupies an infinite dimensional space. This renders int
table the task of identifying phase boundaries, and obli
one to resort to approximation schemes. Of these, perh
the most simple is a generalization of the van der Wa
approximation to polydisperse systems.3 A more sophisti-
cated approach involves approximating the full free ene
by a so-called ‘‘moment free energy’’ containing the fu
ideal gas contribution plus an excess part that depends
on certain principal moments of the full excess free energ4

Doing so reduces the problem to a finite number of den
variables and allows calculation of phase coexistence p
erties within a systematically refinable approximati
scheme. Additionally the theory delivers~for the given free
energy! exact results for the location of spinodals, critic
points, and the cloud and shadow curves. Use of this
proach promises to enhance significantly our understand
of phase behavior in polydisperse systems.

In view of the approximations inherent in theoretical a
6 © 2002 American Institute of Physics
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7117J. Chem. Phys., Vol. 116, No. 16, 22 April 2002 Simulation studies of polydisperse fluids
proaches, it is natural to consider deploying computer sim
lation to study the phase behavior of polydisperse colloi
fluids. Although simulations~like experiment! are restricted
to studying limited regions of the phase diagram such as
dilution line, they have the advantage that can be used
investigate thesamemodel systems as studied theoretical
Furthermore, they deliver~modulo finite-size effects! essen-
tially exact results, providing invaluable benchmarks aga
which to test theoretical predictions. Sometimes too,
physical insight gleaned from simulations serves as the
petus for fresh theoretical advances.

One simulation approach for obtaining the thermod
namic properties of a polydisperse system is to simply mim
the experimental procedure. This can be achieved by
ploying a canonical ensemble~CE! formalism wherein a
simulation box of fixed volumeV is populated by a pre
scribed number of particlesN, whose sizes are distribute
according to the desiredN(s). It practice, however, it tran-
spires that the CE represents a far from optimal framew
for simulating polydisperse fluids. The principal difficult
lies with the limited range of computationally accessible p
ticle numbers which, in any simulation, is typically man
orders of magnitude smaller than found in an experime
The resulting finite-size effects are particularly pronounc
in a CE simulation because the specific realization of
disorderN(s) is fixed. This suppresses large scale fluctu
tions inr(s) and potentially leads to sampling deficiencie5

Additionally, the CE suffers other drawbacks familiar fro
simulation studies of monodisperse fluids. For instance,
laxation times are extended because density fluctuations
cay solely via diffusion; there is no direct access to inform
tion on chemical potentials; metastability and hystere
hinder the study of phase transitions.

Experience with the simulation of monodisperse flu
has shown that use of the grand canonical ensemble~GCE! is
highly effective in circumventing many of the aforeme
tioned problems associated with the CE.6–8 As we shall
show, its application in the context of polydisperse flui
retains many of the benefits of the monodisperse case. M
over, it provides the key to improved sampling of the dens
distribution r(s). This is because within the GCE frame
work N(s) fluctuatesas a whole, thereby capturing fluctua
tions in r(s) on all simulation length scales. Notwithstan
ing these advantages, however, the GCE might appea
first sight, unsuitable for the purpose of traversing aparticu-
lar trajectory through the space of the density distribut
r(s). This is becauser(s) ostensibly lies out-with the di-
rect control of the simulator, its form being instead det
mined by the imposed chemical potential distributionm(s).
Nevertheless, it turns out to be possible totunem(s) within
a histogram extrapolation scheme, in such a way as to rea
a specific desired form ofr(s). We shall demonstrate tha
this dual use of the GCE and histogram extrapolation me
ods permits a chosen phase space path to be followed
ciently.

The layout of our paper is as follows. In Sec. II A w
formulate the statistical mechanics for a polydisperse fl
within the grand canonical ensemble. We then describe~Sec.
II B ! the combined GCE plus histogram extrapolation me
Downloaded 12 Apr 2002 to 138.38.32.86. Redistribution subject to AI
-
l

e
to
.

st
e
-

-
c
-

k

-

t.
d
e
-

e-
e-
-
is

re-
y

at

-

ze

-
ffi-

d

-

odology for tracking a particular path through the space
r(s). In Sec. III we apply the method to the problem
obtaining the dilution line properties of three types of siz
disperse hard sphere fluids. The chemical potential distr
tion of these fluids is determined as a function of volum
fraction and the results compared with the predictions of t
commonly used equations of state. Finally in Sec. IV,
discuss our findings and their implications.

II. METHOD

A. Statistical mechanics

We consider a classical fluid of polydisperse partic
confined to a volumeV5Ld. The system is assumed to b
thermodynamically open, so that the particle-number dis
bution N(s) is a statistical quantity. The associated gra
canonical partition function takes the form:

ZV5 (
N50

`
1

N!)i 51

N H E
V
dr iE

0

`

ds i J exp~2bHN~$r ,s%!!

