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a b s t r a c t

Building density information is fundamentally important for urban design, planning and management
and for urban environmental studies. This paper demonstrates that Building Coverage Ratio (BCR), Floor
Area Ratio (FAR), and other building density indicators can be numerically and automatically derived from
high-resolution airborne LiDAR data. An object-based method is proposed to process the LiDAR data for
the building density information. The method consists of a sequence of numerical operations: generating
eywords:
uilding density
uilding Coverage Ratio
loor Area Ratio
bject-based method
iDAR

the normalized Digital Surface Model (nDSM), extracting building objects, deriving object attributes,
associating objects with the corresponding land lots, and computing building density indicators at land
lot and urban district scales. The algorithms for these operations have been implemented as an ArcGIS
extension module. The object-based method is applied to the processing of airborne LiDAR data over
downtown Houston. Various attributes have been derived to quantify the building density, urban physical
structure, and landscape morphological characteristics of the downtown area at three different spatial

scales.

. Introduction

In recent decades, numerous metropolitan areas around the
orld have experienced continued horizontal expansions and

prawls through the decentralization process, while many cities
ave also shown a land use intensification trend (Narayan, 1996).
he intensification trend is indicated by denser and taller build-
ngs through various urban renewal and redevelopment projects
f inner cities (Greer, 1980; Narayan, 1996; Weiss, 1992). As a nat-
ral response to dense business concentration and land scarcity,
n increasing number of high-rise buildings and skyscrapers have
ettled in downtowns of many large metropolitan areas (Frenkel,
007; Hartshorn, 1992; Weiss, 1992), which define the skyline and
eshape scenic sight and aesthetical beauty of the cities.

Many modern cities in Asia have already adopted the vertical
evelopment strategy not only for their downtowns and central
usiness districts (CBDs) but also for residential districts to tackle
rban land scarcity problems. High-rise residential clusters and

trips have emerged in Hong Kong, Tokyo, Singapore, Shanghai,
eijing, Taipei, Kuala Lumpur, Soul, and other cities (Chau et al.,
007; Wang and Chien, 1999; Wong, 2004). The buildings of vary-

ng heights increase the morphological heterogeneity and vertical

∗ Corresponding author. Tel.: +86 21 62232946; fax: +86 21 62232946.
E-mail address: blyu@geo.ecnu.edu.cn (B. Yu).

169-2046/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.landurbplan.2010.08.004
© 2010 Elsevier B.V. All rights reserved.

roughness of urban space, influence wind flow (Cionco and Ellefsen,
1998) and sunlight distribution (Oke, 1988; Robinson, 2006; Swaid,
1993), and mold the urban microclimate (Adolphe, 2001). Several
studies reported that the building density affects the wind condi-
tions at pedestrian level (Kubota et al., 2008), the access of sunlight
and solar radiation (Lam, 2000; Miguet and Groleau, 2002; Oke,
1988; Robinson, 2006; Swaid, 1993; Yu et al., 2009a), the interior
temperatures of buildings (Mills, 1997), the surface thermal con-
ditions (Streutker, 2003), the dispersion of atmospheric pollutants
(Theodoridis and Moussiopoulos, 2000), and land subsidence (Cui
et al., 2010). The information on the morphology and density of the
buildings is essential for empirical and scientific investigation of
these urban environmental and social issues.

To ameliorate adverse urban environmental and social prob-
lems, the building density regulations such as lot size zoning,
building height, and/or Floor Area Ratio (FAR) restrictions are
common practices in urban planning and management in many
countries over the world (Arnott and MacKinnon, 1977; Bertaud
and Brueckner, 2005). Examples include USA (Weiss, 1992), Japan
(Gao et al., 2006; Joshi and Kono, 2009; Kono et al., 2008; Kubota
et al., 2008), India (Bertaud and Brueckner, 2005; Narayan, 1996),

China (Chau et al., 2007; Cui et al., 2010; Liao et al., 2007; Pan et
al., 2008), and Singapore (Wong, 2004). Many cities have imposed
building height limits beginning in the late nineteenth century,
when the skyscraper first emerged as a new urban form. Chicago
and New York were the first cities to place a flat limitation on build-
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http://www.sciencedirect.com/science/journal/01692046
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ng heights (Weiss, 1992). By the early 1900s, a few cities, such as
oston and Washington, DC, introduced differential height limi-
ations by districts rather than imposing one limit on the entire
ity. Based on aesthetic considerations, building height restric-
ions are often imposed for historical and scenic districts of many
ities, such as Washington, DC, Canberra, Paris, and Beijing. Lot size
oning is imposed to directly control the size of each lot contain-
ng one household. The FAR regulation is imposed in the urban
rea to limit the building’s volume of floor space while permitting
ore flexibility in the shape of the structure. Lot size regulation

nd FAR regulations are both intended to control building den-
ity to minimize the adverse environmental problems. Maximum
AR regulations indirectly control the size and height of build-
ngs and affect the building density and urban spatial structure.
ometimes, minimum FAR regulation may be also enforced to
ncrease building density or to prevent underdevelopment (Joshi
nd Kono, 2009). Regulations with relatively low maximum height
nd FAR restrictions encourage low-density horizontal expansion,
esulting more dispersed pattern of urbanization. Urban population
rowth rate and hence the level of adverse environment effects in a
ity can change remarkably over time. Therefore, building density
egulation was also changed concomitantly with different urban
evelopment stages (Weiss, 1992).

