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This paper addresses feasibility issues in the calculation of fluxes of suspended particulate matter (SPM)
from degraded-quality data for flow discharge (Q) and sediment concentration (C) under the additional
constraints of infrequent and irregular sediment concentration samplings. A crucial setting of the scope
involves establishing the number of data required to counterbalance limitations in the measurement
accuracy and frequency of data collection. This study also compares the merits and drawbacks of the clas-
sical rating curve (C = aQb) with those of an improved rating curve approach (IRCA: C = aQb + a1dS) in
which the correction term is an indicator of the variations in sediment storage, thus relating it to flow
dynamics. This alternative formulation remedies the known systematic underestimations in the classical
rating curve and correctly resists the degradation in data quality and availability, as shown in a series of
problematic though realistic cases. For example, monthly concentration samplings (in average) with a
random relative error in the [�30%, +30%] range combined with daily discharge records with a systematic
relative error in the [�5%, +5%] range still yield SPM fluxes within factors of 0.60–1.65 of the real value,
provided that 15 years of data are available. A shorter 5-day time interval (on average) between sam-
plings lowers the relative error in the SPM fluxes to below 10%, a result directly related to the increased
number of Q–C pairs available for fitting. For regional-scale applications, this study may be used to define
the data quality level (uncertainty, frequency and/or number) compatible with reliable computation of
river sediment fluxes. Provided that at least 200 concentration samplings are available, the use of a sed-
iment rating curve model augmented to account for storage effects fulfils this purpose with satisfactory
accuracy under real-life conditions.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Sediment fluxes in fluvial systems reflect the denudation pro-
cesses that occur on the earth’s surface and exert a controlling
effect on the fates of nutrients, organic pollutants and heavy metals.
Therefore, assessment of sediment fluxes aids in characterising the
impact of particulate transfer on water quality throughout the riv-
er system. However, the estimation of realistic sediment budgets
requires long-term discharge-concentration data (Walling and
Webb, 1985; Ludwig and Probst, 1998, Delmas et al., 2009), which
often suffer from poor availability and reliability (Meybeck et al.,
2003; Walling and Fang, 2003). In particular, uncertainties in both
the sampling and calculation methods affect the measurement of
sediment concentration (SPM) fluxes (Rode and Suhr, 2007). More-
over, significant drifts in the measured quantities may arise due to
the location of the sampling in the river section because the sus-
pended sediment concentration varies within cross-sections of
the rivers, thus necessitating a series of depth- and width-inte-
grated measurements (Horowitz, 1997). However, in most cases,
modellers and decision-makers use the daily discharge records
combined with infrequent sediment concentration samplings,
which are generally collected at a single location and exhibit high
temporal variability.

Previous studies have indicated how increased sampling fre-
quencies and total periods of data collection can reduce uncertain-
ties in the predicted SPM or trace element fluxes (Horowitz et al.,
2001; Coynel et al., 2004; Moatar and Meybeck, 2005; Rode and
Suhr, 2007), but a complementary and perhaps broader strategy
would involve treatment of the analysis in terms of the interac-
tions between the number of data, the time interval between sam-
plings (affected by a realistic random component) and the total
period of the data collection. This analysis would be particularly
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pertinent in the numerous areas where available the sediment con-
centration data are by-products of programs for water quality
monitoring that involve infrequent (approximately monthly) sam-
pling (Delmas et al., 2012). A relevant and widely used methodol-
ogy is the reconstruction of continuous (daily) fluctuations in the
sediment concentration from the empirical relationships (C(Q) rat-
ing curves) that link the sediment concentration (C) to the water
discharge (Q) values. The classical C(Q) = aQb rating curve is often
used for this purpose. Nevertheless, for sediment transport studies,
the occasional strong non-linearity in the C(Q) relationship and the
presence of only a few extreme events point to well known and
problematic cases when fitting power laws (Laherrere, 1996;
Goldstein et al., 2004; Newman, 2005; Sornette, 2006; Clauset
et al., 2009; Mitzenmacher, 2004). These problematic cases suggest
the use of truncated intervals of Q values (Moatar et al., 2012) or
data subdivision and hypothesising of the distinct C(Q) relation-
ships with the seasons, basin sizes or properties (Walling and
Webb, 1981; Smart et al., 1999; Quilbé et al., 2006; Delmas et al.,
2009). Another possibility is the addition of correction terms
(Laherrere and Sornette, 1998) with a user-defined physical mean-
ing. Ferguson (1986, 1987) chose the latter option in his inaugural
papers that tackled the advantages and limitations in estimating
sediment fluxes from power-law rating curves. Similar to other
research domains, an open question is whether to attribute a
deterministic physical meaning to the pre-factor and the exponent
(Peters-Kümmerly, 1973; Morgan, 1995; Asselmann, 2000) or to
consider them as conceptually imperfect though demonstrably sta-
tistically relevant. Addressing these questions with a clear physical
sense opens the door for a wide series of improved rating curves
and variants, as advocated by Phillips et al. (1999), Asselmann
(2000), Horowitz (2003) and Delmas et al. (2011), among others.
For example, Picouet et al. (2001) hypothesised two sediment
sources (bank and hillslope erosion), and Mano et al. (2009) intro-
duced explicit climatic and topographic factors.

