
1. INTRODUCTION

The technology of MEMS devices has experienced a lot of progress recently.
Their low manufacturing cost, batch production, light weight, small size, durability,
low energy consumption, and compatibility with integrated circuits, makes them
extremely attractive (Maluf and Williams 1999; Younis 2004). Successful MEMS
devices rely not only on well developed fabrication technologies, but also on the
knowledge of device behavior, based on which a favorable structure of the device
can be forged (Chao et al. 2006). The important role of MEMS devices in optical
systems initiate the development of a new class of MEMS called MicroOptoElectro-
Mechanical Systems (MOEMS). MOEMS mainly include micromirrors and
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torsional micro-actuators. These devices have found a variety of applications such as
digital micromirror devices (DMD) (Hornbeck 1991), optical switches (Ford et al.
1999), micro scanning mirrors (Bai et al. 2007; Dickensheets and Kino 1998), optical
cross connects (Zavracky et al. 1997), and etc.

The existence of a liquid bridge between two objects results in the forming of
capillary force (Wei and Zhao 2007). The existence of capillary force even in low
relative humidity is observed experimentally (Zwol et al. 2008). Parallel plate MEMS
actuators are conventionally fabricated by forming a layer of a plate or beam
material on the top of a sacrificial layer of another material and wet etching the sac-
rificial layer. In this process, capillary force can be easily formed and in the case of
poor design, the structure will collapse and adhere to the substrate. So investigating
the effect of capillary force on micromirrors is extremely important in their design
and fabrication.

Many researchers investigated the effect of capillary force on MEMS devices.
Mastrangelo and Hsu (1993) studied the stability and adhesion of thin micromecha-
nical structures under capillary force, theoretically and experimentally. Moeenfard
et al. (2010) studied the effect of capillary force on the static pull-in instability of
fully clamped micromirrors. The effects of capillary force on the static and dynamic
behaviors of atomic force microscopes (AFM) are widely assessed (Zitzler et al.
2002; Li and Peng 2006; Jang et al. 2004). Recently, the instability of torsional
MEMS=NEMS micro-actuators under capillary force was investigated by Guo
et al. (2009).

When the size of a structure is sufficiently small, Casimir and van der Waals
forces play an important role and in the case of poor design, can lead to the collapse
of the structure. VdW force is the interaction force between neutral atoms and it dif-
fers from covalent and ionic bondings in that it is caused by correlations in the fluc-
tuating polarizations of nearby particles (Xie 2009). Casimir force is understood as
the longer distances range analog of the vdW force, resulting from the propagation

NOMENCLATURE

Awet wet area of the plate

c speed of light

Fcap capillary force

FCas Casimir force

G shear modulus of elasticity of

the beam’s material

h initial distance between the

mirror and the substrate

Ip momentum of inertia of the

beams cross section

l length of each torsion beam

L length of mirror

Pcap capillary pressure

r width of the torsion beams cross

section

s length of the torsion beams cross

section

U potential strain energy of the

torsion beams

Utot interfacial energy

V potential energy of applied loads

W width of mirror

We work done by external forces

Greek Letters

c surface energy of the liquid

cLA liquid-air interfacial tensions

cSA solid -air interfacial tensions

cSL solid-liquid interfacial tensionsQ
total potential energy of the

system

h tilting angle of the mirror

hc contact angle

H dimensionless tilting angle of the

mirror



of retarded electromagnetic waves, whose distance ranges from a few nanometers up
to a few micrometers (Gusso and Delben 2007). An important feature of the Casimir
effect is that even though it is quantum in nature, it predicts a force between macro-
scopic bodies (Bordag et al. 2001). This makes the Casimir force relevant in N=
MEMS (Zhao et al. 2003).

