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Abstract

Mitochondria are vital organelles that perform a variety

of fundamental functions ranging from the synthesis

of ATP through to being intimately involved in pro-

grammed cell death. Comprised of at least six compart-

ments: outer membrane, inner boundary membrane,

intermembrane space, cristal membranes, intracristal

space, and matrix, mitochondria have a complex,

dynamic internal structure. This internal dynamism is

reflected in the pleomorphy and motility of mitochon-

dria. Mitochondria contain their own DNA (mtDNA),

encoding a small number of vital genes, but this role

as a genetic vault is not compatible with the role of

mitochondria in bioenergetics since electron transport

results in the generation of reactive oxygen species

(ROS) that induce lesions in the mtDNA. It is hypoth-

esized that ROS shape the morphological organization

of the higher plant cell mitochondrial population into

a discontinuous whole, and that ROS are a selective

pressure affecting the organization of the mitochon-

drial genome. This review describes how inter- and

intra-mitochondrial compartmentalization underpins the

biology of this complex organelle.

Key words: Cytoskeleton, discontinuous whole, division, dynam-

ics, fusion, mitochondria, mitochondrial genome, morphology,
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Introduction

Mitochondria are highly dynamic, pleomorphic organelles
composed of a smooth outer membrane surrounding an
inner membrane of significantly larger surface area that,
in turn, surrounds a protein-rich core, the matrix. Although
mitochondria contain their own genome and protein-
synthesizing machinery (Leaver et al., 1983; Unseld et al.,

1997; Gray et al., 1999) they are only semi-autonomous:
the majority of mitochondrial polypeptides are encoded
in the nuclear genome, synthesized in the cytosol and
imported into the mitochondria post-transcriptionally
(Unseld et al., 1997; Whelan and Glaser, 1997; Duby and
Boutry, 2002). The role of the mitochondrion in the
synthesis of ATP formed by oxidative phosphorylation
is well established (Saraste, 1999) and, in addition, mito-
chondria are involved in numerous other metabolic pro-
cesses including the biosynthesis of amino acids, vitamin
cofactors, fatty acids, and iron-sulphur clusters (Mackenzie
and McIntosh, 1999; Bowsher and Tobin, 2001). Apart
from the role of the mitochondrion in ATP synthesis and
various biosynthetic pathways the mitochondrion is one
of three cell compartments involved in photorespiration
(Douce and Neuburger, 1999), is implicated in cell signal-
ling (Vandecasteele et al., 2001; Logan and Knight, 2003),
and has been shown recently to be involved in programmed
cell death (Jones, 2000; Youle and Karbowski, 2005).

This review deals with the complex biology of the
mitochondrion and describes how various levels of com-
partmentalization within the mitochondrion and cellular
mitochondrial population as a whole (the chondriome)
underpin the multiple functions of this vital organelle.
Although focused on the higher plant mitochondrial
compartment, frequent reference will be made to studies
using non-plant model organisms. In some cases, this is
simply due to a paucity of information about specific
aspects of plant mitochondrial biology; in all cases it is
because I believe the information is of fundamental
relevance. A short article such as this can only provide
a brief overview of the importance of compartmentalization
to the life of the mitochondrion. A great deal has been left
out (e.g. co-ordination of the mitochondrial and nuclear
genomes, control of protein import, the mitochondrial
proteome, biochemical defence against ROS, amongst
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other topics) and it is possible, even likely, that my choices
of topics to include might not be of interest to all with an
interest in mitochondria but, in the end, this is a personal
view of the mitochondrial compartment.

