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We describe a multi-agent platform for a traveller information system, allowing travellers to find the road
traffic information web service (WSs) that best fits their requirements. After studying existing proposals
for discovery of semantic WS, we implemented a hybrid matching algorithm, which is described in detail
here. Semantic WS profiles are annotated semantically as an OWL-S and also the traveller request is rep-
resented as a OWL-S profile. The algorithm assigns different weights and measures to each advertised WS
profile parameter, depending on their relevance, type and nature. To do this we have extended Paolucci’s
Algorithm and adapted it to our scenario. We have added new similarity measures, in particular, the use
of the ‘sibling’ relationship, to improve the recall, allowing relevant services to be discovered by the users
yet not retrieved by other algorithms. Although we have increased the similarity concept relations, we
have improved the run-time using a pre-process filter step that reduces the set of potentially useful
WS. This improves the scalability of the semantic matching algorithm.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Organizations operate in a global environment in which
national business compete within a global economy and society.
Information and data can be used as a strategic advantage by pro-
viding customers with specialized services tailored to suit their
individual needs. Web Services (WS) enables the interoperability
between information systems in real time. WS semantically anno-
tated are handy plug and play services accessible on the Internet.
As the number of WS over Internet is rising, the number of clients
demanding to reuse services is also increasing. These clients ask for
services using queries specified by functional (FPs) and non-func-
tional parameters (NFPs).

In Samper-Zapater, Llidó, Durá, and Cirilo (2013) we proposed a
Traveller information architecture as a multi-agent platform sys-
tem (Fig. 1) to allow advertisement, request, discovery, invocation
and execution of WS within it.

In this paper, we are going to describe a hybrid matching algo-
rithm to automatic discovery road traffic information WSs. User
requirements and WS, were both represented as a WS profile
semantically annotated with the same ontologies.

An Automatic WS Discovery is an automated process to locate
WS that can provide a particular class of service capabilities, con-
sidering the constraints specified by the client. To achieve this goal,
it is quite important to match appropriately the different proper-
ties or capabilities of the desired WS, specially the outputs. The
use of matching semantics is very important in this context, so
we are going to use OWL-S descriptions1 (Martin et al., 2005;
Pedrinaci, Maleshkova, Zaremba, & Panahiazar, 2012).

To help providers annotate semantically WS profiles with
OWL-S, in Samper, Tomás, Carrillo, and do PC Nascimento (2008)
we proposed the OntoService web tool. This tool is also useful to
help clients to specify their requirements semantically as an
OWL-S profile and it facilitates the user interaction establishing a
semi-automatic guidance. Due to the lack of specific ontologies
on this domain, road traffic information, we have developed two
ontologies (Samper-Zapater, Zambrano, & García, 2006): The first
one, a Road Traffic Ontology to specify the road information con-
cepts and relations. The second one, a Road Traffic Services Catego-
rization Ontology (Fig. 2) to categorize the services on our scenario.
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Fig. 1. Traveller information architecture.

Fig. 2. Part of road traffic services categorization ontology.
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Finally, the hybrid algorithm has been validated through the
development of a software prototype of our multi-agent platform
traveller architecture. It has allowed the assembly of all elements
(road traffic ontologies, matching algorithm, information web ser-
vices). Using the prototype, the algorithm has been evaluated and
the functionality verified as a whole by studying the relationships
between each one of the elements and results.

The paper has been organized as follows: Section 2 provides an
overview of the background. Section 3 introduces our traveller
information architecture. Section 4 deals with the matchmaking
algorithm proposed in our system. Section 5 presents the results
and discussions with some test cases. Section 6 analyzes the run-
time improvements. And finally, in Section 7, some conclusions
and future work are exposed.
2. Background

As indicated by Trastour, Bartolini, and Gonzalez-Castillo
(2001), service profiles describe the capabilities of a service and,
thus, they can describe both the capabilities of the services offered
by providers (advertisements) and those expected by clients
(requests). The formal OWL-S ontology enables users and software
agents to automatically discover, invoke, compose, and monitor
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Web resources offering services, under specified constraints
(Kamaruddin, Shen, & Beydoun, 2012).

The group of researchers in CMU presented LARKS (Sycara,
Klusch, Widoff, & Lu, 1999) as a dynamic matchmaking system
among heterogeneous software agents, where WS were seen as
frames and their slots could be used to describe the essential attri-
butes of a service: input, output, inConstraints and outConstraints.
The concepts used in textcolorcyanWS descriptions were defined
through a language of concept description called ITL (Information
Terminological Language). This language was used by mediator
agents to match service application agents with service agent pro-
viders to solve the requested agent requirements. The integration
architecture described in CMU MatchMaker,2 used Information
Retrieval, Artificial Intelligence and Software Engineering techniques
to process the syntactic and semantic similarity between the capa-
bility descriptions of WS described in DAML-S (DARPA Agent
Markup Language Services).