The objective of the current paper is to address the precision
and sensitivity issues that exist in prediction of SPM fluxes for typ-
ical cases with data of degraded-quality gathered from infrequent
samplings. We consider the C and Q measurements to be affected
Table 1
Names and locations of the USGS stations used in this study together with the drained ar
values. The Q0 base-flow limit is an indicator introduced in the IRCA – Improved Rating Cu
respectively.

USGS
station

River name and station location Drained area Min Q Base-flow Q

# km2

1 Rappahannock River at Remington, VA 1603 0.1 17.4
2 Roanoke River at Randolph, VA 7682 5.1 72.6
3 Dan River at Paces, VA 6700 6.9 64.4
4 Yadkin River at Yadkin College, NC 5905 9.3 68.7
5 Muskingum River at Dresden, OH 15522 13.0 89.1
6 Muskingum River at McConnelsville, OH 19223 16.1 111.7
7 Hocking River at Athens, OH 2442 0.7 24.3
8 Scioto River at Highby, OH 13289 7.1 121.6
9 Little Miami River at Milford, OH 3116 1.5 39.8

10 Great Miami River at Sydney, OH 1401 0.8 10.0
11 Stillwater River at Pleasant Hill, OH 1303 0.3 14.5
12 Maume River at Waterville, OH 16395 0.5 95.0
13 Upper Iowa River near Dorchester, IA 1994 2.2 9.1
14 Iowa River at Iowa City, IA 8472 1.4 21.2
15 Des Moines River near Saylorville, IA 15128 0.4 44.9
16 Des Moines River near Saylorville, IA 15128 2.1 53.4
17 Illinois River at valley City, IL 69264 37.7 3.6
18 Kaskakia River at Cooks Mills, IL 1225 0.0a 5.8
19 Kaskakia River near Venedy Station, IL 11378 2.0 35.8
20 Mississipi River at St. Louis, MO 1805222 1166.7 3808.6
21 Salinas River near Spreckels, CA 10764 0.0b 16.4
22 Sacramento River at Sacramento, CA 60883 112.4 358.2

a Min Q = 0.001 m3 s�1.
b Min Q = 0.01 m3 s�1.
by errors of different types and magnitudes. As commonly
reported, we hypothesised a higher probability of error for concen-
tration than for discharge measurements. Concentration data were
considered prone to random errors in a [�30%, +30%] interval
around the measured values, whereas five systematic biases were
tested for discharge data in the [�20%, 20%] interval around the
daily records. Moreover, infrequent concentration measurements
were simulated together with slightly perturbed sampling periods.
The framework of this study compares the merits and drawbacks
of the classical rating curve with those of an improved rating curve
approach. The latter includes a correction term as an indicator of
sediment storage, thus relating the variation to flow dynamics. This
work relies on a USGS dataset encompassing multiple rivers, basin
typologies and years.
2. Materials and methods

2.1. Database

The present study relies on daily discharge–concentration data
collected over several years at 22 USGS stations taken from the lar-
ger dataset available at http://waterdata.usgs.gov/. The selected
stations cover a wide range of river basin typologies and sizes
and are associated with specific discharge and SPM statistics
(Table 1). For the Des Moines River station, we chose to split the
records into two distinct periods because we observed notably
large discharge variations over the first years of data collection
(1961–1977) followed by rather limited variation over the most
recent years (1977–2004). Several stations display notably low
water levels and even close to intermittent flows under severe
winter conditions (e.g., station 21, Salinas River near Spreckels),
summer droughts (e.g., station 18, Kaskaskia River at Cook Mills)
or both (e.g., station 7, Hocking River at Athens). However, stations
in the USGS database that exhibit complete drying or glaciations
have been discarded from the analysis because they require differ-
ent treatment. This choice tends to omit basins with small drainage
areas, especially those that experience sharp climatic conditions.
eas of the monitored rivers and statistics of their discharge (Q) and concentration (C)
rve Approach, and r(Q) and r(C) report the standard deviations of the Q and C data,

0 Median Q Mean Q Max Q r(Q) Min C Median C Mean C Max C r(C)

m3 s�1 g L�1

11.2 19.0 1296.9 32.9 1 11 39 2070 105
49.6 79.3 1996.3 102.1 1 34 76 2060 142
53.2 77.7 1795.3 91.6 5 60 122 2260 193
62.3 83.7 1868.9 87.0 1 70 150 2970 224
93.2 165.7 1067.5 177.5 1 30 60 1600 84

171.0 256.6 1350.0 229.7 2 48 77 1710 100
9.3 25.0 883.5 49.3 1 14 56 1320 116

61.2 133.3 3596.2 196.8 1 41 99 2520 177
17.4 38.6 863.7 59.4 1 40 103 4850 216

6.7 15.9 250.3 23.6 1 50 72 1710 98
4.0 12.2 373.8 25.6 1 23 52 1970 108

53.0 148.6 3199.8 247.7 1 39 82 2240 129
7.4 12.7 268.2 17.5 1 43 192 10000 677

37.9 64.0 410.6 65.2 1 55 103 7540 215
27.8 69.8 1333.7 109.6 1 120 240 5400 356
48.4 101.1 1254.4 129.4 0.7 32 46 1210 51

549.3 743.0 3398.0 572.3 13 120 182 3720 202
4.9 12.7 274.4 22.8 1 46 60 1710 67

53.8 109.3 1379.0 145.5 5 81 124 2590 157
4898.8 6154.1 29732.7 3841.3 21 217 340 6720 375

