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This paper presents a dynamic scheduling for real-time tasks in multicore processors to tolerate single
and multiple transient faults. The scheduling is performed based on three important issues: (1) current
released tasks, (2) current available processor cores, and (3) consideration of the number of faults and
their occurrences. Using tasks utilization along with a defined criticality threshold in the proposed sched-
uling method, current ready tasks are divided into critical- and noncritical ones. Based on whether a task
is critical or noncritical, an appropriate fault-tolerance policy is exploited. Moreover, scheduling decisions
are made to fulfill two key goals: (1) increasing scheduling feasibility and (2) decreasing the total tasks
execution time. Several simulation experiments are carried out to compare the proposed method with
two well-known methods, called checkpointing with rollback recovery and hardware replication. Exper-
imental results reveal that in the presence of multiple transient faults, the feasibility rate of the proposed
method is considerably higher than the other well-known fault-tolerance methods. Moreover, the aver-
age timing overhead of this method is lower than the traditional methods.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction latter is composed of processing cores with different internal archi-
Real-time systems have been extensively used in many human
applications like sensor networks, satellites, unmanned vehicles,
and personal mobile equipment [1]. Time constraints, energy effi-
ciency, and throughput are emerged as important criteria in the
design process of such systems [1,2].

Multicore architectures, which integrate several processing
units (known as cores) into a single chip, play an important role
in the development of real-time systems [1,2]. The reason is that
multicore architectures present several advantages compared to
single core architectures such as: (1) higher throughput with the
same clock frequency [1], (2) linearity of power consumption over
the throughput for multicore architectures [1], (3) efficient utiliza-
tion of processor cores [3], and (4) high performance per cost [4].
ARM MPCore [5] and IBM Cell [6] are two examples of synthesiz-
able multicore processors employed in the real-time embedded
applications [7].

Multicore processors can be classified as homogenous or heter-
ogeneous [2,8]. The former is composed of several processing
cores, which are similar regarding their internal architecture. The
tectures. As stated in [8], most of the existing multicore processors
are homogeneous. If multicore technology continues growing, the
capability of utilizing intra-task parallelism and performing com-
putation-intensive real-time tasks will also be increased [2].

The main concern of multicore processors is how to manage
tasks in order to utilize the processing cores effectively [9]. The
main role of schedulers in an operating system is to keep all pro-
cessing cores busy during execution of real-time tasks to improve
total execution time. This will be complex if executing tasks are
logically correlated to each other, and they need to use shared re-
sources. To avoid any contentions in the shared resources, schedul-
ers should be aware of multicore architectures, shared resources
topology, resource requirements of tasks, and inter-relationships
between the tasks [10].

Due to lowering voltages [11], high-energy particle strikes [12],
voltage fluctuations [11], shrinking technology features such as
increasing the die size [11], transistor density growth [13], and
increasing number of core instances [13], multicore architectures
are vulnerable to single/multiple transient faults. To use these archi-
tectures in safety-critical applications, correct functionality and
meeting the timing constrains are essential even in the presence of
faults. Therefore, improving the fault-tolerant property of these sys-
tems is critical. However, it is important to consider timing con-
straints of the tasks when we use fault-tolerance mechanisms. This
means that we should apply error detection and recovery mecha-
nism in a manner of no task deadlines are missed [12].
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An efficient method to improve fault tolerance in any system is
to employ redundancy [14,15]. Redundancies exploited in the real-
time systems can be classified into two categories [14,16]: (1)
hardware-based redundancy and (2) time-based redundancy.
Hardware-based redundancy methods such as task replication
[11], stand-by-sparing [17] (hot-, warm- and cold ones), DMR
(Dual Modular Redundancy) [16], and TMR (Triple Modular Redun-
dancy) [16] attempt to tolerate transient faults in the real-time
systems by copy-executions of each original task on another sepa-
rated hardware. Although these methods are effective to tackle
spatial multiple faults which are not correlated in two distinct pro-
cessing units, they impose significant overheads in terms of hard-
ware cost and power consumption.

Time-based redundancy methods such as check pointing with
rollback recovery [18] and re-execution [15] try to cope with tran-
sient faults by serial copy-executions in the same hardware of ori-
ginal task. Therefore, these methods do not impose any hardware
cost overhead and they are cost-effective compared to the hard-
ware-based redundancy. However, due to extra executions on
the same hardware, these methods are not effective to tolerate per-
manent faults or even transient faults whose durations are very
long. Moreover, serial executions may cause the system fail to
meet timing constraints.