~2.1!

with

HN~$r ,s%!5F~$r ,s%!2(
i 51

N

m~s i !. ~2.2!

Here N is the overall particle number, whileb5(kBT)21

and m(s) are, respectively, the prescribed inverse tempe
ture and chemical potential distribution.$r ,s% denotes
the configuration, i.e., the complete set (r1 ,s1),
(r2 ,s2)¯(rN ,sN) of particle position vectors and polydis
perse attributes. The corresponding configurational ene
F($r ,s%) is assumed to reside in a sum of pairwise inter
tions

F~$r ,s%!5 (
i , j 51

N

f~ ur i2r j u,s i ,s j !, ~2.3!

wheref is the pair potential.
The particle number distribution is defined by

N~s![(
i 51

N

d~s2s i !, ~2.4!

with s the continuous polydispersity attribute andN
5*N(s)ds. We shall be concerned with the fluctuations
the associated density distribution

r~s![N~s!/V, ~2.5!

and the configurational energy density

u[F~$r ,s%!/V.

The statistical behavior of these observables is comple
described by their joint probability distribution9

pV@r~s!,u#5^d~u2V21F~r ,s%!!)
s

d~r~s!

2V21N~s!!, ~2.6!

or more explicitly
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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pV@r~s!,u#5
1

ZV
(
N50

`
1

N! )i 51

N H E
V
dr iE

0

`

ds i J
3exp~2bHN~$r ,s%!!

3d~u2V21F~$r ,s%!!)
s

d~r~s!

2V21N~s!!. ~2.7!

Integrating over the energy fluctuations yields the probabi
distribution function of the density distribution

pV@r~s!#5E pV@r~s!,u#du. ~2.8!

Our specific concern is with the average form ofr(s), given
by

r̄~s!5E r~s!pV@r~s!#dr~s!. ~2.9!

Given a prescribed chemical potential distributionm(s) and
temperatureb, the form ofr̄(s) can be determined by simu
lation. Except in the ideal gas limit, however, no exact re
tionship betweenr̄(s) andm(s) will generally be available.
Thus one cannot~from a ‘‘bare’’ GCE simulation!, readily
determine thatm(s) corresponding to a particular desire
target density distributionr t(s). Subject to certain restric
tions however, this can be achieved via use of histogr
extrapolation.

The key idea of histogram extrapolation10 is that a mea-
sured distributionpV@r(s),u# accumulated at one set o
model parametersm(s), b can be reweighted to yield est
mates of the distribution appropriate to other parame
m8(s), b8. In its simplest form the reweighting is given b

pV8 @r~s!,uum8~s!,b8#5wpV@r~s!,uum~s!,b#, ~2.10!

where the reweighting factorw takes the form

w5expS (
i 51

N

@b8m8~s i !2bm~s i !#2V~b82b!uD .

~2.11!

By tuning the form ofm8(s) and the value ofb8 within the
reweighting scheme, it is possible to scan the space ofr̄(s),
thereby ‘‘homing in’’ on the target density distribution. T
this end it is expedient to define acost functionmeasuring
the deviation ofr̄(sum8(s),b8) from the target form

D~m8~s!,b8![E ur̄~s!2r t~s!ug~s!ds. ~2.12!

Here, for numerical convenience, we have incorporate
weight functiong(s) into our definition, the role of which
~as described in the following! is to ensure that comparab
contributions to the cost function arise from all sampled
gions of thes domain. Within this framework, the task o
determining those values ofm8(s), b8 that yield the target
distributionr t(s) reduces to that of functionally minimizing
the cost functionD with respect tom8(s), b8. As we de-
scribe in Sec. II B, this is achievable using standard al
rithms.
Downloaded 12 Apr 2002 to 138.38.32.86. Redistribution subject to AI
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B. Implementation

We have employed Monte Carlo~MC! simulation within
the grand canonical ensemble to study the dilution line pr
erties of systems of size-disperse hard spheres. This se
details the principal aspects of our simulation and analy
procedure.

1. Program, data structure, and acquisition

Our simulated system comprises a variable number
hard spheres contained within a periodic box of volumeV
5Ld. The dimensionless polydispersity variables was taken
to be the particlediameterexpressed in units of the mea
diameter~see Sec. III!. An upper boundsc was placed on the
permitted range of diameters, and the simulation volume w
partitioned into an array ofl 3 cells each of linear dimension
sc , so thatL5 lsc . This strategy aids efficient identificatio
of particle interactions by ensuring that interacting partic
occupy either the same cell or directly neighboring ones.