Compartmentalization and the chemiosmotic
theory

The vast majority of biological energy (ATP) production is
associated with energy-transducing membranes: the pro-
karyotic plasma membrane of bacteria and blue-green
algae, the thylakoid membranes of chloroplasts, and the
inner mitochondrial membrane. The energy-transducing
membrane is central to the chemiosmotic theory that
explains the basic mechanism of biological energy pro-
duction, whereby ATP production is coupled to the
controlled dissipation of a proton electrochemical gradient
(proton motive force). The membrane allows compartmen-
talization of protons, via their vectorial transport across the
membrane, by the action of a primary proton pump(s). In
mitochondria the primary proton pumps comprise com-
plexes I, III, and IV. These primary pumps generate a high
gradient of protons that forces a secondary pump (the ATP
synthase complex) to reverse, energized by the flow of
protons ‘downhill’, thereby synthesizing ATP from ADP
and Pi. Any proton leak across the membrane would cause
a short-circuit, destroy the compartmentalization of pro-
tons and uncouple the proton motive force from the ATP

synthase. The energy-transducing membrane must, there-
fore, be essentially closed and have a high resistance to
proton flux.

The energy-transducing membrane of mitochondria, the
inner mitochondrial membrane, is a highly pleomorphic
structure. Although there are an almost endless variety of
inner mitochondrial membrane morphologies in mitochon-
dria from different species, from different cell types within
the same species or from the same cell types but in different
metabolic states (Munn, 1974), some generalizations can
be made. Transmission electron microscopy led to the de-
velopment of models of the internal structure of mitochon-
dria. Palade’s model (Palade, 1952), also called the baffle
model, depicted the invaginations of the inner mitochon-
drial membrane, the cristae, as random, wide in-folds of
the membrane (the typical text book image, Fig. 1) while
Sjostrand suggested the cristae were composed of a stack
of independent membranous lamellae (Sjostrand, 1953).
It is clear from two ground-breaking research papers pub-
lished in 1994 (Lea et al., 1994; Mannella et al., 1994), de-
scribing results obtained using high-resolution scanning
electron microscopy or electron tomography, respectively,
together with subsequent investigations, that neither
model was entirely correct (Mannella, 2006).

The results obtained using advanced tomographic
imaging techniques demonstrate that, at least in animal
tissue, tubular rather than lamellar cristae predominate
and that the morphology of cristae infers that they are

Fig. 1. Models of mitochondrial membrane structures. (a) Infolding or ‘baffle’ model, which is the representation most commonly depicted in textbooks
(reproduced from Lodish et al., 1995, Fig. 5–43, with permission from WH Freeman). This model originated with Palade in the 1950s and has been
prominent until recently. (b) Crista junction model, which supplants the baffle model for all mitochondria examined to date from higher animals. Electron
tomography has been instrumental in providing the improved 3D visualizations of mitochondria in situ that have generated a new model for membrane
architecture. Instead of the large openings connecting the intercristal space to the intermembrane space present in the baffle model, narrow tubular
openings (crista junctions) connect these spaces in this model. Most cristae have more than one crista junction and these can be arranged on the same side
of the mitochondrial periphery, or on opposite sides if the crista extends completely across the matrix. The model in (b) is courtesy of M Bobik and
MMartone, University of California, San Diego. Reprinted from Perkins and Frey (2000). Copyright (2000), with permission from Elsevier. Additional
annotations in (b) by the author.
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structurally distinct from the rest of the inner mitochondrial
membrane. An additional finding was confirmation that the
cristae were connected to the inner boundary membrane
(cortical inner mitochondrial membrane, parallel to the
outer membrane) by membranous tubules, instead of the
cristae being simple in-folds of the membrane as suggested
by Palade (1952). Daems and Wisse (1966) first reported
that cristae attach to the inner boundary membrane via
narrow tubules termed pediculi, but this finding was not
consistent with the baffle paradigm. Subsequently, it has
been shown that the connections between the cristae and
the inner boundary membrane, the term crista junction has
superseded pediculi, have a preferred size and morphology
and are independent of the source of the mitochondrion
and the means of fixation (Mannella et al., 1994, 1997;
Perkins et al., 1997a, b, 1998). Indeed, it has been pro-
posed that crista junctions are a uniform structural com-
ponent of all mitochondria (Perkins and Frey, 2000).
For example, in rat liver mitochondria, crista junctions are
30–50 nm long although tubules three times that length
have been measured, and in Neurospora crassa the
slot-like crista junctions have been measured at up to
200 nm, although the average length is 30–40 nm (Frey
et al., 2002; Perkins et al., 1997a).

