
J Sign Process Syst (2014) 77:61–76
DOI 10.1007/s11265-014-0884-1

Virtualized Execution and Management of Hardware Tasks
on a Hybrid ARM-FPGA Platform

Abhishek Kumar Jain · Khoa Dang Pham · Jin Cui ·
Suhaib A. Fahmy · Douglas L. Maskell

Received: 13 September 2013 / Revised: 19 January 2014 / Accepted: 14 March 2014 / Published online: 31 May 2014
© Springer Science+Business Media New York 2014

Abstract Emerging hybrid reconfigurable platforms tightly
couple capable processors with high performance reconfig-
urable fabrics. This promises to move the focus of recon-
figurable computing systems from static accelerators to a
more software oriented view, where reconfiguration is a key
enabler for exploiting the available resources. This requires
a revised look at how to manage the execution of such
hardware tasks within a processor-based system, and in
doing so, how to virtualize the resources to ensure isola-
tion and predictability. This view is further supported by
trends towards amalgamation of computation in the auto-
motive and avionics domains, where such properties are
essential to overall system reliability. We present the virtu-
alized execution and management of software and hardware
tasks using a microkernel-based hypervisor running on a
commercial hybrid computing platform (the Xilinx Zynq).
The CODEZERO hypervisor has been modified to lever-
age the capabilities of the FPGA fabric, with support for
discrete hardware accelerators, dynamically reconfigurable
regions, and regions of virtual fabric. We characterise the
communication overheads in such a hybrid system to moti-
vate the importance of lean management, before quantifying
the context switch overhead of the hypervisor approach. We
then compare the resulting idle time for a standard Linux

A. K. Jain (�) · K. D. Pham · S. A. Fahmy ·
D. L. Maskell
School of Computer Engineering,
Nanyang Technological University, Singapore, Singapore
e-mail: abhishek013@e.ntu.edu.sg

J. Cui
TUM CREATE Centre for Electromobility, Singapore, Singapore

implementation and the proposed hypervisor method, show-
ing two orders of magnitude improved performance with the
hypervisor.

Keywords Reconfigurable systems · Hypervisor ·
Virtualization · Field programmable gate arrays

1 Introduction

While the performance benefits of reconfigurable comput-
ing over processor based systems have been well estab-
lished [9], such platforms have not seen wide use beyond
specialist application domains such as digital signal pro-
cessing and communications. Poor design productivity has
been a key limiting factor, restricting their effective use to
experts in hardware design [39]. At the same time, their
rapidly increasing logic density and more capable resources
makes them applicable to a wider range of domains. For
reconfigurable architectures to play a full-featured role
alongside general purpose processors, it is essential that
their key advantages be available in an abstracted manner
that enables scaling, and makes them accessible to a wider
audience. Our work explores how virtualization techniques
can be used to help bridge this design gap, by abstracting
the complexity away from the designer, enabling recon-
figurable architectures to be exploited alongside general
purpose processors, within a software-centric runtime
framework. This new design methodology approaches the
fabric from the perspective of software-managed hardware
tasks, enabling more shared use, while ensuring isolation
and predictability.

Virtualization is a widespread technique in conventional
processor based computing systems, particularly in work-
station and server environments. It enables a diversity of

mailto:abhishek013@e.ntu.edu.sg


62 J Sign Process Syst (2014) 77:61–76

service capabilities across different OSs on a unified physi-
cal platform, with abstraction enabling scaling and portabil-
ity. A key example of virtualization in a modern paradigm
is cloud computing, where virtual resources are available
on demand, with runtime mapping to physical systems
abstracted from the user.

Such techniques are also emerging in embedded sys-
tems where low-power multicore processors are becoming
more widespread, such as in smartphones. The technology
is also being explored as a way of consolidating the complex
distributed computing in vehicles onto fewer nodes [6].

So far, virtualization has focused primarily on conven-
tional computing resources. While hardware-assisted virtu-
alization is commonplace [2], virtualization of hardware-
based computing has often focused on a hardware centric
view. The reconfiguration capability of FPGAs means the
logic fabric can be treated as a shared compute resource
(similar to a CPU), allowing multiple hardware-based tasks
to make use of it in a time-multiplexed manner. Hence,
the FPGA should not just be considered a static copro-
cessor, but rather, it should adapt to changing processing
requirements.

Within the reconfigurable computing community, there
have been some efforts to tackle these problems from the
hardware perspective. CoRAM [8], LEAP [3], QUKU [35],
intermediate fabrics [38] and VirtualRC [23] are examples
of approaches to virtualizing memory and logic in recon-
figurable devices. New hybrid architectures, that combine
capable multicore processors with modern FPGA fabrics,
represent an ideal platform for virtualized systems, since it
is expected that the hardware fabrics will be used within a
more software-centric environment, and a tighter coupling
means regular swapping of tasks is feasible due to reduced
response times.

In this paper, we present a virtualized execution platform
that not only abstracts hardware details, such as reconfig-
urable resources (logic, memory and I/O interfaces) and
their placement, but also provides system support for virtu-
alized execution of software and hardware tasks. Our pro-
totype system uses a Xilinx Zynq 7000 hybrid computing
platform and integrates virtualization of the FPGA fabric
into a traditional hypervisor (CODEZERO from B Labs).
The system provides support for hardware and software task
management with the following features:

– A virtualised hybrid architecture based on an inter-
mediate fabric (IF) built on top of the Xilinx Zynq
platform.

– A hypervisor, based on the CODEZERO hypervisor,
which provides secure hardware and software contain-
ers ensuring full hardware isolation between tasks.

– Efficient hardware-software communication mecha-
nisms integrated into the hypervisor API.

– A hypervisor based context switch and scheduling
mechanism for both hardware and software tasks.

We investigate the communication overhead in such a
system to motivate the need for lightweight task manage-
ment. We then characterise the context switching over-
head of the hypervisor, before demonstrating the resulting
advantage over management of hardware tasks within an
operating system like Linux.

The remainder of the paper is organized as follows:
Section 2 examines the current state of the art in virtu-
alization of reconfigurable systems. Section 3 introduces
the hybrid platform, its components and communication
mechanisms between these components. Reconfiguration
management strategies are described in Section 4 by intro-
ducing the intermediate fabric and its internal architecture.
In Section 5, we present and describe the hybrid hypervisor,
scheduling of hardware tasks on the proposed platform, and
the context-switch mechanisms. In Section 6, we present
experimental results and characterise the overheads associ-
ated with virtualized execution. A case study which demon-
strates the basic capabilities of this approach has also been
presented. We conclude in Section 7 and discuss some of
our future work.

2 Related Work

The concept of hardware virtualization has existed since the
early 1990s, when several reconfigurable architectures were
proposed in [11, 40]. These architectures allowed for isola-
tion (often referred to as virtualization) in the execution of
tasks on a reconfigurable fabric. Currently, there is signifi-
cant ongoing research in the area of hardware virtualization.
To facilitate the virtualized execution of SW and HW tasks
on reconfigurable platforms, a number of important research
questions relating to the hardware aspects of virtualization
must be addressed. These include:

– Rapid high-level synthesis and implementation of appli-
cations into hardware

– Rapid partial reconfiguration of the hardware fabric to
support application multiplexing

– Maximising data transfer between memory/processor
and the reconfigurable fabric

– Efficient OS/hypervisor support to provide task isola-
tion, scheduling, replacement strategies, etc.

Initial implementations of dynamic reconfiguration
[11, 40] required the reconfiguration of the complete
hardware fabric. This resulted in significant configuration
overhead, which severely limited their usefulness. Xilinx
introduced the concept of dynamic partial reconfiguration
(DPR) which reduced the configuration time by allowing a



J Sign Process Syst (2014) 77:61–76 63

smaller region of the fabric to be dynamically reconfigured
at runtime. DPR significantly improved reconfiguration per-
formance [18], however the efficiency of the traditional
design approach for DPR is heavily impacted by how a
design is partitioned and floorplanned [42, 44], tasks that
require FPGA expertise. Furthermore, the commonly used
configuration mechanism is highly sub-optimal in terms
of throughput [43]. In a virtualized environment, DPR
would be performed under the control of the hypervisor (or
OS), and would require maximum configuration throughput
using the Internal Configuration Access Port (ICAP).

