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Abstract—In this paper, we propose a new probability distri-
bution function which accurately describes turbulence-induced
fading under a wide range of turbulence conditions. The proposed
model, termed Double Generalized Gamma (Double GG), is
based on a doubly stochastic theory of scintillation and developed
via the product of two Generalized Gamma (GG) distributions.
The proposed Double GG distribution generalizes many existing
turbulence channel models and provides an excellent fit to the
published plane and spherical waves simulation data. Usingthis
new statistical channel model, we derive closed form expressions
for the outage probability and the average bit error as well as
corresponding asymptotic expressions of free-space optical com-
munication systems over turbulence channels. We demonstrate
that our derived expressions cover many existing results inthe
literature earlier reported for Gamma-Gamma, Double-Weibull
and K channels as special cases.

Index Terms—Free-space optical systems, fading channels,
Double GG distribution, propagation, irradiance, optical wireless,
spatial diversity.

I. I NTRODUCTION

FREE-SPACE optical (FSO) communication enables wire-
less connectivity through atmosphere using laser trans-

mitters at infrared bands. These systems provide high data
rates comparable to fiber optics while they offer much more
flexibility in (re)deployment. Since they operate in unregulated
spectrum, no licensing fee is required making them also a
cost-effective solution [1]–[3]. With their unique features and
advantages, FSO systems have attracted attention initially as
a last mile solution and can be used in a wide array of
applications including cellular backhaul, inter-building con-
nections in enterprise/campus environments, video surveil-
lance/monitoring, fiber back-up, redundant link in disaster
recovery and relief efforts among others.

A major performance limiting factor in FSO systems is
atmospheric turbulence-induced fading (also called as scintil-
lation) [4]. Inhomogenities in the temperature and the pressure
of the atmosphere result in variations of the refractive index
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and cause atmospheric turbulence. This manifests itself asran-
dom fluctuations in the received signal and severely degrades
the FSO system performance particularly over long ranges.

In the literature, several statistical models have been pro-
posed in an effort to model this random phenomenon. His-
torically, log-normal distribution has been the most widely
used model for the probability density function (pdf) of the
random irradiance over atmospheric channels [5]–[7]. This
pdf model is however only applicable to weak turbulence
conditions. As the strength of turbulence increases, lognormal
statistics exhibit large deviations compared to experimental
data. Moreover, lognormal pdf underestimates the behavior
in the tails as compared with measurement results. Since the
calculation of detection probabilities for a communication sys-
tem is primarily based on the tails of the pdf, underestimating
this region significantly affects the accuracy of performance
analysis.

In an effort to address the shortcomings of the lognormal
distribution, other statistical models have been further pro-
posed to describe atmospheric turbulence channels under a
wide range of turbulence conditions. These include the Nega-
tive Exponential/Gamma model (also known widely as the K
channel) [8], I-K distribution [9], log-normal Rician channel
(also known as Beckman) [10], Gamma-Gamma [11], M
distribution [12] and Double-Weibull [13]. Particularly worth
mentioning is the Gamma-Gamma model [11], [14] which has
been widely used in the literature for the performance analysis
of FSO systems, see e.g., [15], [16], along with the log-normal
model. This model builds upon a two-parameter distribution
and considers irradiance fluctuations as the product of small-
scale and large-scale fluctuations, where both are governedby
independent gamma distributions. In a more recent work by
Chatzidiamantiset al. in [13], the Double-Weibull distribution
was proposed as a new model for atmospheric turbulence
channels. Similar to the Gamma-Gamma model, it is based
on the theory of doubly stochastic scintillation and considers
irradiance fluctuations as the product of small-scale and large-
scale fluctuations which are both Weibull distributed. It is
shown in [13] that Double-Weibull is more accurate than the
Gamma-Gamma particularly for the cases of moderate and
strong turbulence.

In this paper, we propose a new and unifying statistical
model, named Double Generalized Gamma (Double GG), for
the irradiance fluctuations. The proposed model is valid under
all range of turbulence conditions (weak to strong) and con-
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tains most of the existing statistical models for the irradiance
fluctuations in the literature as special cases. Furthermore,
we provide comparison of the proposed model with Gamma-
Gamma and Double-Weibull models. For this purpose, we
use the set of simulation data from [17], [18] for plane and
spherical waves1. Our model demonstrates an excellent match
to the simulation data and is clearly superior over the other
two models which show discrepancy from the simulation data
in some cases. In the second part of the paper, we use this
new channel model to derive closed form expressions for the
BER and the outage probability of single-input single-output
(SISO) and single-input multiple-output (SIMO) FSO systems
with intensity modulation and direct detection (IM/DD). Our
performance results can be seen as a generalization of the
results in [20]–[23].