The number of crista junctions and the morphology
of the intercristal space have been shown to change with
the metabolic state of the mitochondria (Hackenbrock,
1968; Mannella et al., 1994, 1997). In the orthodox state,
corresponding to partial matrix expansion, the intercristal
space is compressed and tubular with few cristae inter-
connections and one or two crista junctions with the inner
boundary membrane. In the condensed state, corresponding
to partial matrix contraction, the intercristal spaces are
dilated and there are more numerous intercristal membrane
connections and crista junctions. Hackenbrock (1968)
demonstrated, by rapid fixation of purified mouse liver
mitochondria in different respiratory steady-states, that

mitochondria in state 3 (maximum respiratory rate in the
presence of excess ADP and respiratory substrate) were in
the condensed conformation, but reverted to an orthodox
morphology after entering state 4 respiration (characterized
by a reduction in respiration due to the depletion of ADP).
Addition of ADP to these mitochondria caused a rever-
sion to the condensed form within 35 s, followed by a gra-
dual return to the orthodox conformation as all the ADP
is phosphorylated.

Dry, quiescent maize embryos contain mitochondria
with little internal membrane structure and an electron-
light matrix (Logan et al., 2001). Upon imbibition,
mitochondrial biogenesis is stimulated and within 24 h
(protrusion of the radicle typically took place after 36–48 h
imbibition) mitochondria in the embryo have a normal,
orthodox, conformation (Fig. 2; Logan et al., 2001). By
contrast, mitochondria isolated from germinated embryos
(after 48 h imbibition) had a condensed conformation
(Fig. 2; Logan et al., 2001). It is tempting to speculate
that the switch from an orthodox to a condensed con-
formation during mitochondrial biogenesis is indicative of
the changing biochemistry of the organelle as it switches
from being reliant on the provision of electrons from
external NADH dehydrogenases to the newly assembled
TCA cycle (Logan et al., 2001).

A condensed morphology, large intercristal spaces with
narrow crista junctions to the intermembrane space, has
been shown by computer simulation to lead to a reduction
in diffusion of ADP into the cristae, reduction in the
transport of ADP across the inner mitochondrial mem-
brane and, therefore, ATP production (Mannella, 2006).
Adoption of an orthodox confirmation when the bulk
ADP concentration is low might therefore act to mini-
mize the negative effect on ATP production of limited
diffusion of ADP through the crista junctions by concen-
trating the ADP within a smaller intercristal volume. The
results of Hackenbrock (1968) and those from the computer

Fig. 2. Conformation of internal structure in mitochondrial purified from germinating maize embryos. Transmission electron micrographs of
mitochondria after subcellular fractionation of embryos excised from seed imbibed for either (a) 24 h, orthodox conformation or (b) 48 h, condensed
conformation. Scale bar = 500 nm. [Logan et al. (2001)].
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simulation suggest that inner mitochondrial membrane
remodelling, which affects the degree of compartmentali-
zation, is a mechanism enabling the control of ATP
production by mediating ADP availability (Mannella,
2006). Whether this control mechanism operates in vivo
remains to be determined. What is clear from the above
discussion is that at least six discrete mitochondrial
compartments can be recognized on a structural basis:
outer membrane, intermembrane space, inner boundary
membrane, cristal membrane, intercristal space, and matrix.