High-level synthesis [26] has been proposed as a
technique for addressing the limited design productivity
and manpower capabilities associated with hardware design.
However, the long compilation times associated with
synthesis and hardware mapping (including place and route)
have somewhat limited these techniques to static recon-
figurable systems. To address this shortcoming, significant
research effort has been expended in improving the trans-
lation and mapping of applications to hardware. Warp [41]
focused on fast place and route algorithms, and was used
to dynamically transform executing binary kernels into cus-
tomized FPGA circuits, resulting in significant speedup
compared to the same kernels executing on a microproces-
sor. To better support rapid compilation to hardware, coarse
grained architectures [35] and overlay networks [22] have
been proposed. Other work has sought to maximise the use
of FPGAs’ heterogenous resources, such as iDEA, a proce-
sor built on FPGA DSP blocks [7]. More recently, virtual
intermediate fabrics (IFs) [17, 38] have been proposed to
support rapid compilation to physical hardware. Alterna-
tively, the use of hard macros [25] has been proposed.

Another major concern, in both static and dynamic recon-
figurable systems, is data transfer bandwidth. To address
possible bottleneck problems, particularly in providing high
bandwidth transfers between the CPU and the reconfig-
urable fabric, it has been proposed to more tightly integrate
the processor and the reconfigurable fabric. A number of
tightly coupled architectures have resulted [5, 47], includ-
ing vendor specific systems with integrated hard processors.
A data-transport mechanism using a shared and scalable
memory architecture for FPGA based computing devices
was proposed in [8]. It assumes that the FPGA is connected
directly to L2 cache or memory interconnect via memory
interfaces at the boundaries of the reconfigurable fabric.

Hypervisor or OS support is crucial to supporting
hardware virtualization. A number of researchers have
focused on providing OS support for reconfigurable hard-
ware so as to provide a simple programming model to the
user and effective run-time scheduling of hardware and soft-
ware tasks [4, 32, 37, 45]. A technique to virtualize recon-
figurable co-processors in high performance reconfigurable
computing systems was presented in [14]. ReconOS [28] is

based on an existing embedded OS (eCos) and provides an
execution environment by extending a multi-threaded pro-
gramming model from software to reconfigurable hardware.
Several Linux extensions have also been proposed to sup-
port reconfigurable hardware [24, 36]. RAMPSoCVM [13]
provides runtime support and hardware virtualization for an
SoC through APIs added to Embedded Linux to provide a
standard message passing interface.

To enable virtualized execution of tasks, a hybrid proces-
sor consisting of an embedded CPU and a coarse grained
reconfigurable array with support for hardware virtual-
ization, called Zippy [31] was proposed. TARTAN [29]
also uses a rapidly reconfigurable, coarse-grained archi-
tecture which allows virtualization based on three aspects:
runtime placement, prefetching and location resolution
methods for inter-block communication. The SCORE
programming model [12] was proposed to solve prob-
lems such as software survival, scalability and virtualized
execution using fine-grained processing elements. How-
ever, SCORE faced major practical challenges due to long
reconfiguration and compilation times. Various preemption
schemes for reconfigurable devices were compared in [19],
while mechanisms for context-saving and restoring were
discussed in [21] and [33].

While there has been a significant amount of work in pro-
viding OS support for hardware virtualization, this approach
is less likely to be appropriate for future high performance
embedded systems. For example, a modern vehicle requires
a significant amount of computation, ranging from safety
critical systems, through non-critical control in the passen-
ger compartment, to entertainment applications. The current
trend is towards amalgamation of computing resources to
reduce cost pressures [34]. While it is unlikely that indi-
vidual safety critical systems, such as ABS braking, would
be integrated into a single powerful multicore processor,
future safety critical systems with hard real-time deadlines,
such as drive-by-wire or autonomous driving systems, are
possible candidates for amalgamation, possibly also with
hardware acceleration. This combination of hard real-time,
soft real-time and non real-time applications all competing
for compute capacity on a hybrid multicore/reconfigurable
platform cannot be supported by a conventional OS. In this
situation, the microkernel based hypervisor is likely to be
a much better candidate for embedded hardware virtualiza-
tion because of the small size of the trust computing base,
its software reliability, data security, flexibility, fault isola-
tion and real-time capabilities [15, 16]. The importance of
a microkernel is that it provides a minimal set of primi-
tives to implement an OS. For example, the L4 microkernel
[27] provides three key primitives to implement policies:
address space, threads and inter process communication.
Some examples of an L4 microkernel include Pike-OS [20],
OKL4 [15] and CODEZERO [1].



64 J Sign Process Syst (2014) 77:61–76

Existing microkernel based hypervisors mostly only
focus on virtualization of conventional computing systems
and do not consider reconfigurable hardware. An example
of para-virtualization of an FPGA based accelerator as a
shared resource on an x86 platform (pvFPGA) was pre-
sented in [46]. Here the Xen Hypervisor was used to share
the FPGA as a static accelerator among multiple virtual
machines.

In our work we use a microkernel based hypervisor on
a hybrid platform and modify it to use the FPGA fabric
as a dynamically reconfigurable shared resource for task
execution. To the best of our knowledge this is the first
microkernel based hypervisor which considers the FPGA as
a shared and dynamically reconfigurable resource for task
execution. The initial version of our hypervisor based imple-
mentation for HW and SW task management on a hybrid
platform was presented in [30]. This paper extends this work
by providing the following additional material:

– A more detailed description of the platform and its
components is presented

– An overview of run time reconfiguration management
using an intermediate fabric (IF), including the internal
architecture of the IF components

– A case-study to analyze HW-SW communication
overheads

– A comparison of the context switch overheads of Linux
and the proposed hypervisor based system when run-
ning hardware tasks.

3 The Hybrid Platform (Hardware)

Both major FPGA vendors have recently introduced
hybrid platforms consisting of high performance processors
coupled with programmable logic, aimed at system-on-chip
applications. These architectures partition the hardware into
a processor system (PS), containing one or more proces-
sors along with peripherals, bus and memory interfaces, and
other infrastructure, and the programmable logic (PL) where
custom hardware can be implemented. The two parts are
coupled together with high throughput interconnect to max-
imise bandwidth (Fig. 1). In this paper, we focus on the
Xilinx Zynq-7000.

3.1 The Zynq-7000 Processing System (PS)

The Zynq-7000 contains a dual-core ARM Cortex A9
processor equipped with a double-precision floating point
unit, commonly used peripherals, a dedicated hard DMA
controller (PS-DMA), L1 and L2 cache, on chip memory
and external memory interfaces. It also contains several
AXI based interfaces to the programmable logic (PL). Each

Figure 1 Block diagram of the hybrid platform.

interface consists of multiple AXI channels, enabling high
throughput data transfer between the PS and the PL, thereby
eliminating common performance bottlenecks for control,
data, I/O, and memory. The AXI interfaces to the fabric
include:

– AXI ACP – One 64-bit AXI accelerator coherency
port (ACP) slave interface for coherent access to CPU
memory

– AXI HP – four 64-bit/32-bit configurable, buffered
AXI high performance (HP) slave interfaces with direct
access to DDR and on chip memory

– AXI GP – two 32-bit master and two 32-bit AXI
general purpose (GP) slave interfaces

3.2 Programmable Logic (PL)

The Zynq-7000 PL is a Xilinx 7-series FPGA fabric
comprising configurable logic blocks (CLB), Block RAM
(BRAM), and high speed programmable DSP blocks. To
make efficient use of the PL, we consider three possible
uses, which may co-exist in various combinations. These
are:

– Static regions: these consist of a fixed segment of the
PL, defined at system configuration time, which contain
pre-defined, frequently used accelerators, soft DMA
controllers for data movement and state machines to
control logic configuration.