The grand canonical ensemble Monte Carlo~GCMC! al-
gorithm employed has a Metropolis form11 and invokes four
types of operation: particle displacements, particle insertio
particle deletions, and particle resizing; each is attemp
with equal frequency. Specific to the polydisperse case is
resizing operation, which entails attempting to change
diameter of a nominated particle by an amount drawn from
uniform random deviate constrained to lie in some p
scribed range. This range~maximum diameter step-size! is
chosen to provide a suitable balance between efficient s
pling and a satisfactory acceptance rate at the prevai
number density. As regards the remaining types of mov
these proceed in a manner similar to the monodispe
case,11 except that for insertion attempts the new partic
diameter is drawn with uniform probability from the rang
sP@0,sc#.

As primaryinput, the program takes the chemical pote
tial distributionm(s), which is required for the accept/rejec
Monte Carlo lottery. This distribution is stored in the form
a histogram, constructed by dividing the truncated inter
0,s,sc into a prescribed numberM of subintervals or
‘‘bins.’’ 12 All particles whose diameters fall within the scop
of a given bin are associated with the same value of
chemical potential.

The principal observableof interest is the probability
distributionpV@r(s)# @cf. Eq. ~2.8!#. Operationally it is im-
practical to construct the full form of this distribution in
simulation because to do so would entail forming a his
gram over histograms—the memory storage costs of wh
would be prohibitive. The procedure adopted, therefore, w
to sample theinstantaneousdensity histogramr(s) @dis-
cretized in the same manner asm(s)], and append succes
sive measurements of this quantity to a file.13 The set of all
such samples constitutes alist representing a sequential his
tory of the individual data measurements.8 This data list is
postprocessed by an analysis program which reads in eac
the individual list entries and averages over all of them
construct a histogram approximation to the average den
distribution r̄(s). If desired, the analysis program additio
ally implements histogram reweighting of the data in order
enable extrapolation to neighboring values of the model
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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7119J. Chem. Phys., Vol. 116, No. 16, 22 April 2002 Simulation studies of polydisperse fluids
rameters. This extrapolation is achieved by assigning
weight to each list entry of the form given by Eq.~2.11!. The
complete set of weights permits construction of the
weighted histogram.

2. Tracking a phase space path

The strategy we have adopted is to traverse the ph
space path of interest in a stepwise fashion, utilizing his
gram extrapolation to proceed from one step to the next
the general case of particles having a finite potential,
phase space path may involve changes in the temperatu
well the form of r(s). For simplicity of illustration, how-
ever, let us presume that the path is isothermal~i.e., b
5constant! and that the form of the chemical potential di
tribution, m (0)(s) say, is known at some arbitrary poin
r (0)(s) along the path. The procedure is then as follow
From simulations at the known state point, data
pV@r(s),u# can be accumulated directly. Histogram r
weighting is then applied to this data to extrapolate so
distance along the path to a new pointr (1)(s), and to pro-
vide an estimate of the corresponding form ofm (1)(s). The
latter quantity is then employed in a fresh simulation, t
results of which are extrapolated to a point further along
path, and so on. By iterating this procedurer ( i )(s)
→r ( i 11)(s), m ( i )(s)→m ( i 11)(s), one traces out the entir
phase space path.

The implementation of the extrapolation stage nece
tates a prior choice for the step size, that is the differe
between the measuredr(s) and the next targetr t(s). The
magnitude of this difference should be chosen to be as la
as possible, consistent with remaining within the range
reliable extrapolation. A good indicator that this is in fact t
case is that the individual densities of the target distribut
r t(s) each overlap with the range of typical fluctuatio
appearing in the simulation datar(s).14

Once a suitable step size has been determined, the
trapolation procedure proceeds by minimizing~within the
reweighting scheme! the cost functionD introduced in Eq.
~2.12!. For all but the lowest densities, this task is comp
cated by the existence of strong coupling between them vari-
ables, deriving from the fact that the number density for e
s depends on thewholechemical potential distribution. For
tunately, efficient algorithms for performing multidimen
sional functional minimization are widely available15 and, at
least for the cases we have considered, appear to op
effectively. The sole difficulty encountered was that, on o
casion, the minimization failed to fully converge fors values
in the wings ofr t(s). To remedy this problem, a weigh
function g(s) was incorporated in the cost function@cf. Eq.
~2.12!#, the purpose of which is to enhance the contribut
to D from s values for whichr t(s) is small. Good results
were obtained by settingg(s)}@r t(s)#21.16