Paolucci, Kawamura, Payne, and Sycara (2002) proposed a
semantic matchmaking algorithm of WS capabilities based on the
use of DAML-S ontology. In this algorithm a match between an
advertisement and a service request, consists of a similarity degree
obtained by matching all the parameters of the request with those
of the advertisement, for outputs and inputs. The implemented
match is IO matching. A parameter from the provider matches with
one from the request profile if there is a conceptual relation in the
ontology. Four different measures are defined with a matching
degree organized along a discrete scale from Exact (3), Plugging
(2), Container (1) to Fail (0). This algorithm (Paolucci et al., 2002;
Payne, cci, & Sycara, 2001), henceforth Paolucci’s Algorithm, pro-
posed from the CMU is a flexible matchmaking algorithm com-
monly used by the majority of researchers as a point of
departure for their systems.

Tomaz, Labidi, and Wanghon (2003) presented an extension of
Paolucci’s Algorithm using preconditions. So that, they match as
much as possible services providers that meet the client pre-condi-
tions match as far as possible. Li and Horrocks (2004) extended
Paolucci’s Algorithm differentiating exact and subclass relations,
assigning them different scores, and adding an intersection degree
to find services when an advertisement and a request are compat-
ible, that is, they have something in common.

Vu (2005) proposed to improve the matching algorithm by
using the quality of service (QoS) NFP. Jaeger and Rojec-
Goldmann (2005) proposed the use of the service category NFP.
Other researchers as Tsai, Hwang, and Tang (2011), use a hybrid
model, which considers the description of services by the users
and by the providers, the labels and categories, as well as the
QoS parameters. The hybrid approach uses deductive methods that
integrate distance calculation. Recently, to solve the Paolucci’s
Algorithm problems of greedy Khater and Malki (2014) propose a
shortest path based approach.

In García, Ruiz, and Ruiz-Cortés (2012) the authors proposed
the inclusion of a preprocessing stage to improve the run-time.
This preprocessing stage discards services which are not related
to requirements and preferences stated by the user, reducing the
search space before actual discovery. Using SPARQL queries, they
discard all the services that do not contain the concepts related
to the inputs and outputs requested by the client. This preprocess-
ing step improves the run-time, but it has a penalty on precision.

One of the bottleneck on Semantic Web service discovery are
the end users. As stated by Sangers, Frasincar, Hogenboom, and
Chepegin (2013) the users are not technicians and it is necessary
a bridge between keywords and the user natural language, so they
2 <http://www-2.cs.cmu.edu/�softagents/daml_Mmaker/daml-s_matchmaker.
htm>
need to make a word sense disambiguation to annotate automati-
cally the user request. In our system thanks to OntoService, our end
users and providers can specify the queries and services, respec-
tively, as a WS description using the same ontology. Furthermore,
using user profiles and repositories, the previous found services are
retrieved.
3. Traveller information architecture

In Samper-Zapater et al. (2013) a multi-agent platform of a
Traveller information system is presented (Fig. 1). The platform
has been implemented using JADE Yu (2012) which follows FIPA
standards as a matchmaking model. It allows the complete livecy-
cle: advertisement, request, discovery, invocation and execution. In
our prototype, both Client and Provider Agents use the ‘OntoSer-
vice’ tool, proposed by Samper et al. (2008) to annotate semanti-
cally WS. The following agents components can be identified in
our Traveller information architecture:

Provider Agent: It represents the WS within the platform.
The provider using this agent annotates
semantically the WS and registers the corre-
sponding OWL-S profile on the repository.

Client Agent: It is the representation of the client within
the platform. It helps the user in the infor-
mation search process allowing to specify
the user requirements as an OWL-S profile
using OntoService. When the user selects a
WS from the result set, this agent also helps
the user to retrieve the information from
the WS.

Matchmaker Agent: This agent requires a matchmaking algo-
rithm to retrieve the best profiles that fit
the user requirements. It is explained in Sec-
tion 4.

Updater Agent: This wrapper agent replicates web applica-
tions or static web pages as a semantic
WS, and wraps the information from the
web periodically.

Directory Facilitator: This agent is necessary in multi-agents plat-
forms. It can be considered the ‘yellow
pages’ of the system. Other agents register
their services on this agent or search for
other agents.