– Dynamic partially reconfigurable (DPR) regions:
used to implement less frequently used accelerators
in a time multiplexed manner. Different accelerators
can share DPR regions based on the availability of
the region. However, this has a significant reconfig-
uration time overhead, as new bitstreams must be
loaded. Reconfiguration time depends on the data size
and speed of reconfiguration. While DPR allows for



J Sign Process Syst (2014) 77:61–76 65

the use of highly customised IP cores with maximum
performance, if accelerators are regularly swapped into
and out of the DPR region, reconfiguration time can
adversely affect overall system performance.

We plan to use a DPR based reconfiguration
scheme to reconfigure more highly optimized, but less
frequently used, accelerators. The Zynq platform allows
for two different reconfiguration ports, PCAP and
ICAP. PCAP generally provides a sufficient, but not
optimally fast solution. When reconfiguration speed is
important we would use an ICAP solution, such as the
high speed ICAP controller developed in [43].

– Intermediate Fabric (IF) regions: are built of an
interconnected network of coarse-grained processing
elements overlaid on top of the original FPGA fabric.
The possible configuration space and reconfiguration
data size is much smaller than for DPR because of the
coarser granularity of the IF. An IF provides a leaner
mechanism for hardware task management at runtime
as there is no need to prepare distinct bitstreams in
advance using vendor-specific compilation (synthesis,
map, place and route) tools. Instead, the behaviour
of the IF can be modified using software controlled
configurations. However, mapping circuits to IFs is
less efficient than using DPR or static implementations
as the IF imposes a significant area and performance
overhead.

3.3 Platform Communication Mechanisms

Instead of developing application-specific logic infrastruc-
ture to manage transportation of data to and from the PL, a
memory abstraction can be used similar to the one described
in [8]. This abstraction acts as a bridge between the PL and
external memory interfaces. Dual-port BRAMs are mapped
within the AXI memory mapped address domain, with
one port connected to the AXI interface and the other to
the PL. Using this abstraction allows the PS to commu-
nicate with BRAMs similar to the way it communicates
with main memory. As mentioned earlier, the Zynq plat-
form contains a number of high speed AXI interfaces which
provide high bandwidth communication between the PL
and main memory. To provide communication customisa-
tion and flexibility we allow three different communication
mechanisms:

– Non-DMA: The CPU controls the flow of data between
the main memory and the PL on a sample by sample
basis via an AXI GP port. The maximum bandwidth for
non-DMA communications, using a single 32-bit AXI
GP port, is approximately 25 MB/s.

– PS hard DMA: The PS DMA controller takes small
chunks of data from the main memory and sends

them to the PL via an AXI GP master port. This
dedicated hard DMA controller is able to perform mem-
ory to memory burst transactions and doesn’t require
any FPGA resources. As the GP master port width is 4
bytes and the maximum burst length is 16, a single burst
it can transfer a maximum of 64 bytes. The CPU is able
to perform other tasks during these transactions and can
be interrupted by the DMA controller at the end of data
transfer. Xilinx provides bare metal SW drivers for PS
DMA.

– Soft DMA: Soft DMA uses an FPGA soft IP core
to control the data movement between the memory
and PL. Data is transferred between the main memory
and PL via an AXI HP or AXI ACP port. Two varia-
tions are possible: memory mapped to memory mapped
(MM-MM DMA) transactions and memory mapped to
streaming (MM-S DMA) transactions. For soft DMA
transfers the CPU is free during the transactions and
can be interrupted by the DMA controller IP core at
the end of data transfer. We have used the AXI Central
DMA Controller IP core from Xilinx as a soft DMA for
MM-MM transactions between DDR and Dual port
BRAMs. The maximum burst length is 256, which
means that with a burst size of 4 bytes (to match our
BRAM data width) we can transfer 1K bytes in a single
burst. Xilinx also provides bare metal SW drivers to use
with their IP core. We present experimental Results in
Section 6.1 to show the effect of the SW driver on the
communication overhead.

4 Reconfiguration Management

Dynamic partial reconfiguration (DPR) has been proposed
as a powerful technique to share and reuse limited recon-
figurable resources. However, poor hardware and soft-
ware support for DPR and large configuration file sizes
make it difficult and inefficient. As discussed earlier, we
support two mechanisms for runtime reconfiguration: DPR
regions and IF regions. DPR based reconfiguration requires
management and control associated with the loading of con-
figuration bitstreams, while IF based reconfiguration simply
requires the setting of configuration registers. Hence, IF
based reconfiguration can be very fast, since the amount of
configuration data is relatively short, although the IF logic
abstraction does result in a performance overhead.

4.1 IF Overview

The IF overcomes the need for a full cycle through the
vendor implementation tools, instead presenting a much
simpler problem of programming an interconnected array
of processing elements. Moreover, it is possible to map a



66 J Sign Process Syst (2014) 77:61–76

large application to multiple successive uses of the same IF
(context frames), hence enabling applications with a larger
resource requirement than that available on the device.

The IF architecture described in this paper is aimed at
streaming signal processing circuits and consists of a data
plane and a control plane as shown in Fig. 2. The data
plane (shown in Fig. 3) contains programmable process-
ing elements (PEs) and programmable interconnections,
whose behaviour is defined by the contents of the config-
uration registers referred to as context frame registers. The
control plane controls the movement of data between the
data plane and the Block RAMs, and provides a streaming
interface between them. The control plane consists of the
context frame registers and a context sequencer (finite state
machine) which is responsible for loading the context frame
registers from the context frame buffer (CFB). The context
frame buffer (CFB) can hold multiple sets of context frame
registers for multi-context execution.

4.2 Internal Architecture of the Data Plane

The data plane used in this paper consists of programmable
PEs distributed across the fabric in a grid. DSP Blocks or
CLBs can be used to implement these PEs depending on
the required granularity. A PE is connected to all of its 8
immediate neighbours using programmable crossbar (CB)
switches. We use a multiplexer based implementation for
the CB, which can provide the data-flow direction among
PEs and a cross connection between inputs and outputs.
The operation of the PEs and CBs is set by PE and CB
configuration registers, respectively.

Figure 4 shows the internal architecture of the DSP block
based PE, which consists of a DSP block and a routing
wrapper. The DSP block can be dynamically configured
using the information contained in the PE configuration reg-
ister. In our current implementation, we have used a fixed

Figure 2 Block diagram of the intermediate fabric.

Figure 3 Block diagram of the data plane connected with abstracted
memories.

latency of 2 cycles for the DSP block. One of the key
benefits of using DSP blocks in modern Xilinx devices is
their dynamic programmability and wide range of possi-
ble configurations that can be set at runtime using control
inputs. We have previously demonstrated their use as the
base for a fully functional processor [7].

We currently perform manual mapping of HW tasks to
the IF, as we are still developing an automated tool chain tar-
geting our IF. However, a fully automated system could be
implemented relatively easily by using an existing reconfig-
urable array with support for hardware virtualization, such
as the one described in [31], which already has a toolset
available for mapping HW tasks.

Figure 5 shows the configuration format of the PE
and CB configuration registers. Each PE configuration
requires three 32-bit registers, while each CB configura-
tion requires two 32-bit registers. pe config contains the
alumode, inmode and opmode settings needed to configure

Figure 4 Internal architecture of processing element.