The rest of the paper is organized as follows: In Section II,
we propose Double GG distribution to characterize turbulence-
induced fading. In Section III, we confirm the accuracy of our
model through comparisons with simulation data for plane and
spherical waves. In Section IV, we present the derivation ofbit
error rate (BER) and outage probability for SISO FSO system
over Double GG channel. In Section V, we present BER
expressions for FSO links with multiple receiver apertures.
Finally, Section VI concludes the paper.

II. D OUBLE GG DISTRIBUTION

The irradiance of the received optical wave can be modeled
as [11], [13] I = IxIy, where Ix and Iy are statistically
independent random processes arising respectively from large-
scale and small scale turbulent eddies. We assume that both
large-scale and small-scale irradiance fluctuations are gov-
erned by Generalized Gamma (GG) distributions [24, Eq. (1)].
The pdfs ofIx ∼ GG (γ1,m1,Ω1) andIy ∼ GG (γ2,m2,Ω2)
are given by

fIx (Ix) =
γ1I

m1γ1−1
x

(Ω1/m1 )
m1Γ (m1)

exp

(

−m1

Ω1
Iγ1
x

)

(1)

fIy (Iy) =
γ2I

m2γ2−1
y

(Ω2/m2 )
m2Γ (m2)

exp

(

−m2

Ω2
Iγ2
y

)

(2)

where γi > 0 , mi ≥ 0.5 and Ωi i = 1, 2 are the GG
parameters. The pdf ofI can be written as

fI (I) =

∞
∫

0

fIx (I|Iy) fIy (Iy) dIy (3)

wherefIx (I|Iy) is obtained as

fIx (I|Iy) =
γ1(I/Iy)

m1γ1−1

Iy(Ω1/m1 )
m1Γ (m1)

exp

(

−m1

Ω1

(

I

Iy

)γ1
)

(4)

1The simulation data in [17], [18] was obtained through phasescreen ap-
proach which consists of approximating a three-dimensional random medium
as a collection of equally spaced, two-dimensional, randomphase screens that
are transverse to the direction of wave propagation. In [17], it was discussed
in detail that such a numerical simulation approach contains all the essential
physics for accurately predicting the pdf of irradiance (or, equivalently, log-
normal irradiance), and shown that the simulation results provide an excellent
match to known experimental measurements reported in [19] for both plane
and spherical waves. The same set of simulation data was alsoused in [11]
and [13] which respectively introduced Gamma-Gamma and Double-Weibull
distributions as turbulence channel models.

The integration in (3) yields

fI (I) =
γ2pp

m2−1/2qm1−1/2(2π)1−(p+q)/2 I−1

Γ (m1) Γ (m2)
(5)

×G0,p+q
p+q,0

[(

Ω2

Iγ2

)p
ppqqΩq

1

mq
1m

p
2

|∆(q : 1−m1) ,∆(p : 1−m2)
−

]

where Gm,n
p,q [.] is the Meijers G-function2 defined in [25,

Eq.(9.301)],p andq are positive integer numbers that satisfy
p/q = γ1/γ2 and ∆(j;x) , x/j , ..., (x+ j − 1)/j .
We name this new distribution as Double GG. Employing
[26, Eq. (10)] and after some simplifications, the cumulative
distribution function (cdf) of Double GG distribution can be
obtained as

FI (I) =
pm2−1/2qm1−1/2(2π)

1−(p+q)/2

Γ (m1) Γ (m2)
(6)

×Gp+q,1
1,p+q+1

[(

Iγ2

Ω2

)p
mq

1m
p
2

ppqqΩq
1

| 1
∆ (q : m1) ,∆(p : m2) , 0

]

The distribution parametersγi andΩi i = 1, 2 of the Double
GG model can be identified using the first and second order
moments of small and large scale irradiance fluctuations. The
latter are directly tied to the atmospheric parameters. Without
loss of generality, we assumeE (I) = 1 or equivalently
E (Ix) = 1 andE (Iy) = 1. The second moment of irradiance
is expressed as

E
(

I2
)

= E
(

I2x
)

E
(

I2y
)

=
(

1 + σ2
x

) (

1 + σ2
y

)

(7)

whereσ2
x andσ2

y are respectively normalized variances ofIx
andIy. Thenth moment ofIx (similarlyIy) is given by