It should be stressed that the above-mentioned meth
ology presumes the availability of a form ofm(s) for some
starting point on the phase space path of interest. This
be obtained straightforwardly if the path passes throug
region of low density where reliable analytical estimates
m(s) can be employed. Otherwise the method must be b
strapped by other means. One simple but effective appro
Downloaded 12 Apr 2002 to 138.38.32.86. Redistribution subject to AI
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for achieving this operates as follows. Starting from so
initial guess for the desiredm(s) ~e.g.,m0(s)5 ln@rt(s)#) a
series of short simulations are carried out in whichm(s) is
iterated according to

m (m11)~s!5m (m)~s!1S ln~r t~s!!

ln~r (m)~s!! D
d

, ~2.13!

where 0,d,1 is a damping factor, the value of which ma
be tuned to optimize convergence. Although one could c
tainly envisage more sophisticated and efficient schemes
have found this method to operate satisfactorily.

III. DILUTION LINE STUDIES OF POLYDISPERSE
HARD SPHERE FLUIDS

A. System and simulation details

We have obtained the dilution line properties~cf. Sec. I!
of size-disperse hard sphere17 fluids with diameter distribu-
tion N(s) assigned one of two forms:

~i! Schulz distribution,
~ii ! log-normal distribution.

These distributions are conveniently expressed in terms
normalized size functionn(s)5N(s)/N. For the Schulz,
this takes the form

n~s!5
1

z! S z11

s̄ D z11

sz expF2S z11

s̄ DsG , ~3.1!

wheres̄ is the average particle diameter andz is a parameter
controlling the width of the distribution. For the log-norm
distribution, the size function is given by

n~s!5
11W2

s̄A2p ln~11W2!

3expS 2
@ ln~s/s̄ !1~3/2!ln~11W2!#2

2 ln~11W2! D , ~3.2!

with W the standard deviation in units ofs̄. Note that both
of these distribution are normalized, that is*0

`n(s)ds51,
and vanish ass→0, implying a natural lower limit tos. By
contrast, there is no finite upper limit and consequently,
simulation purposes, it was necessary to impose an up
bound~cutoff! sc ~see also Sec. II B!.

We have studiedthreedistinct size distributions—two of
the Schulz form and one of the log-normal form. For t
Schulz distribution, width-parameter values ofz515 andz
55 were considered, with cutoff valuessc53 andsc54,
respectively. For the log-normal distribution, the single ca
W52.5 with sc512 was studied. In each instance we s
s̄51. Cell array sizes~cf. Sec. II B 1! of linear dimensionl
53,4,5 were used. In absolute dimensionless unitsL
5 lsc) these correspond toL59,12,15, respectively, for the
z515 Schulz, toL512,16,20 for thez55 Schulz, and to
L536,48,60 for the log-normal distribution. The histogra
discretization parameter~cf. Sec. II B! was set toM575 and
M5100 for thez515 andz55 Schulz distributions, respec
tively, and toM5120 for the log-normal distribution.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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The average density distribution can be expressed
terms of the normalized size function multiplied by the ov
all number densityr05N/V, i.e.,

r̄~s![r0n~s!. ~3.3!

The procedure for tracking the dilution line utilized th
overall density as a measure of the location along the l
The tracking procedure was initiated at a small value ofr0

by approximating the chemical potential distribution acco
ing to the ideal gas relationm(s)5 ln r̄(s).18 Histogram ex-
trapolation was applied to the resulting simulation data
order to refine the initial estimate ofm(s). Thereafter the
strategy described in Sec. II B 2 was implemented to foll
the dilution line to higher densities. At each step this entai
setting a target form forr̄(s) corresponding to a value ofr0

larger than that used at the previous step. The cost func
measuring the discrepancy betweenr̄(s) and the target was
then minimized to yield an estimate for the appropria
m(s). On efficiency grounds, this minimization was pe
formed in two stages; an initial approximation tom(s) was
obtained from a one-dimensional minimization in which t
activity distribution exp(m(s)) was multiplied by an overal
factor. Thereafter the complete functional minimization w
performed to yield a more accurate form form(s).

Although~within the specific context of the tracking pro
cedure! r0 provides a convenient measure of the location
the dilution line, it conveys little information regarding th
degree of packing within a polydisperse system. We s
therefore find it convenient to quote values for the ove
volume fraction of the system given by

h[E
0

sc
ds

p

6
s3r̄~s!. ~3.4!

It is this quantity~rather thanr0) which is featured in the
presentation of our results, to which we now turn.

B. Results

Owing to the computational complexity of the simul
tions, we have obtained the complete dilution line for ea
fluid only for the l 53 cell array size. For the larger syste
sizes, only a few spot measurements were made along
dilution line, each of which was bootstrapped by appea
the measuredm(s) obtained from thel 53 systems.