J Sign Process Syst (2014) 77:61–76 67

Figure 5 Configuration format of the intermediate fabric.

the DSP block function. sel, dsel, psel and bsel drive the
select inputs of muxes A, D, P and B, respectively. Mux A
determines the direction of the input data, while muxes D,
P and B select between this input data or immediate data.
Immediate data can be loaded before the start of computa-
tion using the contents of the pe config d and pe config pb
configuration registers. The CB routing information is con-
tained in cb config ws and cb config en configuration reg-
isters. The w, s, e and n fields contain the data connection
for the west, south, east and north ports, respectively. As an
example, a simple 32-bit IF containing 12 PEs and 13 CBs
requires a 248 byte context frame and can be configured in
62 cycles. A 4KB Block RAM implementation of the CFB
can hold 16 separate sets of context frame registers.

4.3 Internal Architecture of the Control Plane

The control plane used in this paper consists of a state
machine based context sequencer and a context frame
in the form of configuration registers. As mentioned in
Section 4.1, a context sequencer (CS) is needed to load
context frame registers into the configurable regions and to
control and monitor the execution, including context switch-
ing and data-flow. We provide a memory mapped register
interface (implemented in the PL fabric and accessible to
the PS via the AXI bus) for this purpose. The control reg-
ister is used by the PS to instruct the CS to start a HW
task by checking the start bit of the control register. It con-
tains the information about latency, number of samples to
be processed and index of the input and output BRAMs for
a particular task. The control register also sets the number
of contexts and the context frame base address for a HW
task. The status register is used to indicate the HW task sta-
tus, such as the completion of a context or of the whole HW
task.

In the IDLE state, the CS waits for the control regis-
ter’s start bit to be asserted before moving to the CON-
TEXT START state. In this state, it generates an interrupt
interrupt start context, and then activates a context counter
before moving to the CONFIGURE state. In this state, the

CS loads the corresponding context frame from the CFB
to the control plane of the IF to configure the context’s
behaviour. Once finished, the CS moves to the EXECUTE
state and starts execution of the context. In this state the CS
behaves like a dataflow controller, controlling the input and
output data flow. Once execution finishes, the CS moves
to the CONTEXT FINISH stage and generates an inter-
rupt finish context interrupt. The CS then moves to the
RESET state which releases the hardware fabric and sets
the status register completion bit for the context. When the
value of the context counter is less than the desired num-
ber of contexts, the CS starts the next context and repeats.
When the desired number of contexts is equal to the con-
text counter value, the whole HW task finishes and the CS
moves to the DONE state. This behaviour is shown in Fig. 6.

5 The Hybrid Platform (Software)

While the integration of powerful multi-core processors
with FPGA fabric (such as the Xilinx Zynq) has opened up
many opportunities, designer productivity is likely to remain
an issue into the near future. As mentioned in the Section 2,
a number of researchers have developed techniques to pro-
vide OS support for FPGA based hybrid systems. However,
as future high performance embedded systems are likely
to include combinations of hard real-time, soft real-time
and non real-time applications, all competing for compute
capacity on a hybrid platform, a conventional OS may not
provide the best solution. In this situation, an embedded
hypervisor may be a better choice.

Figure 6 State-machine based Context Sequencer.



68 J Sign Process Syst (2014) 77:61–76

There are several existing embedded hypervisors or
virtual machine managers in the market, some of which are
certified for hard real-time systems. However, these hyper-
visors only support the PS and do not support the PL in a
hybrid platform. Thus, PL virtualization and its integration
into a hypervisor is important for virtualized execution of
applications on hybrid computing platforms.

To address this problem, we have developed a general
framework for a microkernel based hypervisor to virtual-
ize the Xilinx Zynq hybrid computing platform so as to
provide an abstraction layer to the user. The CODEZERO
hypervisor [1] is modified to virtualize both hardware and
software components of this platform enabling the use of
the PS for software tasks and the PL for hardware tasks in
a relatively easy and efficient way. The basic functionali-
ties that the hypervisor is expected to perform on a hybrid
platform are:

– Abstraction of resources and reconfiguration of the PL
– Communication and synchronization between PS and

PL
– Scheduling of overlapping resources within and across

tasks
– Protection of individual PS and PL tasks

In this framework, we are able to execute a number of
operating systems (including uCOS-II, Linux and Android)
as well as bare metal/real-time software, each in their
own isolated container. By modifying the hypervisor API,
support for hardware tasks can also be added, either as
dedicated real-time bare metal hardware tasks, real-time
HW/SW bare metal applications or HW/SW applications
running under OS control. The hypervisor is able to dynam-
ically modify the behaviour of the PL and carry out hard-
ware and software task management, task-scheduling and
context-switching, thus allowing time multiplexed execu-
tion of software and hardware tasks concurrently.

5.1 Porting CODEZERO to the Xilinx Zynq-7000

In this section, we describe the necessary modifications
to the CODEZERO hypervisor [1], firstly for it to exe-
cute on the dual-core ARM Cortex-A9 processor of the
Zynq-7000 hybrid platform, and secondly, to provide hyper-
visor support for HW task execution and scheduling, by
adding additional mechanisms and APIs for PL virtualiza-
tion. Currently, CODEZERO only runs on a limited number
of ARM-based processors, and so we ported it to the Xilinx
Zynq-7000 hybrid computing platform. The main changes
included:

– Rewriting the drivers (e.g., PCAP, timer, interrupt con-
troller, UART, etc.) for the Zynq-7000 specific ARM
Cortex-A9 implementation

– Enabling MMU, Secondry CPU wake-up and PL initial-
ization (e.g., FPGA clock frequency, I/O pin mapping,
FPGA interrupt initialization, etc.)

– HW task management and scheduling

The UART, timer and interrupt controller are all essential
for CODEZERO’s operation, but are not specifically related
to the requirements needed to support hardware virtualiza-
tion. The UART is used for console display and debug, the
timer is used by the CODEZERO scheduler and the generic
interrupt controller (GIC) is for hardware management. The
required changes to these routines were relatively trivial.
For example, the interrupt controller only required a change
in the base address, while the UART required a change in
the base address as well as modifications to the initializ-
ing procedure due to changes in the register organization
on the Zynq platform. The timer is essential for the correct
operation of the CODEZERO scheduler.

Routines were also developed to enable the MMU and
to wake the up secondary CPU in such a way that the
application first initializes the secondary core’s peripherals
and then enables the interrupt sources. Initialization of the
clock source and the clock frequency for the programmable
logic is specific to the Zynq platform, and is not relevant for
ARM only platforms.

5.2 HW Task Management and Scheduling

Hardware task management and scheduling is necessary
to support hardware virtualization. In this section, we
introduce two scheduling mechanisms to enable HW task
scheduling under hypervisor control: non-preemptive hard-
ware context switching and preemptive hardware context
switching.

5.2.1 Non-Preemptive Hardware Context Switching

HW task scheduling only occurs when a HW context com-
pletes. At the start of a context (when interrupt start context
is triggered), we use the hypervisor mutex mechanism
(l4 mutex control) to lock an IF or DPR region in the PL
so that other contexts cannot use the same region. This
denotes the reconfigurable region as a critical resource in the
interval of one context and can be only accessed in a mutu-
ally exclusive way. At the completion of a context (when
interrupt finish context is triggered), the reconfigurable
region lock can be released via l4 mutex control. After that,
a possible context switch (l4 context switch) among the
HW tasks can happen. The advantage of non-preemptive
hardware context switching is that context saving or restor-
ing is not necessary, as task scheduling occurs after a context
finishes. Thus minimal modifications are required in the
hypervisor to add support for HW task scheduling as the



J Sign Process Syst (2014) 77:61–76 69

Table 1 Hypervisor APIs to support hardware task scheduling.

APIs Functions

interrupt start context Triggered when every

context starts. In the

handler, it locks IF

or DPR.

interrupt finish context Triggered when every

context finished. in the

interrupt handler, it should

unlock IF

poll Context status Poll the completion (task

poll Task status done) bit of a context

(HW task) in the status

register. Also unlocks

IF/DPR after a context

finishes.

existing hypervisor scheduling policy and kernel scheme are
satisfactory. The interrupt handlers and API modifications
added to CODEZERO to support this scheduling scheme are
shown in Table 1.