The basis of this architecture is a knowledge-base model stored
on the Sesame Repository. Sesame3 supports as query languages
SPARQL and SeRQL. In our system we use SeRQL (Sesame RDF Query
Language) to access to the knowledge-base and to allow interopera-
bility with a logic description reasoner, BOR. The reasoner is based
on logical descriptions and has support for inferences about
instances and concepts. In a knowledge-base we can identify two
parts: TBox (terminological part), formed by terms and their rela-
tions and ABox (instantial part) which will be formed by instances
of the concepts defined in the TBox. An ABox is an assertion compo-
nent, a fact associated with a terminological vocabulary within a
knowledge-base. ABox are TBox compliant statements of that vocab-
ulary. The terms ABox and TBox are used to describe two different
types of statements in ontologies. Together, ABox and TBox state-
ments make up a knowledge-base. For the characterization of web
services on the knowledge-base, the starting point has been the
OWL-S ontology and the road traffic ontology concept, both stored
in our knowledge-base as concept on the Tbox. And each web service
3 <http://www.openrdf.org/doc/sesame/users/ch06.html>
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profile semantically annotated, could be stored on our knowledge-
base as instance of a concept on the Abox.
4. MatchMaking algorithm

As other research on the WS discovery systems, we determined
to use a hybrid algorithm taking as a starting point Paolucci’s Algo-
rithm, and trying to improve it in our scenario. After implement
Paolucci’s Algorithm and testing it, some questions have arisen:
what kind of filtering could be applied before the matching process
to improve the run-time? Which parameters of the semantic WS
profile could be used? Which similarity measures should be used?

After a literature background analysis we decided to improve
the algorithm focusing on four aspects:

1. Reduce the run-time: Using a pre-process step to filter the
existing provider profiles.

2. Improve precision using non-functional parameters which add
more information about user requirements.

3. Improve the recall selecting different relationship concepts.
4. Improvements in the management of results, adapting the

weight of the different measures.

A hybrid approach uses deductive methods that integrate dis-
tance calculation, so it combines the advantages of both methods.
Different matching measures depending on the nature of the
parameters could be used. Our hybrid matchmaking algorithm
(Algorithm 1, see Section 4.3), assigns a weight to each similar
WS and returns an ordered list, where the first element is the most
similar WS profile to the requested profile. The Algorithm 7 applies
different measures according to their parameters nature, due to the
relevance of the parameter. For example, outputs are more rele-
vant than inputs and between the NFP the geographic radius and
quality of service parameters are considered the best (semantic
exact matching). After some tests we have tuned the similarity
degree of each type of measure and type of parameter (see Section
4.1 FPs and Section 4.2 NFPs).
Algorithm 1. Hybrid Matching Algoritm

HYBRID_ALGORITHM (REQ,ADV)

{
Candidates = FilterByCategory (REQ,ADV)

ListCouples = Combiner (REQ,Candidates)

WeightedCandidatesOrdered = Null

forall Couples in ListCouples

{
Weight = MatchingWeight (Couples)

if Weight!=Null

(WeightedCandidatesOrdered =
Sort(Weight,WeightedCandidatesOrdered)

}
return WeightedCandidatesOrdered

}

4.1. Similarity matching for FPs

FPs represent WS functional behavior. The OWL-S Profile repre-
sents two aspects of the functionality of the service: the informa-
tion transformation (represented by inputs and outputs) and the
state change produced by the execution of the service (represented
by preconditions and effects).

As pointed by Paolucci et al. (2002) an advertisement matches a
request, when the advertisement describes a service that is ‘‘suffi-
ciently similar’’ to the requested service. A flexible matchmaking
algorithm uses different similarity measure according to the rela-
tion between the concepts and assigns a similarity degree taking
into account the relevance of the matching. Exact relationship is
not enough, since rejecting similar concepts, you can discard some
valid services. Exact matches are, of course, preferable to any
another, and Fail is the lower level and it represents an unaccept-
able result.

Algorithm 2. Flexible Matching Algorithm

MeasureFP(Pairs)

{
Weight = 0

Fails = 0

for (REQ,ADV) in Pairs

Degree = SimilarityDegree

if Degree = 0 fails+=1

else Weight+=degree

return(Weight,Fails)

}

Algorithm 3. Similarity degree

SimilarityDegree(C,P)

{
degree = 0

if Exact(C,P) then weight+=6

else if SubClasssOf(C,P) then weight+=5

else if SubClasssOf(C,P) then weight+=4

else if Subsume(C,P) then weight+=3

else if Subsume(C,P) then weight+=2

else if Sibling(C,P) then weight+=1

return(weight)

}

In our Algorithm 2 as in Paolucci’s, we use a flexible matching
algorithm, but we use 7 grades of similarity using the concept
semantic relation defined in Section 4.1.1. The Algorithm 2 shows
the procedure to assign the similarity measure for FPs: inputs or
outputs. The input of this algorithm is a list of couples of concepts,
obtained by combining the inputs or outputs of the WS profiles
from the provider (ADV) and the client (REQ). The algorithm
returns a weight and the number of matching failures. Algorithm
3, for each couple concept C (from the client) and P (from the pro-
vider) using semantic relationships of concepts, obtains a similar-
ity degree that is organized along a discrete scale from Exact
(with 6) to Fail (with 0).