0.2 9.3 1121.3 42.6 1 36 306 24000 1273
461.6 656.7 2797.7 495.7 8 47 75 1960 88
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Nevertheless, various temperate to continental climates are
accounted for at stations in California (CA), Illinois (IL), Iowa (IA),
Missouri (MI), North Carolina (NC), Ohio (OH) and Virginia (VA).
Another merit of sufficiently large basins for the present study is
response times that are greater than the reference daily sampling
period for the discharge and concentration measurements. In addi-
tion to the temporal arguments, large basins are also more integra-
tive than smaller basins because they offer additional spatial
variability with respect to the sediment sources and delivery pro-
cesses combined with larger climatic variability.
Fig. 1. Sediment storage index S(t) calculated from discharge values Q(t) and Q0, in
an application to the Hocking River at Athens, Ohio (station 7, Table 1).

Fig. 2. Simplified flow chart of the fitting procedure.
2.2. Rating curves

In addition to the classical C = aQb rating curve (RC), different
expressions and strategies have been tested and described in detail
by Delmas et al. (2011). Among these, emphasis is placed in this
work on the Improved Rating Curve Approach (IRCA), which
hypothesises C = aQb + a1dS, where a1 is a parameter, S is the sedi-
ment storage index and dS is the daily variation. This method oper-
ates in two steps. First, the method fits the C = aQb model, thus
freezing the a and b coefficients, and subsequently fits the a1

parameter, which is the only remaining degree of freedom in the
a1dS correction term. The IRCA was implemented to remedy the
known limitations of the RC, especially its inability to include flow
dynamics or antecedent flow conditions in the prediction of C
values.

For this purpose, the sediment storage index is described as a
function of discharge dynamics:

SðtÞ ¼ exp �A
qðtÞ
Q0

� �
ð1Þ

where A is a dimensionless coefficient that controls the amplitude
of S variations, and q(t) is the instantaneous Q(t) value on the rising
limbs of the hydrograph or a sliding average of Q(t) values on the
falling limbs. This double status of q(t) ensures asymmetry between
quick sediment loading and delayed sediment storage, which is the
working hypothesis that underlies the IRCA. The sliding average
extends itself backwards in time towards the beginning of the cur-
rent falling limb but is limited to 20 days at most, which is the
chosen approach used to account for antecedent flow conditions.

The IRCA also requires statistical analysis to establish the upper
limit of the base flow, given as Q0. From the adopted assumptions, S
varies between 0 for extreme discharges (all possible sediments
present in the flow) and 1 when flow ceases (all material stored
and available). The choice of A = 0.1 yields S = 0.95, 0.75, 0.50,
0.25 and 0.05 for q/Q0 ratios of approximately 0.5, 3, 7, 14 and
30, respectively. This choice also implies that S � 0.9 for q = Q0,
and thus the ‘‘sediment availability’’ would be approximately 90%.

Fig. 1 shows the variations in the sediment storage index in an
application to the Hocking River at Athens (station 7, Table 1). The
figure displays the main characteristics of this approach: asymme-
try between the delayed sediment storage and quick sediment
mobilisation, damping of the high-frequency oscillations and max-
imum sediment storage associated with long-lasting low dis-
charges. The intent of the IRCA is to use the daily variations of
the sediment storage index as relevant information for the flow
dynamics, as handled by the a1dS correction term in the C = aQb +
a1dS model.

In a strict sense, both the C = aQb + a1dS and C = aQb + a1dS
expressions should be considered in this work as ‘‘models’’ and
not ‘‘laws’’. Laws should be written with an additional explicit
error term, either multiplicative or additive, whose distribution
should be assessed from the characteristics and is missing in the
data (Q, C) measurements. This option would take into account that
the C = aQb and C = aQb + a1dS expressions are exact formulations
of the problem, attributing the deviations between the calculated
and observed quantities to variations in the associated error terms.
Instead, the current option views the C = aQb and C = aQb + a1dS
expressions as imperfect models with inherent errors. Therefore,
the scope of this work focuses on the dispersion of the model pre-
dictions with alterations of the (Q, C) dataset.

2.3. Fitting procedures

All fittings were automated using a multi-stage procedure cen-
tred on the PEST parameter estimation software (Doherty, 2004)
but also resorted to further programming. Fig. 2 displays the sim-
plified flow chart, which is briefly described. The user selects a C(Q)
model with p parameters to fit, entering the flow chart with the
initial p0 vector of parameter values and also providing a series
of Qi discharge samplings. This (Qi, p) set is processed via a program
that calculates the ‘‘fitted’’ Cðf Þi value associated with each Qi value
for the selected power law. Next, PEST carries out an overall opti-
misation based on the minimisation of an objective function,
which is calculated as the sum of the squared residuals between
the observed Ci values and the fitted Cðf Þi values. Once the optimisa-
tion has been completed, PEST estimates the goodness-of-fit by
calculating the coefficient of determination, known as R. The R
value may therefore be used for comparisons between fittings.
One of the interesting features in PEST is its ability to handle power
laws with or without log transformations, and the choice is left to
the user’s discretion. Slightly better results have been obtained in
this work by fitting the untransformed expressions.