5.2.2 Pre-Emptive Hardware Context Switching

CODEZERO can be extended to support pre-emptive hard-
ware context-switching. In this scenario, it must be possible
to save a context frame and restore it. Context-saving refers
to a read-back mechanism to record the current context
counter (context id), the status, the DMA controller sta-
tus and the internal state (e.g., the bitstream for DPR) into
the thread/task control block (TCB), similar to saving the
CPU register set in a context switch. The TCB is a stan-
dard data structure used by an OS or microkernel-based
hypervisor. In CODEZERO this is called the user thread
control block (UTCB). A context frame restore occurs when
a HW task is swapped out, and an existing task resumes its
operation. This approach would provide a faster response,
compared to non-preemptive context switching, but the
overhead (associated with saving and restoring the hardware
state) is considerably higher. This requires modification of
the UTCB data structure and the hypervisor’s context switch
(l4 context switch) mechanism, as well as requiring a num-
ber of additional APIs. The implementation of preemptive
context switching is currently work in progress.

6 Experiments

In this section, we present details of the overheads associ-
ated with using a fully functioning virtualized hybrid system

with a simple IF operating under CODEZERO hypervisor
control. The IF consists of 12 DSP block based PEs, 13 CBs
and 8 abstracted BRAMs. We present three separate exam-
ples using relatively small signal processing examples to
demonstrate the overheads associated with our hypervisor
based hybrid system. The first examines the communication
overheads between IF and memory. The second exam-
ines the lock and context switch overheads associated with
running a HW task under hypervisor control. The third
experiment compares the hypervisor overhead to that of a
more conventional implementation using an OS modified to
support hardware tasks.

6.1 Communication Overheads

To examine the communication overheads, we use three
simple 4, 8 and 12 tap FIR filter implementations which
we have mapped to the IF. These small examples were cho-
sen as they better demonstrate the overheads of the hybrid
system, without task execution time dominating. It is possi-
ble to expand these tasks to more practical, larger ones with
minimal effort. The operating frequency of the PS and the
IF is 667 MHz and 100 MHz, respectively.

The PS initially loads the configuration data into the
context frame buffer (CFB), sends the input data from
main memory to the abstracted BRAMs and triggers
the start of execution via the control register. Once the
Context sequencer (described in Section 4) detects that the
start bit in the control register has gone high, it configures
the IF and starts streaming the data from the BRAM to the
IF. The IF processes the data, sends the results to the des-
tination BRAM and sets the done bit in the status register.
These individual components are shown in Fig. 7, where the
control register and status register access times are assumed
to be negligible compared to the other components and are
thus ignored. The task completion time Ttask is essentially
the sum of all the individual components shown in Fig. 7.

To further reduce the communication overhead, we over-
lap the loading of data to the BRAMs with the reading of the
result data from the BRAMs using the multi-channel data
transfer capability of hard-DMA. Thus the task completion
time Ttask can be reduced to:

Ttask = Tconfig−load + Tdata−load + Tconfig + Tcompute (1)

Non-DMA, hard-DMA and soft-DMA have all been used
for data transfer as discussed in Section 3. In all cases, the

Figure 7 HW Task profile showing components effecting system
performance.



70 J Sign Process Syst (2014) 77:61–76

Table 2 Ttask in µs for Non-DMA based, Hard DMA, Soft DMA based and ARM only implementation of FIR filters.

Number of 4-tap 8-tap 12-tap
Samples

ARM Non Hard Soft ARM Non Hard Soft ARM Non Hard Soft

DMA DMA DMA DMA DMA DMA DMA DMA DMA

64 19.62 17.05 24.4 26.42 36.73 20.10 27.56 29.58 55.38 23.87 30.72 32.74

128 38.98 29.53 28.55 29.81 73.01 32.26 31.71 32.97 109.92 36.23 34.87 36.13

256 77.41 54.50 37.58 36.45 145.67 56.57 40.74 39.61 219.32 61.18 43.9 42.77

512 153.32 101.85 55.56 46.48 292.83 105.19 58.72 49.64 438.27 108.69 61.88 52.8

1024 307.56 198.57 89.33 65.05 587.27 199.89 92.49 68.21 872.10 205.40 95.65 71.37

operating frequency of the data communication channel is
100 MHz. The data width of the channel is set to 4 bytes to
match the data width of our dual port BRAMs. The commu-
nications overheads (Ttask) for non-DMA based, hard-DMA
based, soft-DMA based and the ARM processor only imple-
mentation for the three filters are shown in Table 2. The
times are all in µs.

The non-DMA, hard-DMA and soft-DMA results from
Table 2 are split into three parts, as Tconfig−load, Tdata−load

and Tconfig + Tcompute, to show the contribution of the
individual components, as shown in Figs. 8, 9 and 10.

It is clear from Fig. 8 that for this simple application,
the compute time represents only 5 % of the total time. The
time required for data transfer from main-memory to the
abstracted BRAM (Tdata−load) is the main limiter of perfor-
mance. The performance of the hard-DMA and soft-DMA
based implementations are almost the same (approximately
3-4× reduction in data communication overhead compared
to the non-DMA case, as shown in Figs. 9 and 10). This
is because of the overheads associated with the interrupt

Figure 8 Individual component time for Non DMA based implemen-
tation.

based bare metal IP core SW drivers provided by Xilinx
for the small data transfers used in the experiments. Reduce
the entire IF can be reconfigured in 62 cycles, as discussed
in Section 4, which for an IF frequency of 100MHz cor-
responds to a reconfiguration time of 620 ns. This time
is lower for the smaller filters as we are able to partially
reconfigure the IF for the smaller FIR filters. The config-
uration data and the configuration time for the FIR filter
applications are shown in Table 3.

It should be noted that the time to load the con-
figuration from main-memory to the CFB (Tconfig−load)
does not change between non-DMA and DMA imple-
mentations. This is because we do not use DMA trans-
fer to load the configuration, as the DMA overhead for
the small amount of configuration data would make this
inefficient. Although, DMA based configuration transfers
may be advantageous if the IF size is increased signifi-
cantly. The configuration overhead could be further reduced
by implementing a configuration caching mechanism in
CFB.

Figure 9 Individual component time for Hard-DMA based
implementation.



J Sign Process Syst (2014) 77:61–76 71

Figure 10 Individual component time for Soft-DMA based
implementation.

6.2 Context Switch Overhead

The second experiment measures the overhead associated
with CODEZERO’s lock and context switch mechanisms
when using the IF to run hardware tasks. We run two inde-
pendent hardware tasks in two CODEZERO containers. The
first container (cont0) is a bare metal application (an appli-
cation which directly accesses the hypervisor APIs and does
not use a host OS) which runs a 4-tap FIR filter as a hard-
ware task on the IF. This filter is used to process 32 samples
which takes 11.2µ s for task completion and 3.2µ s for load-
ing the configuration. The second container (cont1) is also a
bare metal application which runs a simple hardware matrix
multiplication (MM) task on the same IF. We use a non-
DMA transfer via the AXI GP port. As the two hardware
tasks are executed on the same IF, scheduled and isolated
by the hypervisor, a context of a hardware task will first
lock the IF, configure the fabric behaviour, execute to com-
pletion and then unlock the fabric (that is it implements
non-preemptive context switching). Algorithm 1 shows the
steps involved in non-preemptive context switching.

To measure the hardware task activity we use a 64-bit
global timer running at 333 MHz. We then measure every
lock, unlock, IF configuration, IF execution and context

Table 3 Reconfiguration time and configuration data size for FIR
filters.