E (Inx ) =

(

Ω1

m1

)n/γ1 Γ (m1 + n/γ1)

Γ (m1)
(8)

Therefore, by inserting the second order moment obtained
from (8) in (7), and considering thatE (I) = 1, we have

σ2
x =

Γ (m1 + 2/γ1 ) Γ (m1)

Γ2 (m1 + 1/γ1 )
− 1 (9a)

σ2
y =

Γ (m2 + 2/γ2 ) Γ (m2)

Γ2 (m2 + 1/γ2 )
− 1 (9b)

Ωi =

(

Γ (mi)

Γ (mi + 1/γi)

)γi

mi, i = 1, 2 (10)

wheremi is a distribution shaping parameter and found using
curve fitting on the simulated/measured channel data. Note
that in (9a) and (9b), the variances of small- and large-scale
uctuations (i.e.,σ2

x andσ2
y) are directly tied to the atmospheric

conditions. Particularly, assuming a plane wave when inner
scale effects are considered, the variances for the large- and
the small-scale scintillations are given by [4, Eqs. 9.46 and

2Meijers G-function is a standard built-in function in mathematical
software packages such as MATLAB, MAPLE and MATHEMATICA. If
required, this function can be also expressed in terms of thegeneralized
hypergeometric functions using [25, Eqs.(9.303-304)].
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Fig. 1. Pdfs of the scaled log-irradiance for a plane wave assuming weak
irradiance fluctuations.

9.55]

σ2
x = exp



0.16σ2
Rytov

(

2.61ηl

2.61 + ηl + 0.45σ2
Rytovη

7/6
l

)7/6

×



1 + 1.753

(

2.61

2.61 + ηl + 0.45σ2
Rytovη

7/6
l

)1/2

− 0.252

(

2.61

2.61 + ηl + 0.45σ2
Rytovη

7/6
l

)7/12






− 1 (11)

σ2
y
∼= exp







0.51σ2
Rytov

(

1 + 0.69σ
12/5
Rytov

)5/6






− 1 (12)

where ηl = 10.89 (R0/l0), and R0/l0 denotes the ratio of
Fresnel zone to finite inner scale.

For spherical waves in the absence of inner scale,σ2
x and

σ2
y are given by [4, Eqs. 9.63 and 9.70]

σ2
x
∼= exp







0.49β2
0

(

1 + 0.56β
12/5
0

)7/6






− 1 (13)

σ2
y
∼= exp







0.51β2
0

(

1 + 0.69β
12/5
0

)5/6






− 1 (14)

whereβ2
0 is the Rytov scintillation index of a spherical wave

given by

β2
0 = σ2

Rytov/σ̃
2 (l0/R0) (15)

Fig. 2. Pdfs of the scaled log-irradiance for a plane wave assuming moderate
irradiance fluctuations.

In (15), σ̃2 (l0/R0) is defined as

σ̃2 (l0/R0) ∼= 3.86

[

(

1 + 9/η2l
)11/12

(

sin

(

11

6
tan−1 ηl

3

)

+
2.61

(9 + η2l )
1/4

sin

(

4

3
tan−1 ηl

3

)

− 0.518

(9 + η2l )
7/24

sin

(

5

4
tan−1 ηl

3

)

)

− 8.75η
−5/6
l

]

(16)

In the presence of a nite inner scale, the small-scale scintil-
lation is again described by (14) and the large-scale variance
is given by [4, Eq. 78]

σ2
x
∼= exp



0.04β2
0

(

8.56ηl

8.56 + ηl + 0.195β2
0η

7/6
l

)7/6

×



1 + 1.753

(

8.56

8.56 + ηl + 0.195β2
0η

7/6
l

)1/2

−0.252

(

8.56

8.56 + ηl + 0.195β2
0η

7/6
l

)7/12






− 1 (17)

Therefore, the parameters of the Double GG distribution are
readily deduced from these expressions using only values
of the refractive index structure parameter and inner scale
according to the atmospheric conditions. The scintillation
index can be further calculated as

σ2
I =

E
(

I2
)

E(I)2
− 1 =

(

1 + σ2
x

) (

1 + σ2
y

)

− 1 (18)

We should emphasize that this distribution is very generic
since it includes some commonly used fading models as
special cases. Forγi → 0, mi → ∞, Double GG pdf coincides
with the log-normal pdf. Forγi = 1, Ωi = 1, it reduces
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Fig. 3. Pdfs of the scaled log-irradiance for a plane wave assuming strong
irradiance fluctuations.