Zhao et al. (2003) discussed the Casimir force induced adhesion in MEMS.
Tahami et al. (2009) discussed Pull-in Phenomena and Dynamic Response of a
Capacitive Nano-beam Switch by considering Casimir effect. Casimir effect on the
pull-in parameters of nanometer switches has been studied by Lin and Zhao
(2005a). They (Lin and Zhao 2005b) also studied Nonlinear behavior of nano-scale
electrostatic actuators with Casimir force. Ramezani et al. (2007; 2008) investigated
the two point boundary value problem of the deflection of nano-cantilever subjected
to Casimir and electrostatic forces using analytical and numerical methods to obtain
the instability point of the nanobeam. Modeling and simulation of electrostatically
actuated nano-switches under the effect of Casimir forces have been studied by
Mojahedi et al. (2009). Sirvent et al. (2009) theoretically studied pull-in control in
capacitive microswitches actuated by Casimir forces using external magnetic fields.
Effect of the Casimir force on the static deflection and stiction of membrane strips
in MEMS have been studied by Serry et al. (1998). Guo and Zhao (2004) discussed
the effect of Casimir force on the pull-in of electrostatic torsional actuators. But sta-
tical behavior and pull-in of single sided nano=micromirrors under effect of capillary
and Casimir forces has not been investigated. So in this article, the combined effect
of Casimir and capillary forces on the tilting angle and stability of torsional nano=
micromirror is studied. In this study, HPM is used as a perturbational based analyti-
cal tool.

Perturbation methods have been used to analytically solve the nonlinear prob-
lems in MEMS. Younis and Nayfeh (2003) investigate the response of a resonant
microbeam to an electric actuation using the multiple-scale perturbation method.
Abdel-Rahman and Nayfeh (2003) used the same method to model secondary reso-
nances in electrically actuated microbeams. Since perturbation methods are based
upon the assumption that there is a small parameter in the equations, they have some
limitations in problems without involvement of small parameters. In order to over-
come this limitation a new perturbational based method, namely Homotopy Pertur-
bation Method (HPM) was developed by He (2000). His new method takes full
advantages of the traditional perturbation methods and homotopy technique.
Homotopy perturbation method has also been used for solving the nonlinear prob-
lems encountered in N=MEMS. For example, Moeenfard et al. (2011) used HPM to
model the nonlinear vibrational behavior of Timoshenko micobeams. Mojahedi et al.
(2010) applied the HPM method to simulate the static response of nano-switches to
electrostatic actuation and intermolecular surface forces. But so far no analytic sol-
ution has been presented to model the behavior of nano=micromirrors.

In the current article, the equations governing the static behavior of rectangu-
lar nano=micromirrors are obtained using the minimum potential energy principle.
Then pull-in parameters of nano=micromirrors under the effect of Casimir and capil-
lary forces are investigated. At the end, the tilting angle of a nano=micromirror
under Casimir and capillary forces is calculated both numerically and analytically
using HPM.



2. THEORETICAL MODEL

The contact angle hc for a liquid drop shown in Figure 1a is determined by the
balance among the liquid-air (LA), solid–air (SA), and solid-liquid (SL) interfacial
tensions, which are denoted by cLA, cSA and cSL, respectively (Guo et al. 2009). At
the equilibrium state, Young’s equation (Knospe and Nezamoddini 2009) is satisfied
as follows.

cSA ¼ cSL þ cLA cos hc ð1Þ

At the equilibrium state, the energy of the system shown in Figure 1b is (Fortes
1982):

Utot ¼ 2AwetðcSL � cSAÞ þ C ¼ �2Awetc cos hc þ C ð2Þ

where Utot is the interfacial energy, Awet is the wet area of the plate, C is a constant
and c¼ cLA is the surface energy of the liquid. Since the volume of the liquid shown
in Figure 1b, v¼ zAwet is constant, it can be easily concluded that:

dAwet

dz
¼ �Awet

z
ð3Þ

The capillary force can be obtained from the interfacial energy as follows.

Fcap ¼ � dUtot

dz
¼ 2c cos hc

dAwet

dz
¼ �2c cos hc

Awet

z
ð4Þ

As a result, the capillary pressure underneath the plate is

pcap ¼ � Fcap

Awet
¼ 2c cos hc

z
ð5Þ

Using the obtained equation for capillary pressure, the capillary force applied to the
differential surface element of the micromirror shown in Figure 2 is

dFcap ¼
2c cos hc
h� x sin h

Wdx ð6Þ

Figure 1. (a) Contact angle of a droplet at a solid-liquid interface (b) Liquid bridge between two parallel

plates (color figure available online).



where h is the initial distance between the mirror and the substrate and h is the tilting
angle of the mirror.