4.1.1. Concept semantic relation
FPs in a web service are represented by concepts, with a lot

of synonyms, categories and granularities. Considering C the
concept that stands for the client parameter and P for the pro-
vider, after some test experiments we have decided to use the
next 7 similarity measures to improve the flexibility of the
algorithm:

Exact: The concept defined by the client and the provider
is the same.

CsubclassP: Within the taxonomic concepts tree, the distance
between the demanded concept and that offered
by the provider is equal to 1, i.e the concept
described by the client is a direct subclass of the
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concept defined by the provider. In this case the
provider offers a more general concept than the cli-
ent requested. The client concept is more restrictive
but is included in the one supplied by the provider.

PsubclassC: The concept described by the provider is direct sub-
class of that requested by the client, in other words,
the provider offers a more restrictive concept than
the requested by the client.

PsubsumeC: The concept described by the client is found within
the subtree of concepts that hangs from the one
defined by the provider (Fig. 3a). It would be equiv-
alent to the Plug-in defined in Paolucci’s Algorithm
but with a little difference because we applied max-
imum depth to the search. We consider that con-
cepts at distances greater or equal to 3 levels have
hardly no semantic relation, due to the way in
which our concept hierarchies are built.

CsubsumeP: The concept described by the provider is found
within the concept subtree that hangs from that
defined by the client (Fig. 3b), in other words, it is
the opposite to the previous one, and is equivalent
to the subsume degree defined in Paolucci’s
Algorithm.

CsiblingP: The concept provided by the client coincides in
some restriction with those of the provider’s con-
cept (Fig. 3c), and besides, the offered concept as
well as the one demanded by the client hang from
the same father, that is, they are ‘sibling’ concepts.

Fail: When none of the above cases takes place, in other
words the provider’s concept and the client’s con-
cept have no relation whatsoever.

Fig. 4 shows the query statement in SeRQL to implement the
CsiblingP measure similarity. This query takes the restrictions of
the client concept, and then browse through the restrictions of
the siblings of this class, to find common restrictions. If the con-
cepts are siblings and they coincide in some of the restrictions it
returns a record with the URI’s from the provider and the con-
sumer services.
4 <http://www.unspsc.org>
4.2. Similarity measure for NFPs

As in the approach of a hybrid model proposed by Tsai et al.
(2011), we decided to use some NFPs to improve the results of
our system. Fundamental research related to selection and discov-
ery of suitable Web services focuses on the analysis of quality of
service properties in order to make the best service selection
(Parejo, Segura, Fernandez, & Ruiz-Cortés, 2014).

In our road traffic scenario, after asking some experts and
potential clients of our system, we have decided to use these NFPs:
1. Category, refers to an entry in some ontology or taxonomy
of services.

2. Geographical Radius, which helps to check whether or not
the geographical radius given by the client is similar to
the offered one.

3. Quality of Service, which consists in checking if the quality
in the repository if the quality is the same as that requested
by the client.

4. Service’s Name, syntactic comparison using the name value.
5. Provider’s Name, which allows the client to specify the

desired WS organization provider. It requires a syntactic
comparison too.

As cited by Cardoso and Sheth (2003), Cardoso, Sheth, Miller,
Arnold, and Kochut (2004) the management of QoS metrics directly
impacts the success of organizations participating in e-commerce.
The QoS metrics is presented in many current research (Rabea &
Fraihat, 2012). In our system, QoS is defined in the ontology as a
set of values from Excellent to Poor. To compute the quality of ser-
vice, the system takes into account the following factors: Cost (is it
free?), Frequency Update, Offered by Public Administrations (if the
web service is provided by them, they are considered better),
Usability, Reliability and Integrity and finally Security aspects.

Algorithm 4. Measures NFP

MeasureNFP(couples)

{
TotalNF = 0

for (REQ,ADV) in couples[geoRadius]

if exact(REQ,ADV) then TotalNF +=5

for (REQ,ADV) in couples[Quality]

if exact(REQ,ADV) then TotalNF +=5

for (REQ,ADV) in couples[ServiceName]

if REQ == ADV then TotalNF +=3

for (REQ,ADV) in couples[ProvidersName]

if REQ == ADV then TotalNF +=2

return TotalNF

}

As the number of selected parameters increase, the run-time of
the algorithm also increases. Our hypothesis is that using a pre-pro-
cess step to filter the collection of WS to be candidates to match the
user requirements will be a good solution to improve the run-time.
Despite García et al. (2012) we only filter by category, a mandatory
NFP in our WS profiles which helps not to decrease the precision.

The category, service profile attribute, allows to specify the ser-
vice category within the UNSPSC4 classification system or other

http://www.unspsc.org
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taxonomies. Road traffic information is generally available via road
operators’ web sites, for this scenario a standard taxonomy has been
established by ISO TC 204 (ISODIS14813-1.2, 2004) but as UNPSC is
too broad. The use of service categories may have little meaning if
the categories allowed in the ontology are too wide because the
number of candidates won’t decrease significantly with the pre-pro-
cess step. The use of less precise ontologies will be needed, although
service descriptions should be more exact and the matchmaking pro-
cess should be more complex. For that purpose, we defined the cat-
egorization ontology (Fig. 2) to be used as the taxonomy to classify
our WS. This ontology has been defined taking into account the
ISO TC204 as basis.