TABLE I
NRMSEFOR DIFFERENT STATISTICAL MODELS AND

TURBULENCE CONDITIONS DEFINED INFIGS. 1-6

Gamma-Gamma [11] Double-Weibull [13] Double GG (Proposed)
Fig. 1 2% 7% 0.6%
Fig. 2 2.8% 1.2% 0.8%
Fig. 3 1.2% 1% 0.8%
Fig. 4 0.3% 10% 0.3%
Fig. 5 19% 8.7% 1.5%
Fig. 6 4.8% 2.4% 1.7%

to Gamma-Gamma while formi = 1, it becomes Double-
Weibull. Forγi = 1, Ωi = 1, m2 = 1, it coincides with the K
channel.

III. V ERIFICATION OF THEPROPOSEDCHANNEL MODEL

In this section, we compare the Double GG distribution
model with simulation data of plane and spherical waves pro-
vided respectively in [17] and [18]. In [17], Flattéet al. carried
out exhaustive numerical simulations and published the results
assuming plane wave propagation through homogeneous and
isotropic Kolmogorov turbulence. In [18], Hill and Frehlich
presented the simulation data for the propagation of a spher-
ical wave through homogeneous and isotropic atmospheric
turbulence. The turbulence severity is characterized by Rytov
variance (σ2

Rytov) which is proportional to the scintillation index
[4]. We emphasize that the same data set was also employed
in [11] and [13] which have introduced the Gamma-Gamma
and Double-Weibull fading models.

A. Plane Wave

Figs. 1-3 compare the Gamma-Gamma, Double-Weibull and
Double GG models under a wide range of turbulence condi-
tions (weak to strong) assuming plane wave propagation. In
these figures, the vertical axis of the figure represents the log-
irradiance pdf multiplied by the square root of variance. The
logarithm of irradiance was particularly chosen to illustrate

Fig. 4. Pdfs of the scaled log-irradiance for a spherical wave assuming weak
irradiance fluctuations.

the high and low irradiance tails [17]. Thus, sensitivity tothe
small irradiance fades is increased, while sensitivity to large
irradiance peaks is decreased. The pdf plots were also scaled
by subtracting the mean value to center all distributions on
zero and dividing by the square root of variance.

In Fig. 1, we assume weak turbulence conditions which are
characterized byσ2

Rytov = 0.1 and l0/R0 = 0.5. The values
of the variances of small and large scale fluctuations, (σ2

x and
σ2
y) are calculated from (11) and (12). Using (9a), (9b) and

(10), the Double-GG parameters are obtained asγ1 = 2.1,
γ2 = 2.1, m1 = 4, m2 = 4.5, Ω1 = 1.0676 andΩ2 = 1.06
wherep = q = 1. We further employ normalized root-mean-
square error (NRMSE) as a statistical goodness of fit test.
Table I provides the NRMSE results for different statistical
models. According to Table I and Fig. 1, both Gamma-Gamma
and Double-Weibull distributions fail to match the simulation
data. On the other hand, the proposed Double GG distribution
follows closely the simulation data.

In Fig.2, we assume moderate irradiance fluctuations which
are characterized byσ2

Rytov = 2 and l0/R0 = 0.5. The
parameters of the Double GG distribution for this case are
obtained asγ1 = 2.1690, γ2 = 0.8530, m1 = 0.55, m2 =
2.35, Ω1 = 1.5793 and Ω2 = 0.9671. In the calculations,
p and q are chosen asp = 28 and q = 11 in order to
satisfy p/q = γ1/γ2. Among the three distributions under
consideration, the proposed Double GG model provides the
best fit to the simulation data. It is apparent that Gamma-
Gamma fails to match the simulation data particularly in the
tails. As Table I demonstrates, the accuracy of Double Weibull
is better than that of Gamma-Gamma, but slightly inferior to
our proposed distribution.

In Fig. 3, we assume strong irradiance fluctuations which are
characterized byσ2

Rytove = 25 andI0/R0 = 1. The parameters
of the Double GG distribution are calculated asγ1 = 1.8621,
γ2 = 0.7638, m1 = 0.5, m2 = 1.8, Ω1 = 1.5074 andΩ2 =
0.9280 wherep and q are chosen as 17 and 7 respectively.
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Fig. 5. Pdfs of the scaled log-irradiance for a spherical wave assuming
moderate irradiance fluctuations.

Fig. 6. Pdfs of the scaled log-irradiance for a spherical wave assuming strong
irradiance fluctuations.

The Double GG model again provides an excellent match to
the simulation data and as it is clear from Table I, its accuracy
is better than Gamma-Gamma and Double Weibull.