Furthermore the differential Casimir force applied to a differential surface
element of the mirror shown in Figure 2 is (Liu et al. 2010):

dFCas ¼
p2�hc

240ðh� x sin hÞ4
Wdx ð7Þ

where c is speed of light, �h is Plank’s constant divided by 2p andW is width of mirror
as illustrated in Figure 2.

The minimum total potential energy principle (Rao 2007) is utilized here to
obtain equilibrium equation and to investigate the stability of the equilibrium points.
The total potential energy of the system can be divided into two parts: the potential
strain energy of the torsion beams and the potential energy of applied loads which is
equal to the minus of work done by external forces.

Y
¼ U þ V ¼ U �We ð8Þ

where
Q

is the total potential energy of the system, U is the potential strain energy of
the torsion beams, V is the potential energy of applied loads andWe is the work done
by external forces. In equilibrium points, variation of the total potential energy of
the system is zero.

d
Y

¼ dU � dWe ¼ 0 ð9Þ

Figure 2. Schematic view of a nano=micromirror (color figure available online).



The potential strain energy of system can be calculated as:

U ¼ 1

2
Kh2 ð10Þ

where (Huang 2004)

K ¼ 2GIp
l

ð11Þ

In this equation, G is the shear modulus of elasticity of the beam’s material, l is
length of each torsion beam and Ip is the polar momentum of inertia of the beams
cross section which can be calculated using equation (12) (Huang 2004).

Ip ¼
1

3
rs3 � 64

p5
s4
X1
n¼1

1

2n� 1ð Þ5
tanh

2n� 1ð Þpr
2s

ð12Þ

where r and s are the width and length of the torsion beams cross section respectively
as illustrated in Figure 2.

The variation of U would be as

dU ¼ Khdh ð13Þ

The total external work done on nano=micromirror to rotate it from angle h to
angle hþ dh can be calculated as follows.

dWe ¼
Z L

0

ðdFCap þ dFCasÞðxdhÞ

¼
Z L

0

2c cos hc
h� x sin h

Wdxþ p2�hc

240ðh� x sin hÞ4
Wdx

 !
ðxdhÞ

ð14Þ

where L is length of mirror as illustrated in Figure 2. Since h
L � 1, the tilting angle is

small, and sin h can be closely approximated by h. For simplification purpose, the
following dimensionless variable is introduced.

H ¼ h
h0

ð15Þ

where h0 � sin h0 ¼ h
L is the maximum physically possible rotation angle of the

mirror.
At equilibrium points, equation (9) must be satisfied. So by performing the

integration in equation (14), the equilibrium equation is obtained as follows.

g
H

1þ 1

H
lnð1�HÞ

� �
� k

H2

1

6
� 3H� 1

6ðH� 1Þ3

 !
þH ¼ 0 ð16Þ



where g and k are called instability numbers and are defined as equations (17) and
(18) respectively.

g ¼ 2c cos hcWL3

Kh2
ð17Þ

k ¼ p2�hcWL3

240h5K
ð18Þ

Performing the second variation operator on equation (8) and using equilibrium
equation yields:

d2
Y

¼ ðdHÞ2h2K
L2

�
1� g

H2
1þ 2 lnð1�HÞ

H
þ 1

1�H

� �

þ k

H3

8

3

1

ð1�HÞ3
� 2

ð1�HÞ2
� 1

ð1�HÞ4
þ 1

3

 !� ð19Þ

According to minimum total potential energy principle an equilibrium point is
stable when d2

Q
> 0 and is unstable when d2

Q
< 0 (Gambhir 2004). So the stability

condition is reduced to:

Iðg; k;HÞ ¼ 1� g

H2
1þ 2 lnð1�HÞ

H
þ 1

1�H

� �

þ k

H3

8

3

1

ð1�HÞ3
� 2

ð1�HÞ2
� 1

ð1�HÞ4
þ 1

3

 !
> 0 ð20Þ

Finding g from equation (16) and substituting it in equation (20) leads to:

Iðk;HÞ ¼ 1�
k
H3

1
6 � 3H�1

6ðH�1Þ3

� �
� 1

1þ 1
H ln 1�Hð Þ

1þ 2 ln 1�Hð Þ
H

þ 1

1�H

� �

þ k

H3

8

3

1

ð1�HÞ3
� 2

ð1�HÞ2
� 1

ð1�HÞ4
þ 1

3

 ! ð21Þ

Figure 3 shows the function I(k, H) versus H at some values of k.
An equilibrium point is stable if I(k, H)> 0 and unstable if I(k, H)< 0. It is

observed that at certain value of H called HP, which relates to the pull-in state,
I(k, H) becomes zero. When H<HP, I(k, H) would be positive and the resulting
equilibrium point is stable and when H>HP, I(k, H) would be negative and the
resulting equilibrium point is unstable.