The dilution lines for the three fluids were tracked to t
highest computationally accessible volume fraction, ter
nating only once the relaxation time scale became ex
sively large. The maximum volume fractions attained we
h50.445 andh50.40 for the Schulz density distribution
with z515 andz55, respectively, andh50.33 for the log-
normal case. Snapshot configurations for all three fluids
shown in Fig. 1 forh values slightly below the maximum
attained in each case. We mention in passing that, at leas
the cases of the two Schulz distributions, the maximum v
ume fractions reached are somewhat larger than would
readily attainable for GCMC simulations of monodisper
hard spheres. The latter, of course, become highly ineffic
at largeh because the acceptance rate for particle insert
falls rapidly as the free volume diminishes. Whilst the sa
Downloaded 12 Apr 2002 to 138.38.32.86. Redistribution subject to AI
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is true in the polydisperse context for insertions of large p
ticles, space can often be found for placing a small parti
This facilitates fluctuations in the overall particle numberN,
while resizing operations~whose efficiency at largeh is typi-
cally greater than that of inserting large particles! ensure
continued proper sampling of the density distribution.

The measured forms form(s) as a function ofh differ
qualitatively between the Schulz and the log-normal den
distributions, and accordingly we discuss them separat
Beginning with the Schulz case, Figs. 2 and 3 show
measuredr̄(s) and the correspondingm(s) for the two flu-
ids at a selection of volume fractions along their respect
dilution lines. The range ofs values shown is that for which
the simulations delivered data of reasonable statistical q
ity. One notes that for both thez515 andz55 cases, the
tails marking the large-s vestiges of the distributions fal
considerably short of the respective cutoffssc . Indeed, we
have verified that in the course of the simulations, no p
ticles of diameters approaching the cutoff diameter occur
on the simulation time scale, implying that our data are u
affected by its imposition. As regards the forms of the chem
cal potential distributions, one sees that for smallh they
display a maximum near the peak inr̄(s)—behavior that is
of course mandated at sufficiently lowh by the known prop-
erties of the ideal gas limit. For largerh, however, the peak
is lost andm(s) increases monotonically. The increase
m(s) in the regime of larges indicates that the exces
chemical potential~measuring the work associated with in
serting a sphere! grows faster withs than the decrease in th
ideal contribution associated with the decay ofr̄(s).

Turning now to the log-normal case, Fig. 4~a! demon-
strates thatr̄(s) decays extremely slowly with increasings.
The peak in the distribution therefore occurs at much sma
s than for the two Schulz forms although the average dia
eter s̄ is identical in all three cases. As a practical cons
quence of the slow decay~and notwithstanding the imposi
tion of a very large value ofsc!, ranges of particle diameter

FIG. 1. Snapshots of configurations.~a! Schulz distribution (z515), h
50.43, L512. ~b! Schulz distribution (z55), h50.38, L516. ~c! Log-
normal distribution,h50.29, L548.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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extending up to the cutoff value were observed in the syst
Indeed it was not feasible within the computational co
straints to utilize a cutoff for which this did not occur, an
hence truncation effects are always significant in t
system—a point to which we shall return in the followin
The measured forms ofm(s) for the log-normal fluid are
shown in Fig. 4~b!. In contrast to the Schulz distribution
they display~for all accessibleh! a narrow maximum close
to the peak inr̄(s) at smallr. Thereafter with increasings
there is a slow fall to a broad minimum, whereafterm(s)
increases strongly.

Having outlined the main qualitative features of the
lationship betweenr̄(s) and m(s), it is instructive to per-
form a detailed comparison between our measurements
the predictions of analytical equations of state~EOS! appear-
ing in the literature. For hard spheres, two commonly u
equations are that due to Boublik, Mansoori, Carnahan, S
ling, and Leland~BMCSL!19,20 based on the Carnahan
Starling equation for monodisperse hard spheres, and
due to Salacuse and Stell,21 based on the Percus–Yevic

FIG. 2. Dilution line properties of hard spheres having the Schulz den
distribution (z515, sc53.0) for system sizeL59. ~a! Data points show the
measured density distributionr̄(s) at a selection of values of volume frac
tion h along the dilution line; dotted lines correspond to the target distri
tion r t(s). ~b! The corresponding chemical potential distributionm(s).
Statistical errors do not exceed the symbol sizes.
Downloaded 12 Apr 2002 to 138.38.32.86. Redistribution subject to AI
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~PY! theory. Both are reproduced in the Appendix, and e
pressm(s) in terms of an expansion to third order ins, with
coefficients given in terms of the first three moments
r̄(s). We have compared the predictions of the EOS
each of the three fluids studied, with the finite-size simu
tion data at three values ofh, namely a low, a moderate, an
a high value. We describe our findings for each fluid in tu

The results for the Schulz distribution withz515 at the
low volume fractionh50.056 are shown in Fig. 5~a!. At first
sight there is good agreement between theL59 andL512
simulation data and both the BMCSL and PY equations
state over the entire region ofs. However, closer inspection
reveals appreciable discrepancies between theory and s
lation, not visible on the scale ofm(s). These are apparent i
one suppresses the dominant ideal gas contribution to ex
the excesschemical potential, given by~see the Appendix!

mex~s!5m~s!2 ln@r0n~s!#. ~3.5!