B. Spherical Wave

Figs 4-6 compare the Gamma-Gamma, Double-Weibull
and Double GG models under weak, moderate and strong
turbulence conditions assuming spherical wave propagation.
These pdfs are plotted as a function of(ln I +0.5σ2)/σ [18],
whereσ is the square root of the variance ofln I. The y-axis
depicts the log-irradiance pdf multiplied byσ.

In Fig. 4, we consider spherical wave propagation and
assume weak turbulence which are characterized byσ2

Rytov =
0.06 andl0/R0 = 0. The parameters of Double GG are evalu-
ated using the variances of small and large scale fluctuations,

(a)

(b)

(c)

(d)

Fig. 7. Outage probability as a function of̄γ/γth for a) Plane wave -
σ2
Rytov = 2, l0/R0 = 0.5, b) Plane wave-σ2

Rytov = 25, l0/R0 = 1, c)
Spherical wave -σ2

Rytov = 2, l0/R0 = 0, d) Spherical wave -σ2
Rytov = 5,

l0/R0 = 1
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(σ2
y andσ2

x) for spherical waves. The values of these variances
are given by (13) , (14) and (17). Therefore, employing (9)
and (10) we obtainm1 = 34.24, m2 = 32.79, γ1 = γ2 =
Ω1 = Ω2 = 1 wherep and q are equal to 1. It can be noted
that in this case, the Double GG coincides with the Gamma-
Gamma distribution. It is apparent that both Gamma-Gamma
and Double GG distributions provide an excellent match to the
simulation data while the Double-Weibull distribution fails to
match the simulation data.

In Fig. 5, we assume moderate irradiance fluctuations, which
are characterized byσ2

Rytov = 2 and l0/R0 = 0. The param-
eters of the Double GG model for this case are calculated
as γ1 = 0.9135, γ2 = 1.4385, m1 = 2.65, m2 = 0.85,
Ω1 = 0.9836 andΩ2 = 1.1745 wherep andq are selected as
7 and 11 respectively. It is clearly observed that the Double
GG model provides a better fit with simulation data, especially
for small irradiance values.

In Fig. 6, we assume strong irradiance fluctuations which are
characterized byσ2

Rytov = 5 and l0/R0 = 1. The parameters
of the Double GG model are calculated asγ1 = 0.4205,
γ2 = 0.6643, m1 = 3.2, m2 = 2.8, Ω1 = 0.8336 and
Ω2 = 0.9224 where p and q are chosen as 7 and 11
respectively. It is apparent from this figure and Table I that
both Gamma-Gamma and Double-Weibull distributions fail to
match the simulation data. On the other hand, the proposed
Double GG distribution follows closely the simulation data.

IV. PERFORMANCEEVALUATION

A. Outage Probability Analysis of SISO FSO System

Denote Rt as a targeted transmission rate and assume
γth = C−1 (Rt) as the corresponding signal-to-noise ratio
(SNR) threshold in terms of the instantaneous channel capacity
for a particular channel realization. Therefore, the outage
probability is calculated byPout (Rt) = Pr (γ < γth) [27],
[28]. If SNR exceedsγth, no outage happens and the receiver
can decode the signal with arbitrarily low error probability. For
the system under consideration, the instantaneous electrical
SNR can be defined asγ = (ηI)

2
/N0, while the average

electrical SNR is obtained as̄γ = η2/N0 sinceE (I) = 1.
Therefore,I can be expressed asI =

√

γ/γ̄. After the
transformation of the random variable,I, the cdf of γ can
be easily derived from (6) and settingγ = γth therein, we
obtain the outage probability as in (19) at the top of the next
page.

(19) can be seen as a generalization of earlier outage
analysis results in the literature. Specifically, if we insert
γi = 1 andΩi = 1 in (19), we obtain the outage probability
expression reported in [20, Eq. (15)] for Gamma-Gamma
channel. Settingmi = 1 in (19), we recover Eq (16) of [13]
derived for Double-Weibull channel. Similarly, forγi = 1,
Ωi = 1 andm2 = 1, (19) reduces to (3) of [29] reported for
the K channel.