Algorithm 4 presents the similarity measure for the NFPs Geo-
graphical Radius, Quality of Service, Service’s Name, and Provider’s
Name. For NFPs, the value of the similarity degree depends on
whether it has a semantic (exact match) or syntactic (string match)
type. Service’s Name and Provider’s name do not allow semantic
comparisons and the match is only syntactic. Both matchings have
the same weight. The algorithm counts the number of matches,
and accumulates the fails.

4.3. General issues about the algorithm proposal

The Hybrid Matching algorithm (Algorithm 1) allows us to
obtain an ordered list of the best WS of our advertisement for
the desired or requested WS profile. In our process each WS profile
will be represented in our algorithm as a collection of concepts
grouped by Inputs, Outputs and NFPs (category, geographical
radius, quality of service, service’s name, provider’s name). List-
Couples, is a multidimensional array, where each dimension has
a list of pairs organized by type of parameters: Inputs, Outputs
and NFPs. A pair is a couple with two concepts of the profiles rep-
resenting this dimension, one from the request and another one
from the advertisement. This structure facilitates the process to
obtain a detached similarity degree for each type of parameter
within the combiner algorithm (Algorithm 7).

The steps of the proposed Hybrid Matchmaking Algorithm are:

1. Filter. The pre-process step is to filter among all advertised ser-
vices, those which belong to the same category as requested by
the client (Algorithm 5). For this, we use the Road Traffic Ser-
vices Categorization Ontology (Fig. 2). The filter algorithm is a
pre-step process to obtain a subset of OWL-S profiles stored
on the knowledge-base similar to the user request (Candidates).
This process has been created to decrease the algorithm run-
time.

Algorithm 5. Filter Algorithm

FilterByCategory (REQ,Advertisements)

{
Candidates = Null

forall ADV in Advertisements

if (REQ[Category]= ADV[Category]) then

Candidate.append(ADV)

return Candidates

}

2. Combiner. This simple phase consists in establishing the dif-
ferent possible combinations between the request given by
the client and the advertisement published by the providers,
that due to the previous phase belong to the same service
category. For each WS from the provider, the result of this
step will be a multidimensional array of pair of concepts.
Each pair list contains all the combinations between the dif-
ferent parameters from user requirements and the provider
service, related with a type of parameter. Algorithm 6 shows
in detail this combination process.

Algorithm 6. Combiner Algorithm

Combiner ALGORTIHM(REQ,ADV)

{
PairList = Null

PairList[Inputs]=combine(REQ[inputs],

ADV[inputs])

PairList[Outputs]=combine(REQ[inputs],

ADV[inputs])

PairList[geoRadius]=combine(REQ[geoRadius],

ADV[geoRadius])

PairList[Quality]=combine(REQ[Quality],

ADV[[Quality])

PairList[ServiceName]=combine

(REQ[ServiceName],ADV[ServiceName])

PairList[ProviderName]=combine

(REQ[ProviderName],ADV[ProviderName])

return PairList

}

3. Similarity measure algorithm. This step will obtain a
detached degree/weight for inputs, outputs and NFPs and
failures (Algorithm 7). Each type of parameter due to its nat-
ure need to use different measures, the similarity measures
for each type of parameters are explained in Sections 4.1 and
4.2. The algorithm detached all the measures accumulated
for inputs, outputs, NFPs and failures. Algorithm 7 analyzes
each weight using the order relevance of the parameters.

Algorithm 7. Matching Weight

MatchingWeight(Couples)

{
Weight = Null

(Weight[Outputs], Weight[Fails]) =

measureFP(Couples[Outputs])

If Weight[Outputs]>0
{

(Weight[Inputs], Fails) =

measureFP(Couples[Inputs])

Weight[Fails]+=Fails

Weight[NFP]= measureNFP(Couples)

}
return(Weight)

}
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4. Sort algorithm. Taking into account the measures calculated
previously detached by Outputs, Inputs, NFP and Fails, the

next step is to sort the matching services, so the service that
heads the list will be one that is considered the best. Algo-
rithm 7 will create an ordered list using the insert in an
ordered list algorithm. The order is obtained with the New
Sort Rule function (Algorithm 9). This function will return
true if the first WS ADV1 is a better candidate than the sec-
ond ADV2. The proposed New Sort Rule gives more impor-
tance to the weight of the outputs as in sortRule function
in Paolucci’s Algorithm, because the most important is that
the one customer gets. What customer wants, is defined by
the output parameters. It is considered that inputs are the
least important parameters to find the SW, so the inputs
parameters are the latest to be compared. As the required
service needs to have some common output to the user
requirements notice that if there is no similarity between
the outputs (weight==0), the procedure will not continue
evaluating the others measures. This solution will allow to
improve the run-time and save on computation of unneces-
sary similarity measures.