Biogenesis of the cristal membranes is
dependent on ETC biogenesis

The extent to which the structural organization and
compartmentalization of the energy-transducing inner mi-
tochondrial membrane to form three components (inner
boundary membrane, cristal membranes and intercristal
space) are reflected in, or indeed due to, a different protein
complement of each compartment is not fully understood. It
has been demonstrated recently, with bovine heart mito-
chondria, that approximately 94% of both Complex III and
ATP synthase protein, as detected by immuno-gold label-
ling, resides in the cristal membrane, the remaining 6% is
located in the inner boundary membrane (Gilkerson et al.,
2003). The authors concluded that there is restricted
diffusion of respiratory complexes through the crista
junctions and that the cristae comprise a regulated func-
tionally distinct subcompartment of the inner mitochondrial
membrane (Gilkerson et al., 2003). A similar compartmen-
talization of cytochrome c oxidase in the cristae has been
recorded in Jerusalem artichoke (Kay et al., 1985; Moller
et al., 1987) and rat cardiac muscle and pancreas (Perotti
et al., 1983) mitochondria, and in the cristae and inner
boundary membrane of mouse liver mitochondria (Hiraoka
and Hirai, 1992). In addition, indirect evidence to support
the hypothesis that the cristal membrane is the site of
oxidative phosphorylation comes from examination of
Rho0 cells that lack mitochondrial DNA (Gilkerson et al.,
2000). Human mitochondrial DNA encodes 13 polypeptide
components of the respiratory chain and, therefore, in
Rho0 cells, the oxidative phosphorylation machinery is in-
completely assembled. This selective loss of only a small
proportion of respiratory complex subunits has a dramatic
effect on the internal structure of the mitochondria: the
cristal membranes are greatly reduced and disorganized, yet
the inner boundary membrane remains visibly unaltered
(Gilkerson et al., 2000). This specific effect on the cristal
membranes can be explained if the cristal membranes are
functionally distinct from the inner boundary membrane
and are dependent on the correct biogenesis of the re-
spiratory chain for their own biogenesis.

Two supernumerary F0-ATPase-associated subunits, g
and Tim11p (also called e), that are not essential for

growth in yeast and are restricted to mitochondria (Walker
et al., 1991; Higuti et al., 1993; Collinson et al., 1994;
Boyle et al., 1999), are involved in the dimerization of the
F1F0-ATPase and cristae biogenesis and morphology
(Paumard et al., 2002). However, although these subunits
are conserved between yeast and mammals there are no
significant homologues in Arabidopsis. In S. cerevisiae,
absence of either subunit, g or Tim11p, results in the
absence of cristae, although the inner boundary membrane
is present (Paumard et al., 2002). A similar aberrant
mitochondrial phenotype has been described in mutants
of a large GTPase called Mgm1p (Wong et al., 2000),
and it was proposed that Mgm1p is involved in inner
membrane remodelling events in yeast (Wong et al.,
2000). Subsequently, Mgm1p was identified independently
by two groups (Herlan et al., 2003; McQuibban et al.,
2003) as a substrate of a yeast rhomboid-type protease
named Rbd1p (rhomboid) or Pcp1p (processing of cyto-
chrome c peroxidase (Esser et al., 2002) and that cleavage
of Rbd1p/Pcp1p regulates inner membrane remodelling
(Herlan et al., 2003; McQuibban et al., 2003). Rbd1p/
Pcp1p contains six transmembrane domains and is embed-
ded in the inner mitochondrial membrane (McQuibban
et al., 2003). Upon import of an Mgm1p precursor, the
N-terminal hydrophobic region becomes tethered in the
inner membrane at the site of the first transmembrane
domain, by what is assumed to be a translocation-arrest
mechanism, leaving the N-terminal mitochondrial targeting
presequence exposed to the matrix (Herlan et al., 2003).
Cleavage by the matrix-processing peptidase generates
what is called the large isoform of Mgm1p (l-Mgm1p)
(Herlan et al., 2003). Next, l-Mgm1p is further trans-
located into the matrix and the second transmembrane
domain becomes inserted into the inner membrane,
whereupon it undergoes further proteolytic cleavage by
Rbd1p/Pcp1p producing a smaller isoform, s-Mgm1p,
which is released into the intermembrane space and
becomes associated with either the outer or inner mito-
chondrial membrane (Herlan et al., 2003). Both isoforms
function in the maintenance of mitochondrial morphology
and respiratory competence, but the mechanism controlling
the ratio of l-Mgm1p to s-Mgm1p is unknown (Herlan
et al., 2003). Recently, Amutha et al. (2004) integrated the
Tim1p, Mgm1p, and Rbd1p/Pcp1p data by demonstrating
that Mgm1p is an upstream regulator of Tim1p subunit
stability, of the assembly of the F1F0-ATPase, and of
cristae biogenesis. Homologues of Mgm1p and Rbd1p/
Pcp1p genes are present in Arabidopsis: Mgm1p=members
of the Arabidopsis dynamin-like gene family (Hong et al.,
2003), the closest being DRP3B, At2g14120; Rbd1p/
Pcp1p=At1g18600. At the time of writing, only DRP3B
has been shown to be required for normal mitochondrial
morphology (Arimura and Tsutsumi, 2002), but no in-
formation is available on the internal morphology of
mitochondria in DRP3B mutants.
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Contact sites