Urban districts constructed in different time periods show sig-
ificant difference in building density and structures. With the

mprovements of technologies in construction, air conditioning,
eating and ventilation, the maximum permitted building heights
ave been raised in many cities (Chau et al., 2007; Pan et al.,
008; Weiss, 1992), promoting urban vertical growth and land use

ntensification. Many newly developed commercial and residen-
ial districts have higher FAR and lower Building Coverage Ratio
BCR), compared with old ones (Pan et al., 2008). Timely and com-
lete information about urban building density and morphology

s required for the assessment of land use intensity and efficiency,
esign and adjustment of zoning regulations and land use policy,
onitoring and enforcement of urban management policies (Fu and

omerville, 2001; Gao et al., 2006; Kubota et al., 2008; Liao et al.,
007; Pan et al., 2008; Theodoridis and Moussiopoulos, 2000).

In reality, quantitative information about urban buildings is
ften unavailable, incomplete, or out-of-date. Although original
uilding plans contain detailed information, they are often poorly
led, stored, and maintained. It is extremely difficult to establish
n accurate and full inventory of urban buildings and structures by
ssembling building design plans in a piecemeal fashion. Although
eld surveys can be conducted to measure footprint and height
f buildings, they are often labor intensive and time-consuming,
nd only limited urban area can be covered by the conventional
round surveys. Previously, Remote Sensing images and GIS have
een employed to extract urban building information. Various
emotely sensed data and classification methods have been used
o derive the building coverage area (e.g., Gamba and Houshmand,
000; Lhomme et al., 2009; Paparoditis et al., 1998; Shufelt, 1999;
hiele et al., 2007). In order to compute FAR, aerial stereo pho-
ogrammetry, InSAR data (Luckman and Grey, 2003; Thiele et
l., 2007), and SRTM3 data (Liao et al., 2007) have been used to
erive building height values. An average floor height value is
ften selected to estimate the total number of floors (Liao et al.,
007; Pan et al., 2008), and the gross floor area is calculated by
ultiplying the building coverage area to the floors’ count. The

omplex building shape is often neglected in previous studies (Pan
t al., 2008). With the remotely sensed image data, the accuracy

f derived building height is severely affected by occlusions and
hadows from man-made and natural objects in the urban areas
Baltsavias, 1999; Weidner and Forstner, 1995), or limited by the
oarse resolution of image data (Liao et al., 2007). Han et al. (2005)
roposed a Shaded Area Method, in which the size of building
lanning 98 (2010) 210–219 211

shadows on high-resolution satellite images was used to estimate
FAR through a regression model. The Shaded Area Method suffers
from the drawbacks of low accuracy and time-consuming due to
the requirement for manual extraction of building shadows. The
Light Detection and Ranging (LiDAR) Remote Sensing technology
represents a breakthrough for surveying and mapping buildings
in urban environments. Surface elevation samples from airborne
scanning are much more accurate, reliable and denser than those
from the traditional photogrammetric techniques (Paolo Gamba
and Houshmand, 2000, 2002; Priestnall et al., 2000; Stilla et al.,
2003). The extraordinary capability of airborne LiDAR in gathering
highly accurate and densely sampled surface elevation measure-
ments over urban areas allows for an accurate delineation of the
footprints of buildings (Ma, 2005; Yu et al., 2009b; Zhang et al.,
2006) and reconstruction of the 3D building shapes (Forlani et al.,
2006; Gamba and Houshmand, 2002; Rottensteiner, 2003).

This paper presents a new object-based method to automati-
cally extract building objects and calculate various building density
attributes, including BCR and FAR. Based on airborne LiDAR data, we
derived, evaluated, and analyzed building density information for
downtown Houston, Texas, USA. In the following sections, we first
describe the case study area and the data sets used in the research.
Then, we will present the algorithms and software implementa-
tions in detail for the object-based building density estimation
method. Next, we will examine and contrast various building den-
sity attributes for different downtown districts of Houston. In the
last section, we will summarize the research findings and draw
some conclusions.

2. Case study area and data collection

Houston is the fourth largest city in the USA and is located in
the coastal plain of the Gulf of Mexico. The downtown Houston
is spatially bounded by Highway 45, Highway 10 and Highway
59 (Fig. 1a). A large cluster of high-rise buildings and skyscrapers
have created a high-profile skyline in the downtown Houston. As
a multi-functional center, the downtown Houston contains several
distinct districts (Fig. 1a). These districts assume different func-
tions such as retail, business, service, entertainments, or sports,
and the types and shapes of buildings vary from district to district.
The Skyline District contains the cluster of skyscrapers; the Theatre
District is ranked second in terms of the number of theatre seats
in the nation; the Historic District contains most of Houston’s his-
toric architecture and buildings; the Sports & Conventions district
accommodates sports and convention venues, including Minute
Maid Park (formerly Enron Field), the Toyota Centre, and the George
Brown Convention Centre.