J.J. Samper Zapater et al. / Expert System
Table 1
WS Repository.

Profile name Inputs Outputs/GR/QoS

ForecastCat Time.owl#Date Outputs:
Events.owl#Forecast
Geographical radius:
Geography.owl#Catalonian
Quality of service:
Concepts.owl#Good

TypeProfile Time.owl#Date Outputs:
Events.owl#Type
Geographical radius:
Geography.owl#Spain
Quality of service:
Concepts.owl#Good

Forecast Time.owl#Date Outputs:
Algorithm 8. Sort Algorithm

Sort (ADV1, ADVList)

{ List = Null
for i in range(len(ADVList)):

{ if bestWS(ADV1,ADVList[i])

List = ADVList[:i] + ADV1 + ADVList[i:]

return List

}
List = ADVList + ADV1

Return List

}

Events.owl#Forecast
Geographical radius:
Geography.owl#Spain
Quality of service:
Concepts.owl#Good

Prognosis Time.owl#Date Outputs:
Events.owl#Prognosis
Geographical radius:
Geography.owl#Spain
Quality of service:
Concepts.owl#Good

Meteorological Time.owl#Date Outputs:
forecast Events.owl#meteorologicalforecast

Geographical radius:
Geography.owl#Spain
Quality of service:
Concepts.owl#Good

GrandChild Time.owl#Date Outputs:
forecast Events.owl#GrandChildForecast

Geographical radius:
Geography.owl#Spain
Quality of service:
Concepts.owl#Good

GreatGrandChild Time.owl#Date Outputs:
forecast Events.owl#GreatGrandChildForecast

Geographical radius:
Geography.owl#Spain
Quality of service:
Concepts.owl#Good

AccidentDate Time.owl#Date Outputs:
Events.owl#Accident
Geographical radius:
Geography.owl#Spain
Quality of service:
Concepts.owl#Good
Algorithm 9. NewSortRule

BestWS(ADV1,ADV2)

{
if ADV1.Outputs.Weight > ADV2.Outputs.Weight
return true

else if ADV1.Outputs.weight < ADV2.Outputs.weight
return false

else if ADV1.SumNF.weight > ADV2.SumNF.weight
return true

else if ADV1.Inputs.weight < ADV2.Inputs.weight
return false

else if ADV1.Fails < ADV2.Fails
return true

else return false

}

5. Results and discussion

In this section we are going to evaluate the efficiency of our
matchmaking system and it will be compared with Paolucci’s Algo-
rithm. A set of different web services profiles from the provider
repository has been selected to test our tool (Table 1).

5.1. Experimental scenario

To test our assumptions we have defined two queries represent-
ing the user’s requirements, and in Tables 2 and 3 are represented
the query profiles and the scores of the services that best meet our
user requirements. Using the Road Traffic Ontology (Fig. 5), we can
find the semantic relations between the parameters of these
services.

Query 1. The first user query is represented by the ‘ClientFore-
cast’ profile. Looking at Table 2, there is an exact match
between all the parameters of the candidates WS pro-
files, except for the outputs (parameter ‘Forecast’). The
concept ‘forecast’ is a direct subclass of the concept
‘Type’, while the output ‘MeteorologicalForecast’ is a
direct subclass of ‘Forecast’ (Fig. 5).

Query 2. In this second query (Table 3), represented by ‘Meteoro-
logicalForecast’ profile, the output selected is ‘Meteoro-
logicalForecast’, a direct subclass of ‘Forecast’. There is a
unique service which has a different NFP (‘Geographical
Radius’). ‘ForecastCat’ profile represents a service similar
to ‘ForeCast’, but restricted to the Catalonian region.



Table 2
ClientForeCast query.

Request Available services Score (O/I/NF)

ClientForecast Proposal Paolucci

Inputs: TypeProfile 5/6/8 3/3
Time.owl#Date Forecast 6/6/8 3/3
Outputs: MeteorologicalForecast 4/6/8 2/3
Events.owl#Forecast GreatGrandChildForecast 0/6/8 2/3
Geographical radius GrandChildForecast 2/6/8 2/3
Geography.owl#Spain Prognosis 1/6/8 0/3
Quality of service: AccidentDate 0/6/8 0/3
Concepts.owl#Good

Table 3
Client MeterologicalForeCast Query.