Contact sites were first described by Hackenbrock (1968)
as specific regions where the outer membrane and inner
boundary membrane are closely apposed, with no discern-
ible space between them. It is now known that at least
two types of contact site exist. One is as described by
Hackenbrock, while in the second, the outer and inner
boundary membranes are connected by bridge-like struc-
tures that maintain a constant separation between the mem-
branes (Senda and Yoshinaga-Hirabayashi, 1998; Perkins
et al., 2001). Senda and Yoshinaga-Hirabayashi (1998)
suggested that the bridges might keep the outer and inner
membranes apart thus maintaining the intermembrane
space as a physically distinct compartment. The close
apposition of the outer and inner boundary membranes
as reported by Hackenbrock led him to suggest that these
contact sites could facilitate the passage of solutes and
small molecules between the cytosol and the matrix
(Hackenbrock, 1968). Subsequently, it was demonstrated
that translationally-arrested polysomes were selectively
bound to the outer membrane surface at contact sites
(Kellems et al., 1975) and that precursor proteins, trapped
during translocation, were stuck within both outer and
inner boundary membranes (Schleyer and Neupert, 1985;
Schwaiger et al., 1987). Using chimeras composed of
the N-terminal portion of a mitochondria-targeted precur-
sor protein fused to a cytosolic protein which become
trapped during translocation, Pon and colleagues were able
to show that the partly translocated precursors are enriched
at contact sites and that contact sites contain import activity
(Pon et al., 1989). A similar approach, using arrested
translocation intermediates, enabled the co-isolation of
the translocase of the outer membrane (TOM) and the
preprotein translocase of the inner membrane (TIM23
complex) (Dekker et al., 1997; Schulke et al., 1999).

A component of contact sites in Arabidopsis was
identified recently. The translocase of the inner membrane
17 (AtTIM17-2) was shown to link the inner and outer
membranes by means of its C-terminal region that is also
essential for protein import (Murcha et al., 2005). In-
terestingly, the Arabidopsis protein can complement a yeast
TIM17 mutant, but only when the C-terminal region of 85
amino acids, not present in the yeast protein, is removed
(Murcha et al., 2003). A new component of the S. cerevisiae
TIM23 complex, Tim21, has been identified (Mokranjac
et al., 2005). Tim21 is anchored in the inner boundary
membrane and, via its C-terminal domain, specifically
interacts with the TOM complex, possibly stabilizing
the contact site (Mokranjac et al., 2005). It is possible that
the C-terminal regions of AtTIM17-2 and S. cerevisiae
Tim21 perform a similar role in the respective organisms.
The exact relationship between morphological contact sites
and translocation contact sites is not known, i.e. whether
all contact sites are also import sites or whether there is

a subset of the contact sites, for example, the closely-
apposed type, that function as sites of protein import while
the bridge-type contact sites are structural only.