Based on the derived expression in (19), Figs. 7.a-d present
the outage probabilities of a SISO FSO system for different
degrees of turbulence severity. We adopt the same parameters
used in Figs 2-3 and 5-6 and consider the following four
cases: a) Plane wave withσ2

Rytov = 2 and l0/R0 = 0.5, b)

(a)

(b)

(c)

(d)

Fig. 8. Average BER as a function of̄γ a) Plane wave -σ2
Rytov = 2,

l0/R0 = 0.5, b) Plane wave-σ2
Rytov = 25, l0/R0 = 1, c) Spherical wave -

σ2
Rytov = 2, l0/R0 = 0, d) Spherical wave -σ2

Rytov = 5, l0/R0 = 1
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Pout = Fγ (γth) =
pm2−1/2qm1−1/2(2π)

1−(p+q)/2

Γ (m1) Γ (m2)
Gp+q,1

1,p+q+1

[

(

γth
γ̄

)pγ2/2 mq
1m

p
2

(Ω2p)
p
(Ω1q)

q |
1

∆ (q : m1) ,∆(p : m2) , 0

]

(19)

Plane wave withσ2
Rytov = 25 and l0/R0 = 1, c) Spherical

wave withσ2
Rytov = 2 and l0/R0 = 0, d) Spherical wave with

σ2
Rytov = 5 and l0/R0 = 1 . It is observed from Fig. 7.a

that an SNR of 37.8 dB is required to achieve a targeted
outage probability of10−2. As the turbulence strength gets
stronger (see Fig. 7.b), the required SNR to maintain the same
performance climbs up to 50.5 dB. Similarly, for spherical
waves, SNRs of 36.8 dB and 50.9 dB are respectively required
for moderate and strong turbulence conditions. In these figures,
we further include the outage results for Double-Weibull and
Gamma-Gamma for comparison purposes. As expected from
the earlier comparisons of their pdfs, the outage performance
over Double-Weibull and Double-GG for plane wave (See
Figs. 7.a and 7.b) are similar while the Gamma-Gamma model
overestimates the outage performance. On the other hand,
the superiority of Double GG is more obvious for spherical
wave (See Figs 7.c and 7.d), particularly for strong turbulence
conditions, where the outage performance plots of Double-
Weibull and Gamma Gamma significantly deviate.

B. BER Analysis of SISO FSO System

In this section, we present the BER performance analysis of
an FSO system with on-off keying (OOK) over the proposed
Double GG channel. The received optical signal is written as

y = ηIx+ n (20)

wherex represents the information bits and can be either 0
or 1, n is the Additive White Gaussian noise (AWGN) term
with zero mean and varianceσ2

n = N0/2 , η is the optical-to-
electrical conversion coefficient andI is the normalized irra-
diance whose pdf follows (5). Conditioned on the irradiance,
the instantaneous BER for OOK is given by [22]

Pe,ins = 0.5 erfc

(

ηI

2
√
N0

)

(21)

where erfc (.) stands for the complementary error function
defined as

erfc(x) =
2√
π

∫ ∞

x

e−t2dt. (22)

The average BER can be then calculated by averaging (21)
over the distribution ofI, i.e.,

Pe =

∫ ∞

0

fI (I)

[

0.5 erfc

(

ηI

2
√
N0

)]

dI (23)

The above integral can be evaluated in closed form by ex-
pressing theerfc (.) integrand via a Meijers G-function using
[30, Eq. (8.4.14.2)], [30, Eq. (8.2.2.14)] and [31, Eq. (21)].
Thus, a closed-form solution is obtained as in (24) at the top
of the next page.

In (24) k and l are positive integer numbers that satisfy
pγ2/2 = l/k andJξ (y, x) is defined as

Jξ (y, x) (25)

= ∆

(

ξ,
y − x

y

)

,∆

(

ξ,
y − 1− x

y

)

, . . . ,∆

(

ξ,
1− x

y

)

The derived BER expression in (24) can be seen as a
generalization of earlier BER results in the literature. Ifwe
insert γi = 1 and Ωi = 1 in (24), we obtain the BER
expression derived in [21, Eq. (9)] under the assumption of
Gamma-Gamma channel. Settingmi = 1 in (24), we obtain
Eq (15) of [13] derived for Double-Weibull channel. On the
other hand, forγi = 1, Ωi = 1 andm2 = 1, (24) reduces to
(12) of [22] reported for the K-channel.