The LiDAR data were collected by an airborne system of Terra-
Point LLC in 2001. According to the metadata, the Root Mean Square
Error (RMSE) of LiDAR elevation measurements is estimated to be
11.6 cm and the average sampling density is 0.44 point per square
meter. The LiDAR point measurements of the last return were pro-
vided by the Harris County Flood Control District (HCFCD) as x, y, z
lists in an ASCII file. It should be noted, like many other early LiDAR
surveys the LiDAR data used in our study only have the elevation
(range) information, and the reflected intensity of the laser was not
recorded. A Digital Surface Model (DSM) grid with a 1 m cell size
was interpolated from the points by using the linear Triangulated
Irregular Network (TIN) interpolation method. The DSM contains
elevation information for all objects and ground features, includ-

ing buildings and trees. By removing tree canopies and man-made
structures, TerraPoint LLC has produced a bare-earth Digital Eleva-
tion Model (DEM) with its proprietary software system. Normalized
DSM (nDSM), also known as Digital Height Model or Digital Object
Model, is the difference between DSM and the bare-earth DEM
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Fig. 1. Case study area and data. (a) Geographical locatio

Haala and Brenner, 1999). The nDSM contains relative height infor-
ation of man-made and natural objects rising above the ground.
e created the nDSM of downtown Houston (Fig. 1b) by removing

he bare-earth DEM value from the DSM grid.
The land lot data in vector format of downtown Houston was

ublished by the City of Houston GIS (CoHGIS). We updated the land
ot data with a reference to a recent 1 m resolution orthorectified
olor-infrared aerial image. The land lot map used in this research
s shown in Fig. 1a.

The vegetation distribution information came from a detailed
lassification of urban landscape components by integrating air-
orne LiDAR and color near-infrared image data based on a new
bject-based two-stage method (Yu et al., 2009a,b, 2010). The color
ear-infrared aerial photograph used in this study was acquired on
ecember 10, 2004. The photograph was orthorectified and dis-

ributed by the Texas Natural Resource Information System (TNRIS)
s a DOQQ (Digital Orthophoto Quarter Quadrangle) image at 1 m
patial resolution. In the first stage of the method, the DOQQ images
re used to segment the scene into image objects. Then, these
bjects are classified into three broad categories – impervious sur-
ace, vegetation, and water surface, based on their spectral and
wo-dimensional spatial attributes. In the second stage, the nDSM
erived from airborne LiDAR data is introduced into analysis. Two

ndicators, relative height and roughness, of each vegetation object
rom the first stage are calculated, and the threshold values are
etermined to separate vegetation into lawns, shrubs/hedges, and
rees. The overall classification accuracy of vegetation is analyzed
nd reported as high as 93.46% (Yu et al., 2010).

The data sets used in this research are all projected in UTM (Zone
5N) coordinate system with reference to WGS84 datum. And the
ertical datum of the LiDAR data is the National Geodetic Vertical
atum of 1988 (NAVD 88).

. Methods

.1. Automated extraction of building objects

The nDSM from airborne LiDAR data represents the rela-

ive height information of man-made and natural objects rising
bove the ground, including buildings and vegetation canopies.
ulti-spectral aerial photos and high-resolution satellite data are

vailable, and the vegetation distribution has been classified and
etected. In order to focus on the estimation of building density,
owntown Houston; (b) nDSM from airborne LiDAR data.

the vegetation coverage in downtown Houston is masked out from
the original nDSM, and the remaining relative height values in
nDSM correspond to the non-vegetated surface. The red rectangle
bounded area in Fig. 1b is enlarged in Fig. 2 to illustrate the method.
Fig. 2a is the original nDSM, and Fig. 2b is the masked nDSM after
removing vegetation coverage.

After removing vegetation, a series of processing steps are
applied to the nDSM to extract the objects and delineate the bound-
aries of buildings at a given height. Those processing steps include
threshold-based segmentation, object identification, morphologi-
cal operation, and boundary tracing

A threshold-based segmentation is adopted to transform the
original nDSM to a segmented binary image by applying Eq. (1):

g (i, j) =
{

1, h(i, j) ≥ H0
0, h(i, j) < H0

(1)

where h(i, j) is the pixel relative height at row i and column j, H0
is the threshold value, and g(i, j) is the object code at pixel loca-
tion (i, j). An appropriate base building height (H0) is selected as
the threshold value to segment the nDSM and to extract the build-
ing objects. Different threshold values have been chosen to extract
building objects in previous studies, e.g., 3 m in Ma (2005), and 4 m
in Yu et al. (2009a,b). If the base building height H0 is too high, many
true buildings will be missed. On the other hand, if the selected base
building height H0 is too low, some small non-building objects like
automobiles and street furniture will be mistakenly detected as
building objects. We experimented with different threshold values
between 3.0 m and 4.0 m, and observed that the extracted build-
ing objects are quite stable and do not change significantly with
the variation of the threshold value in this range. Hence, we chose
3.5 m as the threshold value for our case study. Fig. 2c shows the
segmentation result with this threshold value.