Request Available services Score (O/I/NF)

MeteorologicalForecast Proposal Paolucci

Inputs: Forecast 5/6/8 3/3
Time.owl#Date ForecastCat 5/6/5 3/3
Outputs: GrandChildForecast 4/6/8 2/3
Events.owl#
MeteorologicalForecast GreatGrandChildForecast 2/6/8 2/3
Geographical radius TypeProfile 3/6/8 2/3
Geography.owl#Spain Prognosis 1/6/8 0/3
Quality of service: AccidentDate 0/6/8 0/3
Concepts.owl#Good

Fig. 5. Part of road traffic ontology with test concepts.
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5.2. Results analysis for adopted similarity measures

Here we are going to evaluate how our measures improve the
results of our algorithm comparing it with Paolucci’s algorithm,
and analyzing the scores of our test case.

1. Exact and direct subclass. It should be noted that in Paolucci’s
Algorithm the same weight has been assigned to these mea-
sures. Due to this, on Table 2 the results using Paolucci’s Algo-
rithm of the first two services have the same weight (3/3),
‘exact match’ concept relation for the output parameters. Using
concept taxonomy in Fig. 5, the request concept ‘Meteorologi-
calForecast’ is a direct subclass of ‘Forecast’. So Forecast is more
relevant for the user request, as it is pointed out in our algo-
rithm results scores. We can conclude that our proposal, thanks
to the distinction between exact and direct subclass, resulted in
a more adequate service to the requirements.

2. Fraternal relationship (sibling). The last two profiles resulting
of our algorithm: Prognosis and AccidentDate profiles (Table 2),
obtain in Paolucci’s Algorithm the same score (0/3) because
they do not recognize the fraternal degree. Observe in the tax-
onomic tree (Fig. 5), that the output parameter ‘Forecast’ and
‘Prognosis’ are sibling concepts, while there is not a close rela-
tionship between ‘Forecast’ and ‘Accident’. So if there are no
other WS with higher weight than ‘Prognosis’, our algorithm
at least presents a possible matching service, that is better than
nothing. Our algorithm scores ‘Prognosis’ (1/6/8) and for ‘Acci-
dentDate’ (0/6/8); This case is focused on evaluating the results
taking into account that the most appropriate service is one that
has parameters, whose concepts are on the same level in the
tree and have a fraternal relationship with the concepts related
to the parameters of the provider’s services.

3. PsubsumeC/CsubclassP. We request for ‘MetheorologicalFore-
cast’ in Table 3. Paolucci’s Algorithm, assigns the same rele-
vance to ‘TypeProfile’(2/3) than to ‘GrandChildForecast’(2/3).
Note in the taxonomic tree (Fig. 5), that ‘GrandChildForecast’
is a direct subclass of ‘MeteorologicalForecast’, while it sub-
sumes ‘Type’ with a distance of two, so our algorithm scores
‘GrandChildForecast’ as (4/6/8) and ‘TypeProfile’ as (3/6/8). In
our algorithm, the provider’s advertisement that has more pri-
ority is one whose concepts are direct subclass, rather than
the more general provider’s advertisements (grandfather, great-
grandfather, and so on), since they are far away within the
hierarchy.

4. PsubsumeC with maximun distance 2. In our algorithm there
is an exclusion of concepts in distances bigger than 2, while
Paolucci’s Algorithm gives the same similarity value to concepts
descending or ascending in the hierarchy, because for them, the
distance on the ontology taxonomy is not an important factor.
In this scenario, we found out that returning some results with-
out imposing a maximum limit to the tree distance, can result
in concepts (profiles) that hardly have characteristics in com-
mon with the concept required. In Table 2, we can see how in
Paolucci’s Algorithm, two concepts with different distances
from the concept ‘ForeCast’ obtain the same result (‘Grand-
ChildForecast’ and ‘GreatGrandChildForecast’). However, in
our algorithm ‘GrandChildForecast’ is better and ‘GreatGrand-
ChildForecast’ is not considered because its distance is too big.

5. Non-Functional Parameters.In the second user query, the cli-
ent determines a NFP as a Geographical Radius requirement.
The user’s request for a Meteorological Forecast information
service on the Spanish region. First two profiles on Table 3:
‘Forecast’ and ‘ForecastCat’ are characterized by the output
parameter ‘Forecast’ and only differs on geographical radius
parameter. In our repository (Table 1) ‘Forecast’ is a service
whose provider, the DGT (Spanish traffic administration) has
specified Spain in the Geographical Radius, and on the other
hand, the SCT (Catalonian traffic administration) has specified
for the ‘ForecastCat’ the Catalonian region. Paolucci’s Algorithm
does not distinguish between them so our suggested algorithm
prefers the ‘Forecast’ (5/6/8), vs. ‘ForecastCat’ (5/6/5) as our end
users.