Based on the previously mentioned discussion, it is necessary to
have a method to tolerate multiple transient/permanent faults
with low overhead in terms of hardware cost, power consumption
and total execution time. Several research works optimize hard-
ware cost, power consumption and time overhead: (1) some of re-
lated works optimize number of checkpoints, e.g., [14] and (2)
some of them tune time intervals between checkpoints, e.g., [18].
Although these researches focus on reducing the execution time
overhead, they are not successful in all cases since decision meth-
ods are made statically and it is not feasible to find a schedule due
to time redundancy overhead, (3) decreasing hardware cost and
power consumption in the hardware-based methods are addressed
in [1,17]. Several methods benefit from low-power techniques like
DPM (Dynamic Power Management), DVS (Dynamic Voltage Scal-
ing) [14,17]; however, utilizing DPM and DVS decreases reliability
of the systems [17].

In this paper, a dynamic method is proposed to schedule real-
time tasks in multicore processors. We proposed a parameter
namely ‘‘task criticality’’ which is based on two other parameters:
(1) ‘‘utilization’’ and (2) time of resource allocation to the tasks.
These two parameters play key roles in the proposed method since
there are many cases where two previous methods provide worse
feasibility rate compared to the proposed method. Here, the main
contributions are summarized as follows:

� Tolerating both single and multiple transient faults,
which may occur temporally or spatially.

� Enhancing scheduling feasibility compared to conven-
tional methods.

� Decreasing the total task execution time, and therefore,
reducing the time overhead of the proposed method over
conventional methods.

� Utilizing hardware resources efficiently so that both
hardware constraint and timing constraint will be met.

The proposed method tries to optimize the utilization of
hardware-based redundancy and time-based redundancy in the
multicore processors. The method assigns a criticality property to
each task, and decides which fault-tolerant method will be a good
candidate to tolerate maximum number of expected faults. In this
paper, task replication and checkpointing with rollback recovery
are utilized as hardware- and time-based redundancies,
respectively.
Two main reasons for selection of task replication are as fol-
lows: (1) it is fault-tolerant like other hardware-based redundancy
methods and (2) task replication does not require any comparator
hardware, which is highlighted in other hardware-based redun-
dancy methods [16]. Since no comparator hardware is used in mul-
ticore processors, task replication plays a key role in their
architecture. The main reason to select checkpointing with rollback
recovery is that checkpointing methods increases the probability of
a task to be completed on time [18].

In order to evaluate the proposed method, many task sets are
generated, scheduled, and mapped on a model of one quad-core
processor. The experimental results show that, the scheduling fea-
sibility rate of the proposed algorithm is higher than other fault-
tolerant scheduling methods, i.e. replication and checkpointing
with rollback recovery. Moreover, total execution time overhead
of the proposed method is lower than the ones in replication and
checkpointing with rollback recovery.

The rest of this paper is organized as follows. Section 2 de-
scribes the application model, hardware model, and fault model
which are being used in this paper. In Section 3, a comparison be-
tween static and dynamic scheduling algorithms is carried out.
Section 4 provides a brief description of fault-tolerance policies
that we used in the paper. More details about the proposed method
are presented in Section 5. The experimental results are described
in Section 6, and finally, Section 7 concludes the paper.

2. System model

Suppose a set C = {s1, s2, . . . , sn} consists of n sporadic and
non-preemptive independent real-time tasks. Non-preemptive
tasks cannot be interrupted during their execution by other
tasks; therefore, they will be executed until completion [19]. In
order to handling system interrupts two schemes can be
adopted: (1) based on previous related works like [20], handling
system interrupts can be seen as a real-time task with a very
early deadline in the system, so based on EDF scheduling, it will
be scheduled as the highest priority task in our ready-list. How-
ever, it will not preempt other tasks executing in the system. (2)
System interrupts are considered as preemptive tasks. In this
scheme, the effects of interrupts can be modeled in our proposed
method as a task which impose hardware and time overheads to
the systems tasks and cores, and therefore, can be considered in
the proposed scheduling method. Each task si is modeled by a tu-
ple (Ci, Ti, Di) where Ci is the worst-case execution time of the
task in a fault-free condition, Ti is the minimum inter-arrival time
or period of the task, and Di is the relative deadline of the task.
Relative deadline is defined as the deadline time relative to the
release time. Moreover, it is assumed that tasks have implicit
deadlines, i.e., Ti = Di (all task deadlines are equal to their periods
[19]). In the sporadic task model, each job of a task may arrive at
any time instance once a minimum inter-arrival time has elapsed
since the arrival of the previous job of the same task [19]. The re-
lease time (when si enters the ready list) is denoted by Ri. The
absolute deadline, ADi of each task is also defined as the sum
of Ri and Di. Another parameter used in this paper is task utiliza-
tion, Ui (0 6 Ui 6 1) which is defined as the division of worst-case
execution time by relative deadline,

Ui ¼
Ci

Di
ð1Þ

Total utilization of an application denoted by U can be extracted
by the summation of all task utilizations of the application,