Reconfiguration time Configuration Data Size

4-tap FIR 220 ns 88 Bytes

8-tap FIR 420 ns 168 Bytes

12-tap FIR 620 ns 248 Bytes

Algorithm 1 Pseudocode for non-interrupt implementation
for non-preemptive HW context switching.

switch activity which occurs when the two hardware tasks
are running. The two containers are then mapped to the
hybrid platform using two different scenarios: In the first,
the two containers run on the same physical CPU core,
while in the second, the two containers run on separate
CPU cores. These two mapping scenarios are illustrated in
Fig. 11.

In the first scenario, cont0 and cont1 are mapped to
the same core, Core0, and the l4 context switch is used to
switch between cont0 and cont1 (the hardware contexts run
one after the other without lock contention). When a con-
text of FIR is finished, CODEZERO switches to MM, and
vice versa. With this scenario, the lock overhead does not
contain any of the working time of the other hardware task,
as they occur sequentially.

In the second scenario, cont0 is mapped on Core0 while
cont1 is mapped to Core1. As the two containers run on
individual cores simultaneously both containers try to
access the IF. In this case, as we operate in non-preemptive
mode, the lock overhead associated with a hardware task
contains some of the working time of the other hardware
task as it must wait until the resource is free before it can
obtain it, as illustrated in Fig. 12

Figure 11 HW tasks on one core (Scenario 1) and on separated cores
(Scenario 2).



72 J Sign Process Syst (2014) 77:61–76

. Task 2 starts running

.

.

Task 2 running

Task 1 starts the timer

Task 1 tries to get the hardware

Hardware occupied by task 2 .

.
Hardware released

Task 1 running

Task 1 stops timer

Figure 12 Lock with contention.

The hardware response time using a non-preemptive
context switch is calculated as:

Thw resp = Tlock + TC0 switch + Tconfig−load (2)

the corresponding hardware response time using a preemp-
tive context switch can be calculated as:

Thw resp = TC0 switch + Tread−state + Tconfig−load (3)

where Tconfig−load is the time taken to load a new applica-
tion configuration (HW task) into the IF and depends on
the IF size and the data transfer rate, while Tread−state is the
time taken to read back the complete internal state (but not
the configuration) of the IF. Tread−state depends on the IF
architecture, the IF size and the data transfer rate. For the
IF with a PE internal architecture shown in Fig. 4, we need
to save the internal state of the 7 registers to the right of the
three muxes labelled B, D and P. This represents 28 bytes,
compared to the 20 bytes of configuration data, as shown in
Fig. 5. Thus, we can expect that Tread−state is approximately
140 % of Tconfig−load.

The CODEZERO average lock and context switch over-
head are shown in Table 4, while the configuration and
response times are given in Table 5. For a single con-
text switch on Linux, an overhead of 48µs was measured
in [10] which is significantly less than the overhead for
CODEZERO.

Table 4 Non-preemptive Lock and Context Switch Overhead.

Clock cycles (time)

Tlock (no contention) 214 (0.32µ s)

Tlock (with contention) 7738 (11.6µ s)

TC0 switch 3264 (4.9µ s)

Table 5 Configuration, Execution and Response Time

Clock cycles (time)

FIR MM

Tconfig−load 2150 (3.2µs) 3144 (4.7µ s)

Thw resp (8.5µs-19.7µs) (9.9µs-20.3µ s)

The lock time with no contention, which occurs when
a task directly obtains a lock without needing to wait for
the completion of another task, and the context switch time
represent the true overhead. The other three times (lock
with contention, configuration and HW response) vary as
both the configuration overhead and the application execu-
tion time are affected by the data throughput, application
complexity, and IF size.

To demonstrate that the processor is able to be usefully
occupied while the HW tasks are executing, we execute two
HW tasks in separate hypervisor containers, along with a
simple software RTOS (µC/OS-II) running 14 independent
tasks in a third container. All of the SW and HW tasks
are scheduled and isolated by the hypervisor (as shown in
Fig. 13) without affecting the HW response time (despite the
extra container executing independent SW tasks, running
under control of µC/OS-II).

This is because the HW response time depends on the
context switch overhead, the lock overhead and the con-
figuration load overhead, as shown in Eq. 2. The first
two overheads are independent of the number of tasks
being executed, while the last depends on the transfer
speed to the IF. Additionally, the hypervisor schedules
CPU resource based on containers, not tasks, and all will
have an equal chance of being scheduled to run (assum-
ing that they all have same priority). Thus, while individual
tasks running under RTOS control will need to compete
for CPU resource, the two hardware tasks will be largely
unaffected.

6.3 Idle Time Comparison of CODEZERO and Linux

We have earlier made the assertion that a modified embed-
ded hypervisor may be better than a modified OS for

Figure 13 Multiple SW and HW task scheduling.



J Sign Process Syst (2014) 77:61–76 73

Figure 14 Idle time of IF
between two consecutive tasks.

controlling hardware tasks running on the PL. Here, we
perform a simple experiment to compare the overheads of
CODEZERO and our modified version of Embedded Linux
(kernel version 3.6) when running hardware tasks. To deter-
mine the overhead, we measured the idle time of the IF
between two consecutive hardware contexts using a hard-
ware counter instantiated in the FPGA fabric. A shorter idle
time means a shorter (and thus better) context switch over-
head in kernel space. Two hardware tasks are run repeatedly
without any interrupt or preemption. In the Linux scenario,
other system processes are running and compete for CPU
time while the HW tasks are running.

A hardware context has the following steps (as described
in Algorithm 1) to complete its execution: firstly the IF
is locked, the configuration and input data are transferred,
the execution cycle is entered and the results are gener-
ated, The results are read from the IF, lastly, the IF is
unlocked making it available the next hardware context.
The idle time between any of two consecutive hardware
contexts can be defined and illustrated as in Fig. 14. The
hardware counter will start counting after the results are
read at the end of task execution and then stops counting
when the first configuration data for the next hardware task
arrives.

The same two hardware tasks (the FIR and MM imple-
mentations described in Section 6.2) are implemented in
separate containers on CODEZERO, mapped to the CPU
cores using the same scenarios as in Fig. 11. Therefore, in
the first scenario, the idle time is caused by the lock over-
head and the CODEZERO context switch overhead, while
the idle time of the IF in the second scenario consists of the
pure lock overhead, exclusive of any context switch over-
head. The same 2 tasks are implemented in Linux with the
pthreads library and mutex lock. Here, task switching and
core allocation is controlled by the Linux kernel scheduler,
and thus either task can run on either core dynamically and
transparently.

The hardware idle time results for CODEZERO and
Embedded Linux are shown in Table 6, and show that the

Table 6 IDLE time on CODEZERO and embedded Linux.

CODEZERO Embedded Linux

0.32µs-5.4µs 43.17µs-149.46µs

hardware task overheads for CODEZERO are two orders
of magnitude better than that of Embedded Linux. In
CODEZERO, the idle time varies from 0.32µs to 5.4µs.
The best case (0.32µs) occurs when the two containers
run on separate cores, competing to obtain the IF lock.
Thus, only the lock overhead, without any context switch
overhead, is measured. The worst case (5.4µs) occurs
when the two containers run on the same core, and thus
the idle time includes both the lock and context switch
overheads.

In Linux, the idle time varies from 43.17µs to 149.46µs.
This wide variation occurs because Linux is not as
lightweight as CODEZERO and has additional background
tasks and unknown system calls running which will seri-
ously affect the IF idle time.

7 Conclusions and Future Work

We have presented a framework for hypervisor based
virtualization of both hardware and software tasks on
hybrid computing architectures, such as the Xilinx Zynq.
The framework accommodates execution of software tasks
on the processors, as either real-time (or non-real-time)
bare-metal applications or applications under OS control.
In addition, support has been added to the hypervisor for
the execution of hardware tasks in the FPGA fabric, again
as either bare-metal hardware applications or as hardware-
software partitioned applications. By facilitating the use
of static hardware accelerators, partially reconfigurable
modules and intermediate fabrics, a wide range of
approaches to virtualization, to satisfy varied performance
and programming needs, can be facilitated.