In an effort to have some further insights into system per-
formance, we investigate the asymptotical BER performance
in the following. For large SNR values, the asymptotic BER
behavior is dominated by the behavior of the pdf near the
origin, i.e. fI (I) at I → 0 [32]. Thus, employing series
expansion corresponding to the Meijers G-function [33, Eq.
(07.34.06.0006.01)], the Double GG distribution given in (5)
can be approximated by a single polynomial term as

fI (I) ≈ A

p+q
∏

j=1
j 6=k

Γ (bj − bk)I
pγ2 min{m1

q
,
m2
p }−1 (26)

whereA is obtained as

A =
γ2pp

m2−1/2qm1−1/2(2π)
1−(p+q)/2

Γ (m1) Γ (m2)

×
(

mq
1m

p
2

(qΩ1)
q
(pΩ2)

p

)min{m1
q

,
m2
p }

(27)

In (26), bk andbj are defined as

bk = min

{

m1

q
,
m2

p

}

(28)

bj ∈ (29)

{1−∆(q : 1−m1) , 1−∆(p : 1−m2)} \min

{

m1

q
,
m2

p

}

Therefore, based on (23), the average BER can be well
approximated by

PSISO ≈ A

p+q
∏

j=1
j 6=k

Γ (bj − bk)

(

2√
γ̄

)pγ2bk Γ ((1 + pγ2bk) /2)

2
√
πpγ2bk

(30)
From (30), it can be readily deduced that the diversity order
of SISO FSO system is given by0.5pγ2min {m1/q ,m2/p}.
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PSISO =
γ2k

m1+m2pm2+1/2qm1−1/2

2
3
2 lΓ (m1) Γ (m2) (2π)

l+k(p+q)
2 −1

G
k(p+q),2l
2l,k(p+q)+l

[

(

mq
1m

p
2

pPΩp
2q

qΩq
1

)k
(4l)

l

γ̄lkk(p+q)
| ∆(l : 1) ,∆

(

l : 1
2

)

Jk (q : 1−m1) , Jk (p : 1−m2) ,∆(l : 0)

]

(24)

Fig. 9. Comparison of the average BER between SISO and SIMO with
optimal combing for plane wave as defined in Fig. 3.

It is observed from Fig.8.a that an SNR of 51.1 dB is
required to achieve a BER of10−3 for a plane wave in moder-
ate turbulence conditions. For stronger turbulence conditions,
the required SNR to achieve the same BER performance is
68.2 dB as seen from Fig. 8.b. For spherical waves, SNRs of
49.8 dB and 63.8 are respectively required for moderate and
strong turbulence conditions. Comparison with the expressions
presented for other channel models reveals that the Gamma-
Gamma model significantly overestimates the performance.
Similar to earlier observations on the outage analysis, the
superiority of Double GG is more obvious for spherical wave.
As observed from Figs 8.c and 8.d, the performance plots
of Double-Weibull and Gamma Gamma considerably diverge
particularly for strong turbulence conditions. Furthermore, it
can be clearly seen that the asymptotic results are in excellent
agreement with exact analytical results within a wide range
of SNR showing the accuracy and usefulness of the derived
asymptotic expression given in (30).

V. FSO LINKS WITH RECEIVE DIVERSITY

As it can be noticed from Section IV, the performance of
a SISO FSO link over moderate and strong atmospheric tur-
bulence is quite poor. To address this issue, multiple transmit
and/or receive apertures can be employed and the performance
can be improved via diversity gains. In the following, we
assume that multiple receive apertures are employed and
present the BER derivations under the assumption that optimal
gain combining is used.

Fig. 10. Comparison of the average BER between SISO and SIMO with
optimal combing for spherical wave as defined in Fig. 5.

The optimum decision metric for OOK is given by [23]

P (r|on,In)
on
≶
off
P (r|off,In) (31)

wherer = (r1, r2, ..., rN ) is the received signal vector andIn
is the fading channel coefcient which models the channel from
the transmit aperture to thenth receive aperture. Following
the same approach as [22], [23] the conditional bit error
probabilities are given by

Pe(off |In) = Pe(on |In) = Q





1

N

√

√

√

√

γ̄

2

N
∑

n=1

I2n



 (32)

The average BER can be then obtained as

PSIMO,OC =

∫

I

fI (I)Q





√

√

√

√

γ̄

2N

N
∑

n=1

I2n



 dI (33)

wherefI (I) is the joint pdf of vectorI = (I1, I2, . . . , IN ).
The factorN in (33) is used to ensure that sum of theN
receive aperture areas is the same as the area of the receive
aperture of the SISO link.