Compartmentalization within the matrix

The matrix contains the enzymes of the pyruvate de-
hydrogenase complex (PDC), TCA cycle, and glycine
oxidative decarboxylation during photorespiration, and
contains pools of metabolites including NAD, NADH,
ATP, and ADP. However, little is known about how the
different proteins and metabolites are distributed in the
matrix. GFP targeted to the matrix of mitochondria in
various types of animal cell is fully dispersed throughout
the available space and FRAP (fluorescence recovery after
photobleaching) studies have shown diffusion rates of GFP
to be close to that of a protein in a dilute aqueous solution
(Partikian et al., 1998). The fact that the measured diffusion
rate of GFP in the matrix is only 3–4-fold less than in water
led Partikian and colleagues to question the widely-held
view that metabolite channelling, where the product of one
enzyme is transferred, as substrate, directly to the next
enzyme in the pathway, circumventing free aqueous-phase
diffusion, is necessary. Instead, Partikian et al. (1998)
suggested that the arrangement of metabolic pathways into
metabolons, particles containing the enzymes of a part or
the whole of a metabolic pathway (Robinson and Srere,
1985; Velot et al., 1997), enabled the establishment of
an uncrowded, enzyme-free, aqueous space through which
solutes could easily diffuse. PDC is a multienzyme com-
plex considered to be a prototypical metabolon. Analysis of
the distribution of protein fusions between GFP and PDC
subunits in human fibroblasts revealed a discrete, hetero-
geneous distribution of PDC in the matrix (Margineantu
et al., 2002a). Since human fibroblast mitochondria
typically form a reticulum of tubules, the heterogeneous
distribution of GFP fluorescence indicates hotspots of
PDC along the mitochondrial tubules (Margineantu et al.,
2002a). It will be very interesting to discover whether
this heterogeneity is maintained under conditions that cause
a fragmentation of the reticulum, i.e. will there be discrete
mitochondria lacking PDC? Unfortunately, to my knowl-
edge, nothing is known about the inter-mitochondrial
distribution of PDC or the TCA-cycle complexes in the
physically discrete mitochondria of higher plants.

Glycolysis

Recently, the application of proteomics has demonstrated
that seven of the ten glycolytic enzymes are present in
a mitochondrial fraction from Arabidopsis suspension
culture cells, four of the seven (glyceraldehyde-3-P de-
hydrogenase, aldolase, phosphoglycerate mutase, and eno-
lase) were also identified in the intermembrane space/outer
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membrane fraction (Giege et al., 2003). The purified
mitochondrial fraction was capable of metabolizing 13C-
glucose to 13C-labelled TCA cycle intermediates, demon-
strating that the full glycolytic pathway was present and
active, and fusions of enolase or aldolase to yellow
fluorescent protein demonstrated co-localization with Mi-
totracker Red stained mitochondria (Giege et al., 2003).
Giege et al. (2003) concluded that the complete glycolytic
pathway is associated with mitochondria (possibly as
a structurally linked glycolytic metabolon) enabling pyru-
vate to be provided directly to the mitochondrion where it
is a substrate for the matrix-localized PDC. The discover-
ies of a heterogeneous distribution of PDC along human
mitochondrial tubules and the association of glycolysis
with mitochondria in Arabidopsis raises the intriguing
possibility of the two types of compartmentalization exist-
ing in the same organism. The glycolytic pathway, partly
associated with the outer mitochondrial membrane,
would then be adjacent to the matrix-located PDC there-
by enabling the direct channelling of pyruvate from glyco-
lyis to the TCA cycle. It is conceivable that this putative
juxtaposition of glycolysis and PDC would occur at contact
sites (or induce the formation of contact sites) thereby
increasing the efficiency of pyruvate channelling.

Intrinsic control of mitochondrial morphology
and motility

The conformation of the inner membrane, believed to be
continuously variable between the two extremes detailed
above (orthodox and condensed) and dependent on the
energy state of the mitochondrion, has been shown to affect
the external morphology and motility of mitochondria
(Bereiter-Hahn and Voth, 1983). Change in the external
morphology of mitochondria, the bending, branching,
formation, and retraction of localized protrusions (Logan
et al., 2004) that are typical of mitochondria in living cells
have all been ascribed to the rearrangement of cristae
(Bereiter-Hahn and Voth, 1994). However, the extent to
which these shape changes are truly intrinsic, or involve the
activity of molecular motors on the cytoskeleton, is not
known. Bereiter-Hahn and Voth (1983) analysed shape
changes and motility of mitochondria in endothelial cells
from Xenopus laevis tadpole hearts. In the condensed state,
mitochondria are immobile, while in the orthodox state
they are motile (Bereiter-Hahn and Voth, 1983). Inhibition
of electron transport or oxidative phosphorylation causes
a decrease in mitochondrial motility and a concomitant
transition to the condensed conformation (Bereiter-Hahn
and Voth, 1983). Injection of ADP, which induces extreme
condensation, also immobilizes mitochondria. In addition
to their affect on mitochondrial motility, inhibitors of
electron transport induce the formation of large disc-shaped
mitochondria, an identical morphology is seen in tissues