After the segmentation, the nDSM are recoded as a binary image
to represent the portions of buildings rising above the threshold
value (foreground) and other pixels (background). Those pixels
with a relative height equal or larger than the threshold value 3.5 m
are recoded as the foreground object pixels with a value of 1 (black
in Fig. 2c), while the pixels with a relative height less than 3.5 m

are recoded as non-building background pixels with a value of 0
(white in Fig. 2c).

The binary image consists of numerous spatially connected
foreground regions, which represents building objects. These fore-
ground regions in the segmented image need to be explicitly
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ig. 2. Illustration of building object extraction process. (a) Original nDSM; (b) nD
); (d) buildings objects are identified and numbered; (e) morphological dilation a
uildings.

dentified and delimited as individual discrete objects for sub-
equent attribute computation. We used a recursive connected
omponent identification and indexing algorithm (Liu and Jezek,
004) to mark out the building objects based on the spatial 4-
onnectivity of the foreground pixels. First, the binary image is
canned in a row-wise manner, and a seed is set at the first fore-
round pixel, which is also treated as a single-cell building object.
ext, this single-cell building object is expanded to include all
uilding pixels immediately located in the 4-neighborhood of the
urrent building pixel. During the expansion, the number of pixels
n the current building object is accumulated. The expansion con-
inues recursively until all contiguous building pixels are included.
threshold value of the object size is selected to remove small spu-

ious objects, which might be induced by data noise. The derived
uilding objects are indexed incrementally with a unique identifi-
ation number (Fig. 2d).

Two types of morphological operations are applied to the
uilding objects. Firstly, a filling operation (Sonka et al., 2007) is
mployed to fill the small internal holes whose size is smaller
han a specified threshold value. Secondly, a closing operation
Sonka et al., 2007), which consists of a dilation operation imme-
iately followed by an erosion operation, is used to effectively
mooth the rough boundaries and close small gaps in the build-
ng objects (Fig. 2e). Both dilation operation and erosion operation
re two types of basic morphological transformations for binary
mage. Dilation generally increases the sizes of objects, filling in
oles and broken areas, and connecting areas that are separated
y spaces smaller than the size of the structuring element. With
inary images, dilation connects areas that are separated by spaces
maller than the structuring element and adds pixels to the perime-

er of each image object. Erosion generally decreases the sizes of
bjects and removes small anomalies by subtracting objects with
radius smaller than the structuring element. With binary images,
rosion completely removes objects smaller than the structuring
lement and removes perimeter pixels from larger image objects
fter removing vegetation canopy; (c) connected building pixels (black, recoded as
sion; and (f) tracing and vectorizing edge pixels for delineating the boundaries of

(Sonka et al., 2007). The structure element adopted in this study is
a 3 × 3 square.

After eliminating the spurious objects and smoothing object
boundaries through morphology operations, a set of reliable and
clean building objects are obtained. Then, the boundary of each
object can be detected and traced. The boundary of an object is
the set of pixels that are adjacent to at least one background pixel
(Sonka et al., 2007). Technically, three types of boundary – inner,
outer, and extended – can be derived (Sonka et al., 2007). The
extended boundary is a better choice since it preserves the origi-
nal shape of the object and provides the faithful common boundary
acceptable by two adjacent objects (Feng and Pavlidis, 1975). We
employ an extended boundary tracing algorithm (Liow, 1991) to
detect edge pixels of the building objects. At last, a vector poly-
gon is created by tracing the extended boundary pixels for each
individual building object (Fig. 2f).

3.2. Associating individual buildings with corresponding land lots
and urban districts

The location, size, and shape of land lots have been determined
by using the data from the urban planning department of local
government. To compute building density indicators, individual
building objects derived from the object-based methods need to
be associated with the corresponding land lots and urban districts.

Ideally, the boundaries of the buildings should be located
entirely within the geographical borders of the land lots (e.g., No.
168 building object derived by object-based methods when using
the threshold value of 3.5 m, see Fig. 3a). However, the extracted
boundaries may slightly shift or extend out the land parcel due

to the measurement or interpolation errors (e.g., No. 150 building
object in Fig. 3b). In our analysis, the vectorized building bound-
aries are overlaid with the existing land lot layer. The topological
relationships between these two layers are established. Then, the
ratio of the part of the building object inside the land lot to the
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ig. 3. Topological relationship between building object and land lot. (a) An extrac
artially intersecting with the land lot.

hole building object is calculated. If the ratio is larger than 0.9,
amely, at least 90% of the building object is located in the geo-
raphical boundary of the corresponding land parcel, the building
bject is considered to be associated with that land lot. Otherwise,
nly the part of the building object that is located in the land lot is
reated as the contribution area to the building density calculation.