Eq. (33) does not yield a closed-form solution and requires
N-dimensional integration. Nevertheless, the Q-functioncan
be well-approximated asQ(x) ≈ e−

x2

2 /12 + e−
2x2

3 /4 [34]
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Λ (n, υ) =
αnl

−0.5
n k

m1,n+m2,n
n

2(2π)0.5(ln−1+(kn−1)(pn+qn))
G

kn(pn+qn),ln
ln,kn(pn+qn)

[

(υN)
lnω−kn

n llnn

γ̄lnk
kn(pn+qn)
n

∣

∣

∣

∣

∆(ln, 1)
Jkn

(qn, 1−m1,n) , Jkn
(pn, 1−m2,n)

]

(34)

and thus the average BER can be obtained as

PSIMO,OC ≈ 1

12

N
∏

n=1

∫ ∞

0

fIn (In) exp

(−γ̄

4N
I2n

)

dIn

+
1

4

N
∏

n=1

∫ ∞

0

fIn (In) exp

(−γ̄

3N
I2n

)

dIn (35)

The above integral can be evaluated by first expressing the ex-
ponential function in terms of the Meijer G-function presented
in [31, eq. (11)] as

exp (−x) = G1,0
0,1

[

x
∣

∣

−
0

]

(36)

Then, a closed-form expression for (35) is obtained using [31,
Eq. (21)] as

PSIMO,OC ≈ 1

12

N
∏

n=1

Λ (n, 4) +
1

4

N
∏

n=1

Λ (n, 3) (37)

whereΛ (n, υ) is defined in (34) at the top of the page.
In (34), ln andkn are positive integer numbers that satisfy

pnγ2,n/2 = ln/kn , andαn andωn n ∈ {1, 2, . . . , N} are
defined as

αn =
γ2,np

m2,n+1/2
n q

m1,n−1/2
n (2π)

1−(pn+qn)/2

Γ (m1,n) Γ (m2,n)
(38)

ωn =
(

Ω2,npnm
−1
2,n

)pn
(

qnΩ1,nm
−1
1,n

)qn (39)

The derived expression in (37) includes the previously reported
result in [22] for K channel as a special case.

Based on the approximation in (26), the corresponding
closed-form asymptotic solution for (35) can be obtained as

PSIMO,OC asy≈
1

12

N
∏

n=1

Λasy(n, 4) +
1

4

N
∏

n=1

Λasy(n, 3) (40)

whereΛasy(n, υ) is defined as

Λasy(n, υ) = αn

pn+qn
∏

j=1
j 6=k

Γ (bj,n − bk,n)

× Γ (pnγ2,nbk,n)

(√
υN
)pnγ2,nbk,n

2(
√
γ̄)

pnγ2,nbk,n
(41)

Therefore, the diversity order of FSO links withN receive
apertures employing optimal gain combining is obtained as

0.5
N
∑

n=1
pnγ2,n min

{

m1,n/qn,m2,n/pn
}

.

Figs. 9-10 illustrate the BER performance of the SIMO
FSO system under consideration. We present approximate
analytical results which have been obtained through (37) and
(40) along with the Monte-Carlo simulation of (33). As clearly
seen from Figs. 9-10, our approximate expressions provide an
excellent match to simulation results. As a benchmark, the

BER of SISO FSO link is also included in these figures.
It is observed that receive diversity signicantly improve the
performance. For instance, at a target bit error rate of10−3,
we observe performance improvements of 26.8 dB and 39.6
dB respectively for withN = 2 and 3 with respect to the SISO
transmission over Double GG turbulence channels defined in
Fig.3. Similarly, for Double GG channels defined in Fig. 5,
at a BER of10−3, performance improvements of 19 dB and
25.1 dB are achieved for SIMO links withN = 2 and 3
compared to the SISO deployment. It can be further observed
that asymptotic bounds on the BER become tighter at high
enough SNRs confirming the accuracy and usefulness of the
asymptotic expression given in (40).

VI. CONCLUSIONS

In this paper, we have introduced a new channel model,
so called Double GG, which accurately describes irradiance
fluctuations over atmospheric channels under a wide range
of turbulence conditions. It is based on the theory of doubly
stochastic scintillation and considers irradiance fluctuations as
the product of small-scale and large-scale fluctuations which
are both Generalized Gamma distributed. We have obtained
closed-form expressions for the pdf and cdf in terms of
Meijers G-function. Comparisons with the Gamma Gamma
and Double-Weibull have shown that the new model pro-
vides an accurate fit with numerical simulation data for both
plane and spherical waves. Using the new channel model,
we have obtained closed-form expressions for the BER and
the outage probability of SISO and SIMO FSO systems. We
have demonstrated that our derived expressions cover many
existing results in the literature earlier reported for Gamma-
Gamma, Double-Weibull and K channels as special cases.
Based on the asymptotical performance analysis, we have
further derived diversity gains for SISO and SIMO FSO
systems under consideration.
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