Fig. 6. Run-time/number of services.
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6. Results analysis for run-time

To demonstrate the importance of using filters before the
matching process (Filter step in Section 4.3) in order to the run-
time, it was compared the run-time with Paolucci’s Algorithm,
attending to a non-functional criteria: ‘belong to the same cate-
gory’. The test to evaluate the run-time has been developed varying
the number of service profiles (1, 3, 5, 8, 10, 15, 20, 25, 30 and 33)
and 3 cases are presented:

Case 1 All advertisements available belong to the same cate-
gory. This is the worst case for the proposed algorithm.
This is due to the fact that all advertisements inserted
belong to the same service category, including the ser-
vice requested by the client. In this case the service cat-
egory filter does not reject any candidate, so the match
is made with the same number of profiles in both algo-
rithms. Moreover, our algorithm cost is greater, due to
the number of comparisons. Thus, Paolucci’s Algorithm
results are reached faster than our algorithm (Fig. 6a).

Case 2 Only 20% of the available advertisements belong to the
same category. In this situation, which is more realistic,
not all the profiles belong to the same category as the
profile requested by the client (only 20%). In this case,
results between the two algorithms are closer (Fig. 6b).

Case 3 Only one service belongs to the same category as that
required by the client. This is the best case for our pro-
posal, because our algorithm only has to match one ser-
vice. However, Paolucci’s Algorithm has to search all the
services available (Fig. 6c).

7. Conclusions

Using our repository we have run different experiments to
assign a degree of similarity to each parameter to obtain the WS
profile that best fits user requirements. During the testing process
we defined several queries to test the functionality of our system
and to compare it with Paolucci’s Algorithm. Afterward, we
included a result analysis section to present the improvements
obtained due to the use of these measures and also to the use of
NFPs, some of which had not been considered in previous investi-
gations. After defining our research problem, we found two impor-
tant limitations: the lack of existing WS profiles annotated
semantically, and the lack of ontologies for this scenario. So we
were forced to implement a couple of ontologies: Road Traffic
Ontology for specifying the road information concepts and a Road
Traffic Services Categorization Ontology. The latter allows us to
annotate the WSs semantically using OntoService Samper et al.
(2008).
The problems of greedy algorithms for WS semantical matching
is a recent research area, as shown in the proposals in the back-
ground section. In a discovery WS system, it is not enough to
return the WSs that correspond to the inputs and outputs
requested. Most likely the client requires some non-functional con-
straints, i.e. only wants information from a specific city. We have
noticed that the use of non-functional parameters can improve
the precision of the algorithm, and the use of several semantic
matching degrees for the functional parameters increase the recall.
Each parameter or measure that we introduce increases the algo-
rithm cost.

The major contributions of this research are outlined as follows.
First, the use of the ‘sibling concept relation measures’, which had
not been studied previously, improves the recall. Second, use of the
concept relation measure PsubsumesC, that would be equivalent to
the Plug-in defined in Paolucci’s Algorithm yet with a little differ-
ence because we applied maximum depth (3 levels) to the search.
This restriction will not decrease the recall, but does improve the
run-time. Third, the use of a limited number of non-functional
parameters relevant to our scenario. For example the use of geo-
graphic radius is very specific to our context and its weight is the
same as the more generally relevant and used QoS parameter.
Finally, but not less important, the use of a pre-process step, which
decreases the run-time due to reduced number of WSs candidates,
filtering by service category.

Furthermore we can state that the algorithm suggested has a
higher cost, because it has more matches to make, due to the inclu-
sion of new measures and the use of more parameters. However,
thanks to the preprocessing filter step, the run-time is not overly
inflated except in extreme cases where there is a high number of
providers’ advertisements that belong to the same service category
as that of the client’s request. In realistic situations, where roughly
20% of the advertisement belongs to the same service category,
run-time is similar to Paolucci’s Algorithm, and is even better in
situations where the number of advertisements belonging to the
request category is small. Therefore, we conclude that precision
in searches has risen without harming the running-time in normal
situations.

The cloud computing paradigm is emerging and shows similar
problems to these in WS. There is limited published research in
this area. Rezaei, Chiew, Lee, and Shams Aliee (2014) propose a
framework to allow a semantic interoperability for software as a
service system. We are now applying our results on the cloud com-
puting paradigm (Cortázar, Samper-Zapater, & Sánchez, 2012), and
in our first research Samper-Zapater et al. (2013), we have defined
the ontology to facilitate a semantic identification, discovery and
access to the services in the cloud.

Although the domain chosen for testing was road traffic, it
could be applied to other domains by adapting the ontology and
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probably modifying the selection of NFPs. It is accepted that the
semantic WS promote their interfaces (inputs/outputs) using the
same ontology on our repository. This restriction is due to the lack
of mature solutions for mapping ontologies, specially in this con-
text. Nowadays, LinkedData5 is helping on the creation of new
domain ontologies and on the definition of semantic relations
between concepts from different ontologies. As future work to be
undertaken, it is important to highlight the improvements of the
algorithm using different ontologies, and relating the concepts, tak-
ing advantage of information from LinkedData (Heath & Bizer, 2011).
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