B. Cheviron et al. / Journal of Hydrology 508 (2014) 364–373 367
2.4. Methods for calculating fluxes and errors

The real amount of exported sediment in the [0, T] total time
period is the unknown SPM flux:

F ¼
Z T

0
QðtÞCðtÞdt ð2Þ

where Q is the discharge, C is the concentration of suspended par-
ticulate matter (SPM) and t is time.

The straightforward approximation for direct calculation of F is:

FN ¼
XN

i¼1

QiCidti ð3Þ

where Qi and Ci are time-averaged values over the dti intervals cov-
ering the [0, T] time period.

The discrepancy between F and FN plausibly increases with
increased dti values. Nevertheless, certain rare and fortuitous
combinations of large dti values may still lead to FN � F, from
compensating effects between the underestimations and overesti-
mations of SPM fluxes over certain periods. Therefore, the gap
between FN and F is not expected to vary in any monotonous or
linear manner with increasing dti values. By contrast, the dti intervals
that are smaller than the characteristic time period of fluctuations
in Q and C values tend to ensure the reliability of the FN approximation.
Because the SPM regimes are related to the basin sizes (Meybeck
et al., 2003) and only drainage areas larger than 1000 km2 are con-
sidered in this work, the FN fluxes calculated from the error-free
daily discharge and concentration records are considered as exact
solutions (FN � F) in the following. The subsequent developments
aim to test the deviations from this best-case scenario that appear
when coping with infrequent and/or uncertain data (i.e., random
errors in the concentration data and systematic errors in the dis-
charge data and sparse concentration samplings in this work).

The missing concentration data in (3) may be replaced by con-
centration values obtained from the fitted C(Q) models. Each Qi da-
tum results in a predicted Ci

(f) concentration value, and the
exported SPM flux now can be approximated by:

FN;f ¼
XN

i¼1

Q iC
ðf Þ
i dti ð4Þ

The hypothesis for the missing C data implies that only n < N
values have been measured. In the calculation of FN,f, one may
either use the available concentration data Ci instead of the fitted
values or systematically resort to the entire series of Cðf Þi values,
as in this study.

From a theoretical point of view, any given Cðf Þi is an unknown
function of the entire dataset via the fitting procedure:

Cðf Þi ¼ Cðf Þi ðQ1; . . . ;Q N;C1; . . . ; Ck; . . . ;Cn;Dt1; . . . ;Dtk; . . . ;DtnÞ
ð5Þ

with irregular Dtk intervals between successive C samplings in the
general case.

For regular Dt intervals between concentration samplings, the
(Dt1, . . . ,Dtk,. . .,Dtn) temporal argument could be reduced to (Dt,
n) or (Dt, T) without any additional loss of information. Combining
these elements with shortened notations Q0 = (Q1, . . . ,QN) and
C0 = (C1, . . . ,Cn) would yield:

Cðf Þi ¼ Cðf Þi ðQ
0;C 0;Dt; TÞ ð6Þ

The assessment of SPM fluxes (FN,f) from the source data (Q0, C0)
under experimental conditions (Dt, T) is a two-stage process that
first solves the inverse problem by fitting the optimal {p} parame-
ter set in the C(Q) model (rating curve) and subsequently uses it for
direct calculations by means of (4):
ðQ 0;C 0;Dt; TÞ ! fpg ! FN;f ð7Þ

Most of the time, at least in the French river surveillance net-
work, the intervals between C samplings are only approximately
regular such that Dt� should be used instead of Dt. The present
procedure is assumed to be valid if the average of the Dt� values
over the data collection period remains sufficiently close to Dt. In
other words, this hypothesis is intended to authorise random fluc-
tuations of Dt� around Dt = T/n and is not assumed to hold for
drastic changes in data collection strategy.

The objective of Step 1 is to test the combined effects of system-
atic biases in Q0 with random errors on C0, thus maintaining the
optimal conditions of data collection: daily discharge and concen-
tration data over several years. Emphasis is placed on the effects of
degraded data quality on both the fitted parameters and the esti-
mated SPM fluxes for the classical (C = aQb) and improved
(C = aQb + a1dS) rating curves.

Five systematic relative errors in the discharge measurements
are addressed and are noted as Qr = �20%, �10%, 0%, +10%
and + 20%: if Q* is the measured dataset and Q0 is the collection
of exact values, the listed Qr cases are also written as Q*/Q0 = 0.8,
0.9, 1.0, 1.1 and 1.2, respectively. However, random relative errors
in the concentration measurements (CR) were assumed as uni-
formly distributed within the [�30%, +30%] interval around the col-
lected data. This random treatment involved replicating each
station in Table 1 into 100 virtual stations with the intended per-
turbations in the C data.

The selected objectives are to study the relative variations of the
parameters {pr} and those of the calculated SPM fluxes. The latter
appear in more eloquent representations when displaying the
ratios of calculated and exact fluxes such that the stages of the test
procedure may be summarised in:
ðQ r ;C
RÞ ! fprg ! FN;f =F ð8Þ
where the expected results are the mean variation trends in func-
tion of Qr values with dispersion effects arising from the random-
ised CR concentration data. The {pr} set is {ar, br} for the classical
rating curve and {ar, br, a1r} for the IRCA.