We presented experiments to quantify the commu-
nication overhead between the processor system and
programmable logic, demonstrating the key role this plays
in determining the performance of such a software-hardware
system. We also characterised the context switch overhead
of the hypervisor approach, and compared the resulting
overhead to a modified Linux approach, showing two orders
of magnitude improvement in fabric idle time.

We are working on support for partial reconfiguration,
with faster configuration through a custom ICAP controller
and DMA bitstream transfer. Additionally, we are working
on developing a more fully featured intermediate fabric, to
enable higher performance and better resource use.



74 J Sign Process Syst (2014) 77:61–76

Acknowledgments This work was partially supported by the
Singapore National Research Foundation under its Campus for
Research Excellence And Technological Enterprise (CREATE)
programme.

References

1. Codezero project overview. http://dev.b-labs.com/.
2. Adams, K. (2006). A comparison of software and hardware tech-

niques for x86 virtualization. In Proceedings of the International
Conference on Architectural Support for Programming Languages
and Operating Systems.

3. Adler, M., Fleming, K.E., Parashar, A., Pellauer, M., Emer, J.
(2011). Leap scratchpads: automatic memory and cache manage-
ment for reconfigurable logic. In Proceedings of International
Symposium on Field Programmable Gate Arrays (FPGA) (pp.
25–28).

4. Brebner, G. (1996). A virtual hardware operating system for the
Xilinx XC6200. In Proceedings of International Workshop on
Field-Programmable Logic and Applications (FPL) (pp. 327–
336).

5. Callahan, T., Hauser, J., Wawrzynek, J. (2000). The Garp
architecture and C compiler. Computer, 33(4), 62–69.

6. Chakraborty, S., Lukasiewycz, M., Buckl, C., Fahmy, S.A.,
Chang, N., Park, S., Kim, Y., Leteinturier, P., Adlkofer, H. (2012).
Embedded systems and software challenges in electric vehicles.
In Proceedings of the Design, Automation and Test in Europe
Conference (DATE) (pp. 424–429).

7. Cheah, H.Y., Fahmy, S.A., Maskell, D.L. (2012). iDEA: A DSP
block based FPGA soft processor. In Proceedings of Interna-
tional Conference on Field Programmable Technology (FPT)
(pp. 151–158).

8. Chung, E.S., Hoe, J.C., Mai, K. (2011). CoRAM: an in-fabric
memory architecture for FPGA-based computing. In Proceedings
of International Symposium on Field Programmable Gate Arrays
(FPGA) (pp. 97–106).

9. Compton, K., & Hauck, S. (2002). Reconfigurable computing: a
survey of systems and software. ACM Computing Survey, 34(2),
171–210.

10. David, F.M., Carlyle, J.C., Campbell, R.H. (2007). Context switch
overheads for Linux on ARM platforms. In Proceedings of Work-
shop on Experimental Computer Science (p. 3).

11. DeHon, A. (1996). DPGA utilization and application. In Proceed-
ings of International Symposium on Field Programmable Gate
Arrays (FPGA) (pp. 115–121).

12. DeHon, A., Markovsky, Y., Caspi, E., Chu, M., Huang, R.,
Perissakis, S., Pozzi, L., Yeh, J., Wawrzynek, J. (2006).
Stream computations organized for reconfigurable execution.
Microprocessors and Microsystems, 30(6), 334–354.

13. Gohringer, D., Werner, S., Hubner, M., Becker, J. (2011). RAMP-
SoCVM: runtime support and hardware virtualization for a
runtime adaptive MPSoC. In Proceedings of International Confer-
ence on Field Programmable Logic and Applications (FPL) (pp.
181–184).

14. Gonzalez, I., & Lopez-Buedo, S. (2012). Virtualization of recon-
figurable coprocessors in HPRC systems with multicore architec-
ture. Journal of Systems Architecture, 58(6), 247–256.

15. Heiser, G., & Leslie, B. (2010). The OKL4 microvisor: conver-
gence point of microkernels and hypervisors. In Proceedings of
ACM Asia Pacific Workshop on Systems (pp. 19–24).

16. Heiser, G., Uhlig, V., LeVasseur, J. (2006). Are virtual-machine
monitors microkernels done right. ACM SIGOPS Operating
Systems Review, 40(1), 95–99.

17. Hubner, M., Figuli, P., Girardey, R., Soudris, D., Siozios, K.,
Becker, J. (2011). A heterogeneous multicore system on chip
with run-time reconfigurable virtual FPGA architecture. In IEEE
International Symposium on Parallel and Distributed Processing
Workshops (IPDPSW) (pp. 143–149).

18. Hubner, M., Gohringer, D., Noguera, J., Becker, J. (2010). Fast
dynamic and partial reconfiguration data path with low hardware
overhead on Xilinx FPGAs. In IEEE International Symposium on
Parallel and Distributed Processing Workshops (IPDPSW) (pp. 1–
8).

19. Jozwik, K., Tomiyama, H., Honda, S., Takada, H. (2010). A novel
mechanism for effective hardware task preemption in dynamically
reconfigurable systems. In Proceedings of International Confer-
ence on Field Programmable Logic and Applications (FPL) (pp.
352–355).

20. Kaiser, R., & Wagner, S. (2007). Evolution of the PikeOS micro-
kernel. In Proceedings of International Workshop on Microkernels
for Embedded Systems (p. 50).

21. Kalte, H., & Porrmann, M. (2005). Context saving and restor-
ing for multitasking in reconfigurable systems. In Proceedings
of International Conference on Field Programmable Logic and
Applications (FPL) (pp. 223–228).

22. Kapre, N., Mehta, N., deLorimier, M., Rubin, R., Barnor, H.,
Wilson, M., Wrighton, M., DeHon, A. (2006). Packet switched
vs. time multiplexed FPGA overlay networks. In IEEE Inter-
national Symposium on Field-Programmable Custom Computing
Machines (FCCM) (pp. 205–216).

23. Kirchgessner, R., Stitt, G., George, A., Lam, H. (2012).
VirtualRC: a virtual FPGA platform for applications and tools
portability. In Proceedings of International Symposium on Field
Programmable Gate Arrays (FPGA) (pp. 205–208).

24. Kosciuszkiewicz, K., Morgan, F., Kepa, K. (2007). Run-time
management of reconfigurable hardware tasks using embedded
linux. In Proceedings of International Conference on Field Pro-
grammable Technology (FPT) (pp. 209–215).

25. Lavin, C., Padilla, M., Lamprecht, J., Lundrigan, P., Nelson, B.,
Hutchings, B. (2011). HMFlow: accelerating FPGA compilation
with hard macros for rapid prototyping. In IEEE International
Symposium on Field-Programmable Custom Computing Machines
(FCCM).

26. Liang, Y., Rupnow, K., Li, Y., et al. (2012). High-level synthe-
sis: productivity, performance, and software constraints. Journal
of Electrical and Computer Engineering, 2012(1), 1–14.

27. Liedtke, J. (1995). On micro-kernel construction. In Proceedings
of the ACM Symposium on Operating Systems Principles (pp.
237–250).

28. Lübbers, E., & Platzner, M. (2009). ReconOS: multithreaded pro-
gramming for reconfigurable computers. ACM Transactions on
Embedded Computing Systems, 9(1), 8.

29. Mishra, M., & Goldstein, S. (2007). Virtualization on the tartan
reconfigurable architecture. In Proceedings of International Con-
ference on Field Programmable Logic and Applications (FPL)
(pp. 323–330).

30. Pham, K.D., Jain, A., Cui, J., Fahmy, S., Maskell, D. (2013).
Microkernel hypervisor for a hybrid ARM-FPGA platform. In
International Conference on Application-Specific Systems, Archi-
tectures and Processors (ASAP) (pp. 219–226).