At the pull-in state, in addition to the equilibrium equations, the following
equation is also satisfied.

I g; k;Hð Þ ¼ 0 ð22Þ



Equations (16) and (22) can be solved simultaneously for finding g and k at the
pull-in. The results are as follows.

gP ¼ �
3H3

P H2
P � 4HP þ 1

� �
H3

P � 3H2
P � 6HP � 6 ln 1�HPð Þ

ð23Þ

kP ¼ �
6HP HP � 1ð Þ3 �H2

P þ 3 HP � 1ð Þ HP þ ln 1�HPð Þð Þ
� �

H3
P � 3H2

P � 6HP � 6 ln 1�HPð Þ
ð24Þ

In equations (23) and (24), kP, gP and HP are the values of k, g and H at pull-in,
respectively. Figures 4 and 5 shows the values of pull-in angle versus kP and gP,
respectively. It is observed that with increasing the value of kP the pull-in angle of
the mirror is reduced, while with increasing the gP, the pull-in angle of the mirror
is increased.

By eliminating HP between equations (23) and (24), gP can be obtained versus
kP as plotted in Figure 6. It is observed that by increasing the dimensionless Casimir
force applied to the mirror kP, the mirror resistance to the capillary force is reduced
and pull-in occurs at lower values of g. In fact this figure shows that Casimir force
can significantly reduce the maximum allowable value for g and as a result, the stab-
ility limits of the nano=micromirror are reduced. In addition it can be concluded that
even in the absence of capillary force, Casimir force can lead to the occurrence of
pull-in. So, in order to have a successful and stable design for nano=micromirrors
fabricated using wet etching process where capillary force plays a major role, the
inequalities given in equation (25) have to be satisfied.

g ¼ 2c cos hcWL3

Kh2
< gp

k ¼ p2�hcWL3

240h5K
< kP

ð25Þ

Figure 3. Function I (k,H) versus H (color figure available online).



In order to investigate the mirror’s behavior under combined capillary and
Casimir loading, the dimensionless rotation angle has been plotted versus g in
Figure 7.

It is observed that by increasing the value of g the rotation angle of the nano=
micromirror is increased, but the maximum value of g at pull-in, highly depends on
the value of k and it is verified that by increasing k, the maximum allowable value for
k is reduced. Furthermore it is concluded that at a constant g, larger values of k
would lead to larger values for stable equilibrium angle.

3. ANALYTICAL SOLUTION OF EQUILIBRIUM EQUATIONS

In this section, we try to find the value of the rotation angle of the nano=micro-
mirror analytically in terms of g and k. For this purpose, the analytical tool, HPM is
utilized.

Figure 4. Pull-in angle of mirror versus kp (color figure available online).

Figure 5. Pull-in angle of mirror versus gP (color figure available online).



The linear part of equation (16) can be found by using Taylor series expansion
of the equilibrium equation (16) as follows.

L H; g; kð Þ ¼ � gþ k
2

þ 3� 4k� g
3

� �
H ð26Þ

where L(H, g, k) is the linear part of equation (16). Obviously the nonlinear part of
equilibrium equation is obtained by subtracting L(H, g, k) from equation (16).

N H; g; kð Þ ¼ g
H

1þ 1

H
lnð1�HÞ

� �
� k

H2

1

6
� 3H� 1

6ðH� 1Þ3

 !
þ 4kþ g

3

� �
Hþ gþ k

2

ð27Þ

Figure 6. gP versus kP (color figure available online).

Figure 7. Stable equilibrium angle versus g (color figure available online).



Now, the homotopy form is constructed as follows.