.3. Derivation of building density attributes

The recognition of building objects and their association with
and lots and urban districts allow for the calculation of various
uilding density attributes. The building density attributes derived

n this analysis include three types: (1) geometric and volumetric
ttributes for individual buildings; (2) density attributes at the land
ot scale; and (3) geometric, volumetric and density attributes at the
rban district scale. These attributes can be used to characterize and
nalyze the physical form and structure of the urban landscape for
rban environmental studies and land use management at different
cales.

The geometric and volumetric attributes for individual build-
ngs depict the geographical position and size of building footprints,
nd vertical dimensions of individual buildings. Those include the
entroid coordinates (xc, yc), perimeter (P), and size (S) of build-
ng footprint, as well as the height (H) and volume (V) of building

bject. The numerical definitions of these attributes are listed in
able 1.

Building Coverage Ratio (BCR) and Floor Area Ratio (FAR) are the
ost commonly used indices for quantifying the building density

t land lot scale. The BCR is defined as the ratio of the building

able 1
efinitions of geometric and volumetric attributes for individual buildings.

Attributes Definition

Centroid point (xc , yc) xc = 1
n

n∑
i=1

xi; yc = 1
n

n∑
i=1

yi

Perimeter (P) P = m1r +
√

2m2r
Size (S) S = nr2

Height (H) H = max{hi}

Volume (V) V =
n∑

i=1

hir2

here n is the number of cells consisting of building footprint object, (xi , yi) are
he row and column coordinates of the ith cell of the object, m1 is the number of
oundary cell in horizontal or vertical orientation, m2 is the number of boundary
ell in diagonal step, r is the grid cell size, and hi is the relative height value from
iDAR nDSM of ith cell in the footprint object.
ilding object is completely within the land lot; (b) an extracted building object is

coverage area (i.e. the area of building footprint) to the size of land
lot in Eq. (2).

BCR = S

SL
(2)

where S is the building coverage area, and SL is the area of land
lot. Once the association between building footprints and land lots
is determined, the BCR for each land lot can be computed using
Eq. (2). Since the footprint represents the planimetric shape of a
building, the BCR measures the building density in two-dimension
(2D) space. The FAR is defined as the ratio of gross building floor
area to the size of land lot (Eq. (3)).

FAR =
∑t

i=1Ai

SL
(3)

where Ai is the area of the ith floor, and t is the total number of floors.
The value of FAR is determined not only by the planimetric shape
of the building, but also by the vertical distribution of the floors
in different height, it depicts the three-dimensional (3D) building
density.

Fig. 4g shows a color-coded prismatic model for Building No.
168 in Fig. 2f. It is quite clear that this building has a complex ver-
tical structure, and the size of floor area varies between floors. In
order to obtain the accurate floor area estimate for each floor, a
multi-threshold-based segmentation is applied to the nDSM. The
footprint of the building object detected with the base height (H0)
represents the shape of the ground floor. Then, the threshold height
values for the second and higher floors are determined by the base
building height (H0), the number of floors (k), and the average floor
height (F) as in Eq. (4):

gk(i, j) =
{

1, h(i, j) ≥ (H0 + (k − 1)F)
0, h(i, j) < (H0 + (k − 1)F)

(4)

where gk(i, j) is the code number for the object representing the
kth floor (k = 1,2,. . ., t). Different types of buildings will have differ-
ent floor heights. For example, the average floor height of shopping
malls and storage warehouses is much larger than that of residen-
tial buildings. In order to get an accurate estimate, we determined
the average floor height value (F) for each urban district using a

sample of building records. The segmented images for the kth floor
will be treated and processed in a similar way to the building foot-
prints described above. The objects at this level will be explicitly
delimited to represent the kth floor of all buildings, and the area
size of the objects will be calculated to represent the floor area for
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ig. 4. The complex vertical shape and structure of building No. 168. Floor boundari
hreshold of 24.5 m; (d) with threshold of 28 m; (e) with threshold of 101.5 m; (f) w

he kth floor. The sum of the floor areas for all floors within a land
ot is used to compute the FAR value for the land lot.

Fig. 4 shows the boundaries of six floors derived by our
bject-based method for a complex building. The multi-threshold
egmentation followed by the object-based building boundary
xtraction allows for the representation of the shape of each floor
nd hence more accurate estimate for the FAR value.

The geometric, volumetric and density attributes of buildings
alculated at urban district scale include average building height
AV H), average footprint size (AV S), average building volume
AV V), maximum building height (MAX H), maximum building
ootprint size (MAX S), maximum building volume (MAX V), stan-
ard deviation of building height (SD H), standard deviation of
ootprint size (SD S), standard deviation of building volume (SD V),
umber of buildings per hectare (BH), average nearest distance
AV ND), average BCR (AV BCR), average FAR (AV FAR), overall BCR
OR FAR), and overall FAR (OR FAR). The numerical definitions of
hese attributes are shown in Table 2. A propagation-based dis-
ance transformation algorithm (Eggers, 1998) is adapted in this
tudy to compute the distance between building objects. The prop-
gation starts at the boundary of the buildings footprints. During
ropagation, the distance value will be recorded when meeting
ther building objects. The propagation ends when reaching the
order of the whole research area. This set of attributes combine to
ive a comprehensive description of building density and landscape
tructure at urban functional or administrative district level.