This quantity is plotted in the inset of Fig. 5~a!, from which
one sees that compared to the simulation results, the E
slightly underestimatem(s).

Figure 5~b! shows the results for thez515 Schulz dis-
tribution at the moderate volume fractionh50.257. Again
there is good agreement between theL59 andL512 simu-

ty

-

FIG. 3. Dilution line properties of hard spheres having the Schulz den
distribution (z55, sc54), for system sizeL512. ~a! Data points show the
measured density distributionr̄(s) at a selection of values of volume frac
tion h along the dilution line; dotted lines correspond to the target distri
tion r t(s). ~b! The corresponding chemical potential distributionm(s).
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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lation data suggesting that finite-size effects are insignific
Here, however, discrepancies between the BMCSL and
equations of state are larger than at the lower value oh,
being evident on the scale of theabsolutechemical potential.
One sees that both EOS significantly underestimatem(s) for
larges, although they agree quite well with one another.
similarly high level of agreement between the data from
L59 andL512 system sizes is manifest at the higher v
ume fractionh50.426, Fig. 5~c!. Here the PY equation o
state is seen to fare somewhat better than the BMCSL e
tion although both underestimatem(s) substantially toward
the upper end of thes range.

A similar picture emerges for the Schulz distributio
with z55 ~Fig. 6!. Again both equations of state underes
matem(s), even at the lowest volume fraction, although t
PY equation corresponds significantly more closely to
simulation results at high volume fractions than does
BMCSL equation. We could again discern no evidence
appreciable finite-size effects in the simulation results.

In seeking to compare the results for the log-normal s
tem with the EOS predictions it is essential to bear in m
the importance of truncation effects. The moments of a tr
cated log-normal distribution can differ dramatically fro
those of the full distribution even for large values ofsc . In

FIG. 4. Dilution line properties of hard spheres having the log-normal d
sity distribution (W52.5, sc512) for system sizeL536. ~a! Data points
show the measured density distributionr̄(s) at a selection of values o
volume fractionh along the dilution line; dotted lines correspond to t
target distributionr t(s). The inset shows the region of smalls. ~b! The
corresponding chemical potential distributionm(s). Statistical errors do not
exceed the symbol sizes.
Downloaded 12 Apr 2002 to 138.38.32.86. Redistribution subject to AI
t.
Y

e
-

a-

e
e
r

-
d
-

order to facilitate a fair comparison with theory, the analy
form of m(s) must therefore be calculated using the m
ments of thesametruncated distribution as employed in th
simulations. The results of performing this comparison
presented in Fig. 7. At low volume fraction, there is go
agreement between the EOS predictions and the simula

-

FIG. 5. Chemical potential distributionm(s) for the Schulz density distri-
bution (z515, sc53), for system sizesL59 andL512. ~a! h50.056.
Here the inset shows the excess chemical potential given by Eq. 3.5~b!
h50.257; ~c! h50.426. Also shown in each case are the predictions of
BMCSL and PY equations of state. Statistical errors do not exceed
symbol sizes.
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results, while at high volume fraction the EOS underestim
the measuredm(s) considerably, with the degree of discre
ancy increasing toward the tail of the distribution. On
again we could discern no evidence of finite-size effe
within the statistical uncertainties of our data.

FIG. 6. Chemical potential distributionm(s) for the Schulz density distri-
bution (z55, sc54). ~a! h50.048, L512,16, the inset shows the exce
chemical potential given by Eq.~3.5!; ~b! h50.231, L512,16; ~c! h
50.36 L512,16,20. Also shown in each case are the predictions of
BMCSL and PY equations of state. Statistical errors do not exceed
symbol sizes.
Downloaded 12 Apr 2002 to 138.38.32.86. Redistribution subject to AI
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The above-presented results indicate that the BMC
and PY equations fail to provide a quantitatively accur
description of the chemical potential distribution, particula
when the volume fraction is large. It is instructive to exami
the implications of this finding for calculations ofdensities,
which depend very sensitively~indeed exponentially so! on
the chemical potential. To this end we have studied the
gree to which the form ofm(s) calculated via the BMCSL
equation from some prescribedr(s), actually yields this
density distribution when input to a simulation. The resu
of performing this comparison are shown in Figs. 8~a!–8~c!
for each of the three fluids at a high volume fraction. In ea
instance, the solid line shows the input density distribut
r(s) from which m(s) is calculated. The data points sho
the simulation results obtained using this form ofm(s) for
three different system sizes. As Figs. 8~a!–8~c! clearly dem-
onstrate, the measured form ofr(s) deviate substantially
from the prediction.