U ¼
Xn

i¼1

Ui ð2Þ
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where n is the number of tasks in the application. When Ui is close
to ‘‘1’’, the scheduler will not be capable of postponing the task exe-
cution, so that the task would be critical. According to this state-
ment, we classify arriving tasks into two categories: (1) critical
tasks and (2) noncritical tasks. Furthermore, in the presence of
faults, time-consuming fault-tolerant methods such as checkpoint-
ing with rollback recovery will not be suitable for critical tasks. To
decide on whether the task is critical or not, a threshold h is used
as follows:
ClassðsiÞ ¼
Noncritical Ui < h

Critical Ui P h

�

where 0 6 h 6 1. The criticality threshold will be computed for each
job of task entering to the ready list of scheduler as soon as idle re-
sources are available. Section 5 describes how to compute this
threshold.
2.1. Hardware model

In this paper, multicore platforms are considered as a set of M
identical and homogeneous processing cores, P = {P1, P2, . . . , PM}.
Every task can be executed on each core of the processor. In mul-
ticore architectures, parallel tasks in an application can potentially
be executed simultaneously. However, the number of such tasks
may exceed the number of available processing cores. Therefore,
task scheduling and core mapping is required to assign the parallel
tasks to the available cores. It is assumed that an external sched-
uler globally monitors the released tasks in the system as well as
the idle time of each processing core. The scheduler also decides
on other factors, such as fault-tolerant policy assignment, fault-tol-
erant scheduling for the tasks in the ready list and mapping the
tasks on the available processing cores.
2.2. Fault model

As most of failures in digital systems are due to transient faults
[21], single and multiple transient faults are addressed in this pa-
per. According to the numerous research works [14,21], Poisson
distribution function can be a good estimation of fault occurrence
in the time domain in hardware systems. The fault-arrival rate (k)
can be determined as a factor depending on environmental- and
operating conditions. In harsh environments, k (fault arrival rate)
is in the range of 10�2 to 102 per hour for old technologies [14].
For new technologies, due to low voltages, shrinking technology
features such as increasing die size, transistor density growth,
and increasing number of core instances, fault arrival rate will be
higher [13]. For a given fault arrival rate, k and a task execution
interval, t the average number of expected faults is kt [14]. This pa-
per uses the k-fault-tolerant model [18], which determines the
maximum number of k faults to be tolerated for each task. Authors
in [14] show that the value of k should be taken as a small multiple
of kt, e.g. 2kt 6 k 6 3kt.

Similar to the previous works in the fault-tolerant real-time
systems, it is assumed that a given transient fault affects only
the task running on a specific core rather than the other cores
[11,12] as transient faults are momentary, and the result of a task
cannot be committed and propagated to other tasks unless it
passes sanity checks and consistency checks [12]. Faults occur dur-
ing task execution, checkpoint saving and fault-recovery states. As
processing cores are homogeneous, fault distribution and fault ar-
rival rate for each core are assumed to be the same for all cores.
2.3. Fault detection

Fault detection plays a key role in designing fault-tolerant sys-
tems. There are several methods for fault detection, presented at
different abstraction levels. These methods can be classified in
hardware and software parts of a system [22], some of which are
employed in embedded systems, such as: (1) sanity and consis-
tency check to verify the correctness of results at user level [12],
(2) memory range violation and illegal opcode detection at OS le-
vel, (3) control-flow error detection, (4) CRC codes, (5) acceptance
tests at software-level, and (6) hardware duplication with compar-
ison at hardware-level [16]. It is worth mentioning that each of
these methods is proposed to detect some special types of faults,
hence a perfect method which is capable of detecting any arbitrary
types of faults has not been presented [22].

In this paper, it is assumed that faults are detected at the end of
each task or at checkpoint times using sanity and consistency
checks [12]. In addition, other available hardware-based fault
detection methods like division by zero, illegal opcode and traps
are useful to find errors happened in program execution. However,
any extra hardware dedicated for the proposed method is not sug-
gested in this paper. Moreover, fault detection latency is assumed
to be close to zero, while detection overhead is considered based
on a fraction of worst-case execution time for each task [15].
3. Task scheduling in multicore processors

The problem of scheduling real-time tasks in a multicore pro-
cessor is a NP-hard problem, so a number of heuristic solutions
have been proposed to overcome its complication [1,2,19]. These
solutions are mainly divided into two major categories: (1) the first
approach called partitioned scheduling algorithms where all exe-
cutions of a particular task take place in the same processor. (2)
In the other approaches called ‘‘global scheduling algorithms’’,
tasks are allowed to be executed on different processors [1].

In this paper, granularity of program code is assumed to ‘‘task’’.
In other words, different tasks of the same program are modeled as
two independent tasks. Besides, scheduler and task manager are
two sub-modules in an OS (Operation System). It means that when
a scheduler schedules tasks, task manager will run tasks based on
the provided scheduling. All required operations in task manager
will be done by kernel-level instructions [23,27,15]. Therefore,
these actions are transparent from user or program code and no
modifications are needed in the program code. So, it is not con-
cerned in the proposed scheduling method.