.4. Implementation and software tool

Our object-based building density estimation method has been
mplemented as an ArcGIS extension module with a Graphical User
nterface. Algorithms for object extraction and building density
ttribute derivations are coded by using the computationally high
erformance C++ programming language, and the Graphic User

nterface (GUI) is realized by using VB.Net and ArcObjects, which is

set of software components designed by ESRI Inc. specifically for
eveloping ArcGIS applications and extensions.

The extension module is intended as a generic software tool
or extracting urban building objects and deriving building density
ttributes based on the high-resolution data. The general data pro-
h multi-thresholds: (a) with threshold of 3.5 m; (b) with threshold of 21 m; (c) with
reshold of 108.5 m; (g) the color-coded prismatic model.

cessing scenario is shown in Fig. 5. In addition to the LiDAR nDSM
grid, other input data include a mask grid of vegetation distribution,
a vector data layer of land lot polygons, and a vector data layer of
urban district polygons. Users can set the base building height and
average floor height as threshold values for extracting urban build-
ing objects from LiDAR nDSM grid. Three sets of attributes can be
produced as output products from this extension module. First, a
set of geometric and volumetric attributes shown in Table 1 can
be computed at individual building scale, and they are included as
the feature attribute table associated with the extracted building
object coverage (map). Second, the BCR and FAR can be computed
at land lot scale and added into the feature attribute table of the
land lot polygon coverage to create BCR and FAR maps. Third, a set
of density attributes at urban district scale shown in Table 2 can be
computed and added to the feature attribute table of the urban dis-
trict polygon GIS data layer. Users can choose which set or which
attributes in each set will be computed through the dialogue menu
and dropdown lists of the GUI. The ArcGIS software has been widely
used in urban planning and management communities. Seamlessly
embedding urban building extraction and density attribute estima-
tion functions into ArcGIS as its extension module allows users to
take advantages of ArcGIS software package to manage the input
data and visualize the building density calculation results. It also
makes it easy to associate urban building density estimate results
with other GIS data layers for further urban development policy
analysis and decision making.

4. Results and discussions

We applied our object-based method and software tool to pro-
cess the airborne LiDAR data for estimating urban building density
indicators over downtown Houston at three different scales. With
a base building height of 3.5 m as the threshold, the LiDAR nDSM
grid is segmented into foreground and background pixels. Totally,
304 building objects are detected (Fig. 6). Then, the geometric and

volumetric attributes are computed for these individual buildings.

By associating the extracted building objects with land lots, BCR
and FAR indicators are computed and mapped at land lot scale
(Figs. 7 and 8). Among 315 land lots/parcels in the downtown, 88
land lots remain open spaces and no buildings are detected. The
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Fig. 5. Data processing flow chart fo

emaining 227 lots are covered by buildings of varying density. The
etection result is evaluated qualitatively through visual inspection
nd quantitatively through a sample of checking points. The visual

nspection shows that the results closely match actual urban land-
cape components in position and shape. A major problem detected
s that three buildings, the Toyota Center, Tundra Garage, and Hilton
mericas-Houston, are misclassified as open spaces. This is because

Fig. 6. Extracted building objects for downtown Houston.
mated building density estimation.

the airborne LiDAR data were acquired three years earlier than the
color near-infrared DOQQ image and these three structures did not
exist at the time of the LiDAR survey. The detection accuracy is eval-

uated based on 500 check points selected with a random sampling
scheme for the buildings and open spaces. The overall accuracy is
as high as 96%. The results show that over 40% of land lots have
a BCR value larger than 0.5, namely, more than half of the ground

Fig. 7. Building Coverage Ratio map for downtown Houston.
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Table 2
The definitions of density attributes at urban district scale.

Attributes Definition

Average height (AV H) AV H = 1
b

b∑
i=1

Hi

Average size of footprint (AV S) AV S = 1
b

b∑
i=1

Si

Average volume (AV V) AV V = 1
b

b∑
i=1

Vi

Maximum height (MAX H) MAX H = max{Hi}
Maximum size of footprint (MAX S) MAX S = max{Si}
Maximum volume (MAX V) MAX V = max{Vi}

Standard deviation of height (SD H) SD H =

√∑b

i=1
(Hi−AV H)2

b

Standard deviation of size (SD S) SD S =

√∑b

i=1
(Si−AV S)2

b

Standard deviation of volume (SD V) SD V =

√∑b

i=1
(Vi−AV V)2

b

Number of buildings/hectare (BH) BH = b

SD×10,000−1

Average nearest distance between
buildings (AV ND)

AV ND = 1
b

b∑
i=1

NDi

NDi = min{Dij} (i /= j)

Average Building Coverage Ratio
(AV BCR)