Step 2 focuses on the effects of the sampling frequencies, espe-
cially those with increasing time intervals between C data, while
ensuring that the data quality is unaffected, thus producing
error-free Q and C data. Numerous combinations of (DtR, TC) values
have been tested, where DtR designates an average sampling inter-
val affected by a ‘‘small’’ random perturbation (at most equal to
Dt/2), and TC is the total period of data collection. The DtR

treatment is the approach chosen to account for the irregular Dt�

intervals previously mentioned. The targets are once again the
relative variations and dispersions of the SPM fluxes, as shown in
the ratios of calculated and exact fluxes:
ðDtR; TCÞ ! FN;f =F ð9Þ

Step 3 analyses the combined effects of the degraded Q–C data
quality and infrequent C measurements on the calculated SPM
fluxes within the following procedure:
ðQ r ;C
R;DtR; TCÞ ! FN;f =F ð10Þ

Finally, step 4 provides an application of the IRCA around the
estimation of SPM exports from French rivers to the sea. Contrary
to the preceding sections, F is unknown and is thus estimated from
‘‘confidence intervals’’ around the F/FN,f ratios by relying on the cal-
culated FN,f fluxes.
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3. Results and discussion

3.1. Step 1: Effects of data uncertainty on the calculated SPM fluxes

3.1.1. Effects of data uncertainty on the fitted parameters
Theoretical predictions are available from the scale-invariant

properties of the C = aQb law: the law should still hold with a mod-
ified pre-factor (a* instead of a) and unchanged exponent (b) when
modifying the argument, i.e., measuring Q* instead of the real Q
value:

C ¼ aQ b ¼ a
Q
Q �

Q �
� �b

¼ a�Q �b ð11Þ

with a* = a(Q/Q*)b.
For example, the underestimation of Q by 20% (Qr = �20%) cor-

responds to Q*/Q = 0.8, thus Q/Q* = 1.25 and a*/a = (1.25)b. A
numerical application with a typical b value of 0.85 yields
a*/a = 1.21. In such a case, a relative variation ar = +21% is theoret-
ically expected. Similar predictions are available for the other
tested Qr values and are represented by the ‘‘Theory’’ dotted lines
in Fig. 3. Because the b exponent is supposedly unaffected, its
relative variation br should be zero. No such prediction is available
for a1 and a1r.

Fig. 3 gathers the ar, br and a1r variations; the latter is specific to
the C = aQb + a1dS model, and the former two are common with the
C = aQb model. All curves display the global averages of ar, br or a1r

for the 22 stations listed in Table 1, and each one is replicated into
100 virtual stations to satisfy the random procedure on C data. Tak-
ing the example of ar, the upper (+) and lower (�) limits of the dis-
persion envelope are plotted as:
Fig. 3. Relative variation and dispersion of the fitted coefficients in C = aQb (a, b, d, e,
determination. Dispersion envelopes correspond to the 100% confidence intervals. Lines
a�r ðQ rÞ ¼
a�ðQ rÞ � 1:73ra� ðQrÞ

a
¼ arðQ rÞ � 1:73

ra� ðQ rÞ
a

ð12Þ
where ra⁄ is the standard deviation in the a* values and all quantities
are functions of Qr except a, which is the reference value obtained for
Qr = 0. The ra⁄/a term is a normalised standard deviation.

The 1.73 factor is usually associated with a 100%-confidence
interval for uniform random distributions: once the average value
(AV) and standard deviation (r) are known, the real value falls in
the [AV-1.73 r, AV + 1.73 r] interval. In this work, the uniform ran-
dom distribution CR results in nearly uniform random distributions
of a*(Qr,CR) and ar(Qr,CR) values for each Qr value, thus ensuring the
validity of the calculated dispersion envelope for ar(Qr,CR). The
same procedure applies to parameters b and a1.

Fig. 3a, d and g examine the ar(Qr) trends and compare them
with the theoretical predictions for increasing values of the PEST
coefficient of determination (R). The atypical non-monotonous var-
iation displayed in Fig. 3a is essentially due to poorly fitted data
(R � 0.2) from stations 14, 16, 18 and 19 in Table 1. At such low
R values, equifinality unavoidably exists such that completely dif-
ferent (a, b) couples lead to similar performances in the optimisa-
tion. For the cited stations, unexpectedly high a values compensate
for the effects of notably low b� 1 values, yielding R values other-
wise obtained from (a, b) couples with b � 1.

In Fig. 3a, d and g, the dispersion decreases with increasing R
values and remains limited in the sense that variability is
explained by the ar(Qr) trends rather than by the ‘‘orthogonal’’
dispersive random effects. As expected, the ar(Qr) curves best
match the theoretical curves for increasing R values, which
indicate a clearer power-law organisation of the dataset.
g, h) and C = aQb + a1dS models (c, f, i) for increasing values of the coefficient of
in the middle of the envelopes show averages over all stations listed in Table 1.
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Unfortunately, only 7 stations are encompassed by the R > 0.65
criteria vs. 17 stations out of 22 for R > 0.3.

Rather weak dispersions and low br values (i.e., nearly un-
changed b exponents) in Fig. 3b, e, and h appear to be in good agree-
ment with expectations arising from the scale-invariance
properties of power laws. However, a striking feature is the increas-
ing variability of ar and br with decreasing determination values.
The underlying and unanswered question at this point is whether
this variability will endanger the reliability of SPM flux calculations
for fittings with low determination values. This question is the sub-
ject of the advocated ‘‘composite analysis’’ performed in the follow-
ing paragraphs, from data uncertainty to uncertainty in the fitted
parameters as well as in the calculated fluxes.