Finally in this section, we examine the moment structu
of the excess chemical potentialmex(s) given by Eq.~3.5!.
Both the BMCSL and PY equations assume thatmex(s) is

e
e

FIG. 7. Chemical potential distributionm(s) for the log-normal density
distribution (W52.5, sc512) for system sizesL536,48,60. ~a! h
50.126, the inset shows the excess chemical potential given by Eq.~3.5!;
~b! h50.307. Also shown in both cases are the predictions of the BMC
and PY equations of state. Statistical errors do not exceed the symbol s
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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expressible in terms of a cubic polynomial ins. Bartlett has
reached the same conclusion using geometrical argum
inspired by scaled particle theory.22 We have investigated
this proposal by fitting our data to

FIG. 8. The measured density distributionr(s) obtained using forms of
m(s) predicted by the BMCSL equation of state at the stated volume f
tion. ~a! Schulz (z515), h50.427, L59,12,15; ~b! Schulz (z55), h
50.36, L512,16,20;~c! log-normal distribution,h50.307, L536,48,60,
the inset shows the same data on a log scale. In each case the d
distribution from whichm(s) derives is shown as a solid line. Statistic
errors do not exceed the symbol sizes.
Downloaded 12 Apr 2002 to 138.38.32.86. Redistribution subject to AI
nts

mex~s!52 ln~12h!1a1s1a2s21a3s3, ~3.6!

where the constant term is fixed by the requirement tha
the limit s→0 the probability of inserting a sphere is pro
portional to 12h. We find that all our data are fitted ver
well by this expression; Fig. 9~a! shows a typical fit for the
case of the Schulz fluid withz55 at h50.377. Also shown
@Fig. 9~b!# are the fit coefficientsa1 , a2 , a3 for various
values ofh, together with the predictions of the BMCS
equation of state. One sees that at high volume fraction,
BMCSL underestimates all coefficients, the relative discr
ancy being marginally larger for thea1 coefficient than for
the others.

IV. DISCUSSION AND CONCLUSIONS

In summary, we have presented a grand canonical si
lation method for studying polydisperse fluids. The meth
utilizes histogram extrapolation techniques to track e
ciently an arbitrary path of interest through the space of

-

sity

FIG. 9. ~a! Data points show the measured excess chemical potential d
bution mex(s) for the Schulz density distribution (z55) at h50.377, for
system sizeL512. The solid lines shows a fit to the data of the form giv
by Eq. ~3.6!. ~b! Values of the fit coefficientsa1 , a2 , a3 for a selection of
values of the volume fractionh. The solid lines show the predictions of th
BMCSL equation. Statistical errors do not exceed the symbol sizes.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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density distributionr(s).23 We have applied it to the spe
cific problem of obtaining the dilution line properties of siz
disperse hard spheres. It should also prove useful in stud
more general species of polydisperse fluids and their ph
transitions, both in the bulk and confined geometries.
intend to report on such extensions in future communi
tions.

Previous simulation studies of polydisperse fluids ha
generally operated within a semi-grand canoni
framework24 in which a fixed number of particles are studie
either at constant pressure~see, e.g., Ref. 25! or within a
Gibbs ensemble MC scheme.26 In common with the presen
work, these studies utilized a fluctuating particle size dis
bution, realized by means of MC resizing moves control
by a chemical potential distribution.27 In contrast to our ap-
proach, however, thermodynamic properties were studie
a function of the shape of the activity distribution exp(m(s));
no constraints were placed on the conjugate density distr
tion, which was consequently free to adopt whichever fu
tional form minimized the free energy for the imposedm(s).
In view of this, one might question the extent to which t
simulation results reflect the actual situation in realistic s
tems. One situation in which the lack of a constrained d
sity distribution might be relevant is the interesting issue
the influence of polydispersity on the freezing of ha
spheres.28 This was investigated in Ref. 25, using semi-gra
canonical MC and Gibbs–Duhem integration. It would be
considerable interest to harness the approach described i
present work to investigate the effects on the freezing beh
ior of varying the width of the density distribution whils
constraining its shape to some physically realistic form.