AV BCR = 1
l

l∑
i=1

BCRi

Average Floor Area Ratio (AV FAR) AV FAR = 1
l

l∑
i=1

FARi

Overall Building Coverage Ratio (OR BCR) OR BCR =
∑b

i=1
Si

SD

Overall Floor Area Ratio (OR FAR) OR BCR =
∑b

j=1

∑tj

i=1
Aij

SD

Where b is the total number of buildings in a single urban district, Hi is the height of
the ith building in a single urban district, Si is the footprint size of the ith building in
a single urban district, Vi is the volume of the ith building in a single urban district,
SD is area of the urban district in m2, NDi is the nearest distance of the ith building
to the other buildings in a same district, Dij is the distance of the ith building to the
jth building in a same urban district, l is the total number of land lots occupied by
buildings, BCRi is the Building Coverage Ratio of the ith land lot occupied by buildings
in a single urban district, FARi is the Floor Area Ratio of the ith land lot occupied by
buildings in a single urban district, tj is the total number of floors of jth building in a
single urban district, and Aij is the area of the ith floor in the jth building in a single
urban district.

Table 3
Floor heights adopted for different urban districts.

Urban districts Floor height (m)

Skyline 3.5
Theatre 4.0
Historic 3.0

Fig. 8. Floor Area Ratio maps of downtown Houston. (a) With a uniform flo
Warehouse 5.0
Sports & Conventions 4.0
Other 3.5

space for these lots are occupied by building structures (Fig. 7). The
most intensively developed land lot has a BCR value as high as 0.96,
namely, almost the entire ground surface is covered by building
structures and not much open space exists for the lot.

The FAR is estimated in two ways. First, a uniform floor height
(F) of 3.5 m is used in Eq. (4) to derive the floor areas for all land
lots in the downtown, and the spatial distribution of the FAR value
is shown Fig. 8a. There are 35 land lots where the FAR value is
larger than 10.0. As expected, land lots in the Skyline District have
high FAR values, and the average FAR value for the Skyline Dis-
trict reaches 11.9 if only take the land parcels with buildings into
account. In other words, buildings in the Skyline District have about
12 floors on average. Second, different floor height values are cho-
sen for six different urban districts (Table 3) in consideration of
the fact that the type of building varies from district to district.
Buildings in the Theatre, Warehouse, and Sports & Conventions dis-
tricts tend to have a higher floor height, while buildings in historic
district have a smaller floor height. Fig. 8b shows the FAR distribu-
tion calculated with varied floor height values for different urban
districts. Although the spatial pattern remains the same, the mag-
nitude of FAR values is considerably reduced for the land lots in the
Warehouse District and Sports & Conventions District due to the
adoption of a higher floor height.

We have made an assessment on the accuracy of our calculation
results. Actual heights for 10 buildings are acquired from the Empo-
ris.com, a database of commercial real estate information and con-
struction (http://www.emporis.com/en/wm/ci/bu/?id=101031), as
ground truth. By comparing our computational results from the
LiDAR data to the EMPORIS records, the overall accuracy for build-
ing height is better than 98%. In addition, the reference data for

building footprints are developed by manually tracing building
boundaries from 1 m resolution orthorectified color-infrared aerial
photographs. Our comparison shows that the building objects
numerically derived from the LiDAR data closely match the man-
ually traced building footprints in position and shape. The overall

or height of 3.5 m; (b) with varied floor heights for different districts.

http://www.emporis.com/en/wm/ci/bu/%3Fid=101031
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Table 4
Building density attributes calculated for different urban districts.

Districts Area (m2) Number of buildings BH AV H (m) AV S (m2) AV V (m3) MAX H (m) MAX S (m2) MAX V (m3)

Skyline 792,646 64 0.81 118.47 5370 338,662 341.80 27,374 1,005,060
Theatre 227,718 11 0.48 40.90 5844 151,416 112.54 20,116 328,461
Historic 366,535 44 1.20 34.40 2687 66,947 109.27 11,349 658,929
Warehouse 394,785 35 0.89 11.52 2357 17,546 29.72 10,304 88,007
Sports & Conventions 828,131 50 0.60 17.11 2914 64,746 75.55 42,118 1,361,790
Other 1,622,586 100 0.62 27.24 2995 64,031 121.27 24,859 494,524

Districts SD H (m) SD S (m2) SD V (m3) AV ND (m) AV BCR AV FAR OR BCR OR FAR

Skyline 83.64 3899 247,929 17.69 0.65 11.93 0.43 7.69
Theatre 29.19 5802 119,800 37.29 0.42 2.98 0.28 1.69
Historic 22.61 2431 108,211 17.22 0.54 3.80 0.32 2.54
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Warehouse 5.59 2314 19,580
Sports & Conventions 13.91 7669 252,404
Other 26.53 3719 95,051

ccuracy for building object (footprint) size is estimated to be better
han 90%.

Various building density indicators have been derived for six dis-
ricts of downtown Houston (Table 4). These indicators combine to
rovide a comprehensive and quantitative view on the morphology
nd spatial structure of urban landscape in downtown Houston.