The a1r variations (Fig. 3c, f and i) also show limited dispersion,
except for strong discharge underestimations. Positive relative er-
rors in the discharge (Qr > 0) cause positive relative variations in
the a1 coefficient (a1r > 0). A key point is that the dS term is identi-
cal regardless of the Qr value because the q/Q0 ratio is used in (1),
where both q and Q0 are affected by the same relative error in the
discharge values. This choice of dS, referred to as ‘‘identical by con-
struction’’, allows direct interpretation of the role played by a1: the
a1dS correction behaves similar to a1, producing its strongest rela-
tive variations (a1r = �30%) for the strongest discharge underesti-
mations (Qr = �20%).

3.1.2. Effects of data uncertainty on the calculated SPM fluxes
Contrary to the fitted coefficients, the calculated SPM fluxes ex-

hibit almost no dependence on the determination (R) values.
Therefore, Fig. 4 plots the SPM fluxes and dispersions obtained
for all R values. As shown previously, the upper (+) and lower (�)
limits of the dispersion envelope are written:

FN;f

F

� ��
ðQrÞ ¼

FN;f ðQ rÞ � 1:73rFN;f
ðQ rÞ

F

¼ FN;f

F

� �
ðQrÞ � 1:73

rFN;f
ðQ rÞ

F
ð13Þ

Fig. 4a and b shows weak dispersions and similar variation
trends because the calculated SPM fluxes increase with the esti-
mated discharge values. The relative variations in the calculated
fluxes are near-linear functions of the systematic relative error
present in the discharge measurements for both the classical
C = aQb (Fig. 4a) and the improved C = aQb + a1dS (Fig. 4b) rating
curves. The difference between these parallel curves is the ‘‘offset’’
added in Fig. 4b by the a1dS correction, which perfectly remedies
the underestimation due to the classical method. The gain obtained
from the a1dS correction is approximately 5% along the ‘‘calculated
on exact’’ vertical axis, with even weaker dispersion in the results.
Fig. 4. Ratios and dispersion of calculated on exact SPM fluxes obtained from the fitted
determination. These results were obtained from daily samplings over the entire sam
envelopes correspond to the 100% confidence intervals. Lines in the middle of the envel
For example, if the discharge is known with a 10% uncertainty (5%
on each side of the Qr = 0 line), then FN,f/F lies within the 0.88–1.04
and 0.93–1.07 ranges of the classical and improved rating curves,
respectively.

Looking at the nearly stable b values (br � 0 in Fig. 3b, e and h),
it is worth noting that increases in the fitted a values (ar > 0 in
Fig. 3d and g) were not sufficient to counterbalance the influence
of the discharge underestimations (Qr < 0). The calculated fluxes
still underestimate the real values when the discharge is underes-
timated for both methods in Fig. 4. However, the overall effect of
the storage term is an increase in the calculated (FN,f) SPM fluxes,
which is validated by improvements of approximately 5% in the
determination values.
3.2. Step 2: Effects of data infrequence on the calculated SPM fluxes

This subsection leaves data quality concerns aside to focus on
data availability, especially on the problem of infrequent C data.
This subsection also tackles the sampling frequency issue by
addressing the interplay between the number (n) of available data,
the total collection period (T) and the sampling period (Dt), as
commented next to (6). As previously mentioned, the sampling
periods have always been tested with slight random perturbations
(DtR) of the predefined values to account for more realistic field
conditions, resulting in approximations (Dt�) of the predefined
Dt intervals. Fig. 5 displays the ratio of the calculated and exact
SPM fluxes, the medians of the absolute errors on this ratio and
the statistics for the absolute errors on this ratio in the Dt � 30 day
case for various (n, T, Dt) triplets, thus allowing comparisons be-
tween the fitted C = aQb and C = aQb + a1dS models.

Fig. 5a targets the evolution of the ‘‘calculated on exact’’ ratios
of SPM fluxes for decreasing values of the sampling interval (Dt)
and also shows the positive impact of increasingly long periods
of data collection (T) for the given sampling intervals. A clear in-
crease in dispersion occurs for Dt > 5 days combined with
T < 4 years. Further on the left of the diagram, the rather typical
monthly sampling period (Dt � 30 days) requires at least an 8-year
collection period (T = 8 years) for the ‘‘calculated on exact’’ ratios to
lie within the gross [0.5, 5.0] interval. Fig. 5b also begins with
highly dispersed values for combinations of high sampling periods,
even with long collection periods, and exhibits additional oscilla-
tions before achieving convergence because it is obviously more
seriously affected by weak T values. The main difference is the
highest dispersion for Dt � 5 days and T = 4 years and for
Dt � 20 days and T = 8 years. A common point appears to be the
trend of overestimating the exact SPM fluxes, even for the most rel-
evant estimations that rely on low Dt and high T values.
C = aQb (a) and C = aQb + a1dS models (b) without any criterion for the coefficient of
pling periods at each USGS station, i.e., station-specific time periods. Dispersion
opes show the averages over all stations listed in Table 1.