In the present study, attention was focused on fluids h
ing a high degree of polydispersity. The motivation for th
choice was twofold. First, models exhibiting a wide dens
distribution provide a suitably testing challenge agai
which to gauge the effectiveness of our method. Seco
there exist in the literature a number of interesting pred
tions concerning the role of depletion forces in highly po
disperse systems. For instance, it has been suggested by
eral authors that attractive depletion forces might engen
novel phase transitions in polydisperse hard spheres.29–31

Specifically, Sear has suggested that a fluid of hard sph
having a log-normal size distribution will be unstable wi
respect to crystallization of the large particles atall finite
volume fractions.31 By contrast, Cuesta30 has predicted that a
sufficiently wide log-normal distribution will exhibit fluid–
fluid phase separation at some finite density. It seems lik
that for a truncated size distribution a phase transition w
not occur for arbitrarily small volume fraction because of t
absence of the largest particles which mediate the grea
depletion forces. Thus our simulation results for the tru
cated distribution are able neither to conclusively confi
nor refute these predictions. It suffices to say that we
served no evidence of crystallization in the particular tru
cated log-normal fluid studied, up to a volume fraction
h50.33. Similarly, within the range of accessible volum
fractions, no evidence for phase transitions was observe
either of the two Schulz fluids studied.

Turning finally to the comparison between our simu
Downloaded 12 Apr 2002 to 138.38.32.86. Redistribution subject to AI
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tion results and the predictions of the polydisperse equat
of state, we find that neither the BMCSL nor PY equatio
offer a quantitatively accurate description of the thermod
namics of hard spheres for large polydispersity and at h
volume fraction.32 Both equations underestimatem(s) at all
fluid densities over the entire range ofs, implying that they
underestimate the Helmholtz free energy densityf
5*0

r0m(sur08n(s))ds dr08 and hence overestimate the st
bility of the fluid. The magnitude of this overestimate b
comes more pronounced the greater the volume fraction
terestingly we find that in this regime the PY equati
performs appreciably better than the BMCSL equation
spite the fact~cf. the Appendix! that the latter derives from a
monodisperse hard sphere equation of state which has
found to be superior to the PY approximation. It remains
be seen to what extent the overestimate of fluid stabi
impinges on the results of existing calculations of depletio
force induced phase separation based on the BMCSL and
approximations.29,30 In any case, our results should provide
useful testing ground for any future improvements to t
existing polydisperse equations of state.33
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APPENDIX: POLYDISPERSE HARD SPHERE
EQUATIONS OF STATE

The equations of state that we quote here express
chemical potential as a function the sphere diameters. The
expression due to Salacuse and Stell21 is a generalization of
the Percus–Yevick result for monodisperse hard spheres

mPY~s!5 ln@r0n~s!#2 ln~12z3!

1
s3z013s2z113sz2

12z3

1
3s3z1z219s2z2

2/2

~12z3!2 1
3s3z2

3

~12z3!3 . ~A1!

The BMCSL equation of state,19,20 on the other hand, gener
alizes the Carnahan–Starling expression, which for mono
perse hard spheres is more accurate than the Percus–Y
result. It is given by

mBMCSL~s!5 ln@r0n~s!#1~3s2z2
2/z3

222s3z2
3/z3

3!

3 ln~12z3!1
s3~z02z2

3/z3
2!13s2z113sz2

12z3

1
s3~3z1z22z2

3/z3
2!13s2z2

2/z3

~12z3!2

1
2s3z2

3

z3~12z3!3 , ~A2!
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where zn5pr0mn/6 and mn is the nth moment ofr̄(s);
note thatz35h, the volume fraction of hard spheres.

Both equations of state include the ideal contribution
the chemical potential,m ideal(s)5 ln@r0n(s)#. For general
temperature—remember that we setb51 for our hard
sphere system—this contribution would readbm ideal(s)
5 ln r̄(s). Because there has been some discussion in
literature regarding how the ideal chemical potential
polydisperse systems should be assigned~see, e.g., Ref. 21!,
it may be helpful to note that, within the grand canonic
framework,m ideal(s) is unambiguously defined via the gran
canonical partition function. Indeed, for an ideal syste
(HN50), one readily finds from Eq.~2.1! that r̄(s)
5exp(bm(s)), giving bm ideal(s)5 ln r̄(s) as before. One
may worry about dimensions in the argument of the log he
but the definition in Eq.~2.1! already implies that dimension
less units are used for lengths and fors. Were this not the
case, the integrals overr i ands i would need to be normal
ized by a unit volumev0 and a unit values0 for the poly-
disperse attribute, and the ideal chemical potential wo
readbm ideal(s)5 ln@v0s0r̄(s)#, with the argument of the log
now manifestly dimensionless. The normalization const
v0s0 could in fact be made dependent ons; this would just
give as-dependent shift in the zero of the chemical poten
scale.
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