Downtown Houston represents one of the most complex urban
andscapes crowded with structures of different natures and
eights. A large number of high-rise buildings and skyscrapers are
oncentrated in the Skyline District. The buildings are densely dis-
ributed, and the average nearest distance between buildings is
nly 17.7 m. This district best reflects the vertical expansion of the
rban landscape and is almost three times as high as the second
ighest district – the Theatre District. The tallest building is over
00 m above the ground. The average height of buildings in the
kyline District is as high as 118 m, and the overall FAR concerning
aried floor heights for different districts is 7.7. Due to the verti-
al dimension and relatively large footprint, most buildings in the
kyline District also have a large volume. The average volume of
uildings in the Skyline District is greatly larger than in other dis-
ricts. This district represents the highest man-made relief in the
owntown. It also should be noted that the building height and
olume vary drastically from building to building in the Skyline Dis-
rict, which are indicated by the large standard deviation of building
eight and volume. Therefore, the dense cluster of buildings also

orms “rugged” urban morphology in the Skyline District.
Buildings in the Theatre District and the Sports & Conventions

istrict are relatively sparsely distributed, and more open space,
arking lots and lawns are available to accommodate the func-
ionalities of entertainment, sports and convention facilities. These
wo districts have a low building density, 0.48 and 0.60 buildings
er hectare respectively. The spacing between buildings is rela-
ively large, and the average nearest distance between buildings
n these two districts is more than two times as large as in other
istricts. Some bulky and giant buildings are scattered in these
wo districts. The Theater District is ranked second in terms of
he number of theater seats in the nation, only behind New York
ity. A number of famous theaters, including the Wortham Cen-
er (opera & ballet), the Alley Theater, the Hobby Center (musical,
oncerts, events), Jones Hall (symphony), Verizon Wireless The-
ter (concerts and events), are located in this district. On average,
he buildings in the Theatre District have the largest base floor
rea (footprint) among different districts. Although buildings in the

port & Conventions District are low in vertical dimension in gen-
ral, the horizontal dimension (indicated by the footprint size) and
he volume of some buildings are enormous. In fact, the largest
uildings in terms of footprint size and volume are located in the
ports & Conventions District rather than in the Skyline District. The
16.06 0.36 0.35 0.21 0.21
34.04 0.32 0.82 0.18 0.69
22.98 0.41 2.47 0.19 1.04

Minute Maid Park stadium has a volume of 1,361,790 m3, while the
George R Brown Convention Center has a volume of 1,205,690 m3.
In the Warehouse District, buildings are dense, and the average
nearest distance between buildings is only 16 m. Most of buildings
have a low and similar height. The overall BCR and FAR have almost
same value of 0.21 in this district, which demonstrates this district
has a relatively homogenous surface and is dominated by horizontal
“low-altitude” extension of urban development. The Historic Dis-
trict contains most of Houston’s historic architecture and buildings.
This district has the highest building density in terms of the num-
ber of buildings per hectare. The overall BCR is 0.3, and the average
nearest distance between buildings is 17.2 m in this district. Nev-
ertheless, building height and size are considerably smaller than
those in the Skyline District and the Theatre District.

5. Conclusions

The scientific knowledge of urban building density information
is fundamentally important for intelligent management and plan-
ning of the urban environment. The airborne LiDAR technology
provides the extraordinary capability in gathering highly accurate
and densely sampled surface elevation measurements over urban
areas. Through a case study in downtown Houston, we have demon-
strated that unprecedented detail level of accurate building density
information can be automatically and efficiently derived from air-
borne LiDAR data. We developed an effective object-based method
and software tool that is capable of extracting building objects and
computing various building density indicators at three different
scales. First, a set of geometric and volumetric attributes are com-
puted at individual building scale to describe the size and shape of
buildings. Second, by associating with land lots through topologi-
cal operation, two most widely used building density indicator, BCR
and FAR, are computed and mapped at land lot scale. Third, a suite
of density attributes are computed at urban district scale to provide
quantitative description of the 3D spatial structure of urban land-
scape. The object-based methods and associated algorithms have
been implemented as an ArcGIS extension module with a graphical
users interface. We believe this software tool would be useful for
the urban planning and management community to characterize
and quantify urban building density based on the newly available
LiDAR data.

Buildings and man-made structures are densely populated in
downtown Houston, forming a complex urban landscape. Since dif-

ferent districts accommodate distinct urban economic, social and
cultural functions, the building size, height, volume, density, mor-
phological heterogeneity and vertical roughness vary from district
to district. The BCR map shows the planimetric and horizontal
density of buildings, while the FAR map shows the 3D density of
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uilding. The Skyline District best embodies the vertical extension
f urban growth with extremely high land use intensity. This dis-
rict represents highest and most rugged relief of the artificial urban
errain. In contrast, the Warehouse District is dominated with low-
ltitude horizontal extension of urban growth with a relatively low
ertical roughness. Large and bulky buildings are scattered in The-
tre District and Sports & Convention District, where buildings are
paced with relative large open spaces. As demonstrated, attributes
hat we derived at three different scales give a comprehensive and
uantitative description on the building density, urban physical
orm, and morphology of urban space from different angles. We
elieve that the quantitative building density information would be
seful for studying urban environment and managing urban land
evelopment and growth.
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