(f)(e)

(c) (d)

(b)(a)

Fig. 5. Ratios of calculated on exact SPM fluxes (a and b), medians of the absolute errors of these ratios (c and d) and statistics for the absolute errors of these ratios for
sampling periods Dt � 30 days (e and f). The results are obtained from the fitted C = aQb and C = aQb + a1dS models for various combinations involving the number (n) of
available concentration data, the total time period for data collection (T) and the sampling period (Dt) for concentration data.
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A complementary view is given by Fig. 5c and d and shows the
median of the absolute error of the calculated against exact ratio
as a function of the number of available concentration data (n) by
plotting a dedicated curve for each of the total tested collection
periods (T = 1, 4, 8, 12 and 15 years). Fig. 5c shows that n = 150 takes
the error under 20%, whereas n = 300 is required for errors lower
than 10%. These results are nearly independent of T and thus hold
for sampling intervals Dt = T/n with n above the mentioned thresh-
olds. For example, it takes Dt � 20 days for T = 8 years to dispose of
n = 150 concentration data. Equivalently, T = 13.7 years is the min-
imum time period required to fulfil the 20% error criterion when
performing monthly samplings (Dt � 30 days). By contrast, the
trends in Fig. 5d are less uniform because the error values exhibit
a clear dependence on the T values, which calls in question analyses
that only involve the number n of concentration data and make a
case for combined (n, T) criteria. For example, n > 200 and
T P 8 years will confine the relative error to under the 20% mark.
For monthly samplings, the n > 200 threshold alone corresponds
to T > 18 years, which de facto verifies T P 8 years. This result tends
to indicate that the condition for the number of data remains the
most restrictive and could still be maintained alone.

Figs. 5e and f focus on the case of monthly concentration sam-
plings. The monotonic and exponential-like decrease of the error in
Fig. 5e emphasises the regular gain in the stability of the C = aQb

method for total data collection periods increasing from T = 1 to
15 years. Fig. 5f shows the same trend with a few irregularities.
The dynamic definition chosen for the storage term (S) and its vari-
ations (dS) plausibly requires sufficiently dense concentration data
for significant gains in precision, with potentially better perfor-
mances than the C = aQb method but apparently with slightly more
restrictive conditions of application.

3.3. Step 3: Combined effects of data uncertainty and infrequence on
the calculated SPM fluxes

Subsection 3.1 established the ability of the C = aQb + a1dS mod-
el to better predict the SPM fluxes, as compared with the C = aQb

model, using degraded-quality data. Subsection 3.2 showed that
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the C = aQb + a1dS model was slightly more sensitive to data infre-
quence. The present subsection tests both models against com-
bined data uncertainty and infrequence to simulate eventual
real-life conditions: systematic relative errors in the discharge
measurements (poorly-gauged stations), random errors in the con-
centration measurements (uncertain techniques) and possibly
sparse concentration measurements (limited credits).

Fig. 6 uses the 100%-confidence intervals, similar to these al-
ready defined in (12) and (13), to draw dispersion envelopes asso-
ciated with the random treatment of concentration data for daily
(Dt � 1 day), decadal (Dt � 10 days) and monthly (Dt � 30 days)
concentration samplings. The Dt � 1 day case corresponds to the
results shown in Fig. 4. In Fig. 6, sparser concentration samplings
lead to wider dispersion envelopes that are somewhat shifted to-
wards higher flux predictions. The drift and dispersion are a bit
more pronounced for the storage method with too many data lack-
ing, although the curves are quite similar between sketches (a) and
(b). Fig. 6 also proves that infrequent and limited-quality data may
still be used for flux predictions (at least with caution and while
staying within the tested ranges for errors) because they do not
lead to completely divergent, uncontrolled or unpredictable
results.

As a mean behaviour among all stations, if one commits a sys-
tematic relative error within the [�5%, +5%] interval on Q together
with a random relative error within the [�30%, +30%] interval on C
while only disposing of C data each 30 days on average, the calcu-
lated SPM flux still lies within a factor of 0.60–1.60 of the real value
with the classical rating curve. The improved rating curve gives the
estimation in the 0.65–1.65 range. A narrower 0.80–1.40 range
would be obtained if considering 60%-confidence intervals instead
of 100%-confidence intervals. The following subsection therefore
addresses possible applications in bounding sediment budgets.
Fig. 7. Dispersion envelopes (100% confidence intervals) for the ratios of exact on
calculated SPM fluxes obtained from uncertain and infrequent concentration data
by fitting the C = aQb + a1dS model (a). Application to sediment exports from French
rivers, where inner and outer circles bound the real SPM values (b).
3.4. Step 4: Application to sediment exports from French rivers

In real-life situations, the predicted flux is known, and the
objective is to define a plausible interval for the real flux. This pro-
cess may be carried out by examining the ‘‘exact against calcu-
lated’’ ratios along the y-axis instead of the ‘‘calculated against
exact’’ ratios shown in the previous figures. Fig. 7a presents disper-
sion envelopes corresponding to the 100%-confidence intervals,
indicating where the exact SPM flux may lie for sampling periods
of Dt � 10 days and Dt � 30 days. Taking a 10% uncertainty for
the discharge measurements (between �5 and +5%), retaining
the 60% random uncertainty in the concentration data (between
(a)
Fig. 6. Dispersion envelopes for the ratios of calculated and exact SPM fluxes obtain
C = aQb + a1dS models (b). These results were obtained over the entire sampling period
correspond to the 100% confidence intervals averaged over the entire dataset listed in T
errors in concentration, and increased sampling periods.
�30% and +30%) and assuming a worst-case sampling interval of
Dt � 30 days for the concentration data, the real flux (F) lies
between 0.6 and 1.53 times the calculated value (FN,f).