31. Plessl, C., & Platzner, M. (2005). Zippy - a coarse-grained
reconfigurable array with support for hardware virtualization. In

http://dev.b-labs.com/


J Sign Process Syst (2014) 77:61–76 75

IEEE International Conference on Application-Specific Systems,
Architecture Processors (ASAP) (pp. 213–218).

32. Rupnow, K. (2009). Operating system management of reconfig-
urable hardware computing systems. In Proceedings of Interna-
tional Conference on Field-Programmable Technology (FPT) (pp.
477–478).

33. Rupnow, K., Fu, W., Compton, K. (2009). Block, drop or
roll(back): Alternative preemption methods for RH multi-tasking.
In IEEE Symposium on Field Programmable Custom Computing
Machines (pp. 63–70).

34. Shreejith, S., Fahmy, S.A., Lukasiewycz, M. (2013). Reconfig-
urable computing in next-generation automotive networks. IEEE
Embedded Systems Letters, 5(1), 12–15.

35. Shukla, S., Bergmann, N.W., Becker, J. (2006). QUKU: a coarse
grained paradigm for FPGA. In Proceedings of Dagstuhl Seminar.

36. So, H., Tkachenko, A., Brodersen, R. (2006). A unified
hardware/software runtime environment for FPGA-based recon-
figurable computers using BORPH. In Hardware/Software
Codesign and System Synthesis (CODES+ISSS) (pp. 259–
264).

37. Steiger, C., Walder, H., Platzner, M. (2004). Operating systems
for reconfigurable embedded platforms: online scheduling of real-
time tasks. IEEE Transactions on Computers, 53(11), 1393–1407.

38. Stitt, G., & Coole, J. (2011). Intermediate fabrics: Virtual architec-
tures for near-instant FPGA compilation. IEEE Embedded Systems
Letters, 3(3), 81–84.

39. Thomas, D., Coutinho, J., Luk, W. (2009). Reconfigurable
computing: Productivity and performance. In Asilomar Confer-
ence on Signals, Systems and Computers (pp. 685–689).

40. Trimberger, S., Carberry, D., Johnson, A., Wong, J. (1997).
A time-multiplexed FPGA. In IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM)
(pp. 22–28).

41. Vahid, F., Stitt, G., Lysecky, R. (2008). Warp processing: Dynamic
translation of binaries to FPGA circuits. Computer, 41(7), 40–46.

42. Vipin, K., & Fahmy, S.A. (2012). Architecture-aware
reconfiguration-centric floorplanning for partial reconfigura-
tion. In Proceedings of International Symposium on Applied
Reconfigurable Computing (ARC) (pp. 13–25).

43. Vipin, K., & Fahmy, S.A. (2012). A high speed open source con-
troller for FPGA partial reconfiguration. In Proceedings of Inter-
national Conference on Field Programmable Technology (FPT)
(pp. 61–66).

44. Vipin, K., & Fahmy, S.A. (2013). Automated partitioning for
partial reconfiguration design of adaptive systems. In Proceed-
ings of IEEE International Symposium on Parallel and Distributed
Processing Workshops (IPDPSW) – Reconfigurable Architectures
Workshop (RAW).

45. Vuletic, M., Righetti, L., Pozzi, L., Ienne, P. (2004). Operat-
ing system support for interface virtualisation of reconfigurable
coprocessors. In Design, Automation and Test in Europe (DATE)
(pp. 748–749).

46. Wang, W., Bolic, M., Parri, J. (2013). pvFPGA: accessing an
FPGA-based hardware accelerator in a paravirtualized environ-
ment. In Proceedings of International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS)
(pp. 1–9).

47. Ye, Z., Moshovos, A., Hauck, S., Banerjee, P. (2000).
CHIMAERA: a high-performance architecture with a tightly-
coupled reconfigurable functional unit. In Proceedings of
International Symposium on Computer Architecture (ISCA)
(pp. 225–235).

Abhishek Kumar Jain
received the Bachelor degree
in Electronics and Commu-
nication Engineering from
Indian Institute of Information
Technology, Allahabad in
2012. He worked as an intern
at STMicroelectronics, India
for his dissertation work.
Prior to that he was awarded
MITACS Globalink Scholar-
ship to pursue research work
at Electrical and Computer
Engineering Department,
University of Alberta, Canada
in May 2011. Currently he

is a PhD student in the School of Computer Engineering, Nanyang
Technological University, Singapore. His research interests include
computer architecture, reconfigurable computing, and virtualization
of reconfigurable hardware in embedded systems.

Khoa Dang Pham received
the Bachelor degree in
Mechanical Engineering from
Ho ChiMinh City Univer-
sity of Technology, Vietnam
and the Master degree in
Computer Engineering from
Nanyang Technological Uni-
versity, Singapore, in 2008
and 2013, respectively. Cur-
rently he is an Embedded
application/firmware engineer
in Larion Computing Ltd.,
Vietnam. His engineering
background ranges from auto-
mation control to FPGA de-
sign and kernel development.

Jin Cui received the Bach-
elor degree in Mechanical
Engineering and Automa-
tion, and the Master degree
in Computer Engineering
from Northeastern University,
China and the Ph.D. degree
in the School of Computer
Engineering, from Nanyang
Technological University,
Singapore, in 2004, 2007 and
2013, respectively. Currently
he is working as a research
associate in TUM CREATE
ltd., Singapore. His research
interests are in the areas
of computer architecture,
reconfigurable computing,

power-thermal-aware optimization for multiprocessor, and real-time
embedded systems.



76 J Sign Process Syst (2014) 77:61–76

Suhaib A. Fahmy received
the M.Eng. degree in informa-
tion systems engineering and
the Ph.D. degree in electri-
caland electronic engineering
from Imperial College Lon-
don, UK, in 2003 and 2007,
respectively. From 2007 to
2009, he was a Research
Fellow with the University
of Dublin, Trinity College,
and a Visiting Research Engi-
neer with Xilinx Research
Labs, Dublin. Since 2009, he
has been an Assistant Pro-
fessor with the School of

Computer Engineering, Nanyang Technological University, Singapore.
His research interests include reconfigurable computing, high-level
system design, andcomputational acceleration of complex algorithms.
Dr Fahmy was a recipient of the Best Paper Award at the IEEE
Conference on Field Programmable Technology in 2012, the IBM-
Faculty Award in 2013, and is a senior member of the IEEE and
ACM.

Douglas L. Maskell received
the B.E. (Hons.), MEngSc
and Ph.D. degrees in elec-
tronic and computer engi-
neering from James Cook
University (JCU), Townsville,
Australia, in 1980, 1984, and
1996, respectively. He is cur-
rently an Associate Profes-
sor in the School of Com-
puter Engineering, Nanyang
Technological University, Sin-
gapore. He is an active mem-
ber of the reconfigurable com-
puting group in the Centre
for High Performance Embed-
ded Systems (CHiPES). His

research interests are in the areas of embedded systems, reconfigurable
computing, and algorithm acceleration for hybrid high performance
computing (HPC) systems.


	Virtualized Execution and Management of Hardware Tasks on a Hybrid ARM-FPGA Platform
	Abstract
	Introduction
	Related Work
	The Hybrid Platform (Hardware)
	The Zynq-7000 Processing System (PS)
	Programmable Logic (PL)
	Platform Communication Mechanisms

	Reconfiguration Management
	IF Overview
	Internal Architecture of the Data Plane
	Internal Architecture of the Control Plane

	The Hybrid Platform (Software)
	Porting CODEZERO to the Xilinx Zynq-7000
	HW Task Management and Scheduling
	Non-Preemptive Hardware Context Switching
	Pre-Emptive Hardware Context Switching


	Experiments
	Communication Overheads
	Context Switch Overhead
	Idle Time Comparison of CODEZERO and Linux

	Conclusions and Future Work
	Acknowledgments
	References