��= H; g; k;Pð Þ ¼ L H; g; kð Þ þ P:N H; g; kð Þ ¼ 0 ð28Þ

In equation (28), ��= H; g; k;Pð Þ is the homotopy form and P is an embedding
parameter which serves as perturbation parameter. When P¼ 1, the homotopy form
would be the same as the equilibrium equation and when P¼ 0, homotopy form
would be the linear part of equilibrium equation. The value of the dimensionless
rotation angle H can also be expanded in terms of the embedded parameter P as
follows.

H ¼ H0 þ PH1 þ P2H2 þ P3H3 þ � � � ð29Þ

Substituting equation (29) into homotopy form yields:

��= H; g; k;Pð Þ ¼ L H0 þ PH1 þ P2H2 þ . . . ; g; k
� �

þ P �N H0 þ PH1 þ P2H2 þ . . . ; g; k
� �

¼ 0 ð30Þ

The Taylor series expansion of right hand side of equation (30) in terms of P
would be as

��= H; k;Pð Þ ¼ L H0; g; kð Þ þ H1
@L H0; g; kð Þ

@H0
þN H0; g; kð Þ

� �
P

þ H2
@L H0; g; kð Þ

@H0
þH1

@N H0; g; kð Þ
@H0

� �
P2

þ H3
@L H0; g; kð Þ

@H0
þH2

@N H0; g; kð Þ
@H0

þ 1

2
H2

1

@2N H0; g; kð Þ
@H2

0

 !
P3

þ � � � ¼ 0

ð31Þ

Since the homotopy form must be unified with zero, the coefficients of all powers of
P must be zero. This, leads to the following equations.

L H0; g; kð Þ ¼ 0 ð32Þ

H1
@L H0; g; kð Þ

@H0
þN H0; g; kð Þ ¼ 0 ð33Þ

H2
@L H0; g; kð Þ

@H0
þH1

@N H0; g; kð Þ
@H0

¼ 0 ð34Þ

H3
@L H0; g; kð Þ

@H0
þH2

@N H0; g; kð Þ
@H0

þ 1

2
H2

1

@2N H0; g; kð Þ
@H2

0

¼ 0 ð35Þ



With solving equations (32) to (35), the parameters Hi 0� i� 3 are found as
follows.

H0 ¼
3 gþ kð Þ

2 3� g� 4kð Þ ð36Þ

H1 ¼ �N H0; g; kð Þ
	

@L H0; g; kð Þ
@H0

� �
ð37Þ

H2 ¼ �H1
@N H0; g; kð Þ

@H0

� �	
@L H0; g; kð Þ

@H0

� �
ð38Þ

H3 ¼ � H2
@N H0; g; kð Þ

@H0
þ 1

2
H2

1

@2N H0; g; kð Þ
@H2

0

 !	
@L H0; g; kð Þ

@H0

� �
ð39Þ

The value of H can be found by substituting Hi 0� i� 3 and P¼ 1 in equation (29).
In Figure 8 the results of the numerical simulations is compared with those of ana-
lytical HPM results for the special case of k¼ 0.1. It is observed that HPM closely
approximates the rotation angle of the mirror. Obviously increasing the order of per-
turbation approximation would lead to more precise results, but increasing the order
of the perturbation approximation more than 6 will not improve the accuracy of the
obtained response significantly. As a result, a sixth order perturbation approxi-
mation used in HPM can precisely predict the nano=micromirror behaviour under
the combined effects of capillary and Casimir force.

4. CONCLUSION

The dimensionless equilibrium equation of the nano=micromirror under capil-
lary force was obtained considering Casimir force. The dependency of the critical

Figure 8. Estimation of nano=micromirror’s rotation angle using HPM (color figure available online).



tilting angle on the instability numbers defined in the article was investigated.
Results show that neglecting the Casimir effect on the static equilibrium of nano=
micromirrors under capillary force may lead to considerable error in predicting
stability limits of the mirror and can lead to an unstable design.

It was observed that rotation angle of the mirror due to capillary force highly
depends on the Casimir effect applied to the mirror. HPM was utilized to analyti-
cally predict the rotation angle and stability limits of the nano=micromirrors. It
was found that a sixth order perturbation approximation can accurately estimate
the rotation angle of the mirror due to capillary and Casimir loading. The presented
results in this article can be used for stable design and fabrication of nano=micromir-
rors using wet etching process where the gap between the mirror and the underneath
substrate is less than a few micrometers and as a result, both capillary and Casimir
forces have significant effects on the system.
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