In the French sediment budget proposed by Delmas et al. (2012)
for the major rivers to the sea, the calculations were performed
(b)
ed from uncertain and infrequent concentration data by fitting C = aQb (a) and

at each USGS station, i.e., station-specific time periods. These dispersion envelopes
able 1. Each station has been affected with systematic errors in discharge, random
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from monthly sediment concentration samplings (Dt � 30 days)
over more than 25 years, except for the Rhone river, for which daily
measurements were available in certain periods, yielding an aver-
age of Dt � 10 days. Fig. 7b shows the induced uncertainty in the
calculated sediment fluxes. The estimated total sediment load for
the selected rivers is 13.9 Mt/yr. From the uncertainties calculated
in this work, the real sediment export from these rivers is con-
tained between 10.05 Mt/yr and 17.7 Mt/yr.
4. Conclusion

This paper tackled feasibility and precision issues in calculation
of fluxes of suspended particulate matter (SPM) by assuming sys-
tematic errors in the water discharge (Q) and random errors in sed-
iment concentration (C) data and under the additional constraint of
infrequent sediment concentration samplings. The chosen frame-
work compared the merits and drawbacks of the classical rating
curve (C = aQb) with those of an improved rating curve approach
(IRCA, C = aQb + a1dS) in which the correction term is an indicator
of the variations in sediment storage and is thus related to flow
dynamics. Successive steps of the analysis were: (1) to establish
the effects of data uncertainty on the fitted coefficients (a, b, a1)
and on the calculated SPM fluxes, (2) to examine how infrequent
sediment concentration data affects these estimates and (3) to
combine both effects into the definition of realistic cases, thus
allowing an application to sediment exports from French rivers.

Step 1 involved systematic relative errors in the flow discharge
(�20%, �10%, 0%, +10%, +20%) and random relative errors in the
sediment concentration in the [�30%, +30%] interval. Increasing a
values and stable b values were observed when gradually moving
from �20% to +20% errors in the discharge, together with decreas-
ing dispersion in the fitted (a, b) coefficients with the increasing
goodness-of-fit. Such results globally meet the expectations arising
from the scale-invariant properties of power laws. As a comple-
ment, the dispersion in the magnitude of the a1dS correction term
appeared far stronger for the most severe discharge underestima-
tions than for all other tested errors. The general trend was that
of an upward correction due to the a1dS term: the IRCA remedies
the small systematic underestimations observed with the classical
rating curve method. The IRCA always performs better than the
classical rating curve (and does not require additional information)
when frequent concentration measurements are available, regard-
less of the period of data collection and the tested errors in the dis-
charge and concentration.

Step 2 hypothesised error-free discharge and concentration
measurements to focus on the effects of sampling frequencies on
the calculated sediment fluxes. The results show that the number
(n) of available C measurements is more discriminating than the
sampling frequency itself, at least within the tested data collection
strategies, and the provided data measurements captured suffi-
cient variability in the river behaviour according to the Wilcoxon
test of data representativity. The criteria on n were revealed as
the most restrictive with respect to the performances of the rating
curves: n > 200 guaranteed that the calculated SPM fluxes would
lie within the [�20%, +20%] interval around the exact values.

Step 3 consisted of combining the previous aspects and check-
ing whether degradation of the results remained progressive and
controlled, or if data uncertainty and infrequence would yield
diverging results and render the methods inapplicable. This ques-
tion was especially pertinent for the IRCA, that was slightly better
in dealing with uncertain data but was slightly more sensitive to
data infrequence. Bounding the calculated SPM fluxes within the
confidence intervals around the real values allowed the following
observations: the calculations are slightly higher with the im-
proved rating curve, and the dispersion also grows slightly wider
with increasing errors in discharge, but the results always stay
within the acceptable margins of errors.

In the chosen worst-case scenario, poor sampling intervals of
30 days (on average) over approximately fifteen years combined
with relative errors in discharge between �5% and +5% and ran-
dom errors within the [�30%, +30%] interval for the sediment con-
centration values resulted in calculated fluxes that are still
bounded within a factor of 0.60–1.65 of the real values. However,
all other realistic cases yield far better estimates. For example,
there is no technical improvement, but a shorter 5-day sampling
interval on average reduces the relative error to below 10%. Finally,
the application to French rivers illustrated the reliability of the
method for a wide variety of irregular sampling intervals and flow
discharge and sediment concentration ranges, provided that suffi-
cient concentration data were available. In addition to technical
improvements, a key issue is to better address the irregular sam-
plings and thus to extract additional information from the dis-
charge dynamics, especially the antecedent flow conditions,
through ongoing developments around the sediment storage term
in the IRCA.

In its present formulation, the IRCA perfectly corrects the
known underestimation of the classical rating curve, if frequent
concentration samplings are available, combined with the uncer-
tainties of discharge and concentration values. Both methods per-
form well when concentration samplings become sparse if the
sampling period and number of concentrations remain sufficiently
large. Finally, only the IRCA is subject to improvements for better
exploitation of the information contained in the temporal dynam-
ics of discharge.
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