under anoxic conditions (Bereiter-Hahn and Voth, 1983).
Low oxygen pressure, achieved by mounting cells at high
density under a coverslip on a microscope slide, also
induces the formation of disc-like mitochondria in tobacco
suspension cultured cells (Van Gestel and Verbelen, 2002).
Over a time period of 4 h (shorter at higher cell densities)
the normal discrete mitochondria (0.5–5 lm in length) have
fused to form a reticulum composed of linear and ring-
shaped tubular sections interspersed with large plate-like
structures (Van Gestel and Verbelen, 2002). Mitochondria
in Arabidopsis leaf epidermal cells have been observed
undergoing similar morphological transitions during pro-
longed (40 min) incubation of sections of leaf between slide
and coverslip (DC Logan, unpublished observations).
Interestingly, unlike the Xenopus mitochondria, tobacco
suspension cell mitochondria did not change morphology
in response to respiration inhibitors or uncouplers (KCN,
dinitrophenol or carbonyl cyanide m-chlorophenylhydra-
zone) nor did oxidative stress induced by paraquat,
menadion, hydrogen peroxide, or CuSO4 induce changes
in the normal mitochondrial morphology (Van Gestel and
Verbelen, 2002). Van Gestel and Verblen suggest that this
may be due to up-regulation of the alternative respiratory
pathway which has been suggested to mitigate against ROS
damage in plant cells (Van Gestel and Verbelen, 2002).
However, paraquat and hydrogen peroxide do induce
a change in the mitochondrial morphology in Arabidopsis
leaf epidermal cells and mesophyll protoplasts (I Scott,
AK Tobin, DC Logan, unpublished data, see below).

The effect of the metabolic status of the mitochondrion
on mitochondrial morphology and motility has been
suggested to help ensure the mitochondria are located
where they are needed. Association of mitochondria with
energy-requiring structures or organelles has been well
described in a variety of systems (Munn, 1974; Tyler, 1992;
Bereiter-Hahn and Voth, 1994). One classic example is
the formation of the Nebenkern, a collar around the sperm
axoneme formed during spermatogenesis and comprising
two giant mitochondria formed by repeated fusion events
(Hales and Fuller, 1996, 1997). In plant tissues containing
chloroplasts, visualization of mitochondria stained with
DiOC6 or expressing GFP has shown the frequent close
proximity of these two organelles (Stickens and Verbelen,
1996; Logan and Leaver, 2000). It is assumed that this
facilitates exchange of respiratory gases and possibly
metabolites, although direct evidence for this is lacking.
In characean internode cells, it has been suggested that
the spatiotemporal distribution of mitochondria within the
cell promotes their association with chloroplasts (Foissner,
2004). A further example of mitochondrial association
with energy-consuming structures is the association of
mitochondria with the endoplasmic reticulum. One expla-
nation for this association has recently been gaining
acceptance. It has been demonstrated in HeLa cells that
there are micro-domains of the mitochondrial reticulum
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where it is in very close contact (<60 nm) with the ER
(Rizzuto et al., 1998). The functional significance of these
micro-domains has been explained on the basis of Ca2+

dynamics (Rutter and Rizzuto, 2000). For example, local-
ized agonist-induced release of Ca2+ from the ER may
stimulate uptake into the closely associated mitochondria
where the transient increase in Ca2+ may modulate
mitochondrial function.
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