3.1. Dynamic scheduling in the proposed method

Static scheduling methods can pre-compute an optimal sche-
dule for an application providing that certain information is acces-
sible during design-time [23]. This information includes execution
time and memory referencing behavior of tasks.

Dynamic scheduling does not require the mentioned informa-
tion during design-time, but instead it handles tasks at run-time.
These methods put all tasks in a ready list, which is a shared queue,
and schedule the highest priority task on any available processor
[24]. As we study sporadic tasks with non-specific release time,
using dynamic scheduling methods is inevitable [25].

3.2. Non-preemptive EDF scheduling

There are several dynamic priority scheduling algorithms [19]
such as Earliest-Deadline-First (EDF), Least-Laxity (LL), Least-
Slack-Time-First (LST), and Minimum-Laxity-First (MLF), where
in each one tasks are prioritized and scheduled according to spe-



Table 1
Example of a task set with the task utilization parameter.

Task Ri Ci Di ADi Ui

s1 3 20 54 57 0.37
s2 0 10 34 34 0.29
s3 6 16 60 66 0.27
s4 12 40 82 94 0.49
s5 12 18 44 56 0.41
s6 16 14 47 63 0.30

Fig. 2. EDF task scheduling of a task set in Table 1 on a quad-core processor.
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cific properties. However, it can be proven that EDF is an optimal
algorithm for single-processor systems with a set of preemptive
independent tasks [24]. EDF scheduling assigns higher execution
priorities to the tasks with earlier absolute deadlines. The optimal-
ity of EDF breaks down on multiprocessor systems [26], especially
when the tasks are non-preemptive. There is no online scheduling
algorithm for sporadic tasks where the tasks have no common
deadline [24].

In [27], it is shown that there might be task sets with the total
utilization slightly greater than (and arbitrarily close to) ‘‘1’’, that
cannot be scheduled for M processing cores. It can be shown that
the sufficient, but not the necessary condition to have a feasible
scheduling for a number of preemptive tasks with the total utiliza-
tion, U on a set of M single-core processors is [19]:

U 6
M2

2M � 1
ð3Þ

We can use this boundary for multicore processors with M
cores; however, this boundary is not sufficient in the case of
non-preemptive task sets. Fig. 1 shows the EDF scheduling algo-
rithm used in this paper for non-preemptive tasks.

Whenever a task is released, it will be added to ReadyList, and its
absolute deadline (AD) will be calculated. When there is only one
idle core, the system checks whether the task with the earliest
deadline can be scheduled on this idle core or not. If the task can
be scheduled, it will be assigned to the core, and the core will be
assumed busy during the execution. Otherwise, missing the task
deadline means that scheduling of this application on the given
architecture is not feasible. For simplification, hardware resources
are reserved through the worst-case execution time of each task.
For efficiency consideration, an event-driver scheduler takes care
of the actual execution time of each task.

An example of a task set composed of six tasks is shown in
Table 1. Fig. 2 shows the EDF scheduling of this task set on a
quad-core processor. As it can be seen in this figure, after schedul-
ing the first released task s2 on P1, s1 is scheduled on P2 and s3 is
scheduled on P3. Next, the competition is between s4 and s5 where
both are released at the same time, but the absolute deadline of s5

is earlier than s4, so s5 is scheduled first. The other tasks will be
scheduled on idle cores in the same manner.
4. Fault-tolerance policies in real-time systems

Hardware- and time redundancy are the most well-known
fault-tolerant methods in time-constrained embedded system
Fig. 1. Online EDF scheduling algorithm for non-preemptive tasks.
design [11,17]. Hardware redundancy methods such as task repli-
cation [21] and stand-by-sparing [17] impose considerable cost,
especially in harsh environments [11]. In the case of soft real-time
systems and systems with flexible slack times, low-cost methods
like re-execution [15] and recovery with checkpointing [18,21]
are more appropriable to be utilized. In hard real-time systems
with tight deadlines, using time redundancy methods has the risk
of missing deadlines. On the other hand, checkpointing increases
the probability of on-time task completion compared to re-execu-
tion methods [18]. However, checkpointing and re-execution
methods increase the total execution time.

As already stated, checkpointing and replication can be done by
task manager module located in operating systems using kernel-le-
vel instructions [23,27,15]. Because task manager has access to
each task data workspace and is also aware of current running
instruction. Therefore task manager can checkpoint the workspace.
In addition, checkpointing can be done using some inserted system
calls in a task by developers. In this case, developers should place
some checkpoint instructions but these instructions are statically
inserted and are not activate in normal execution. At runtime, task
manager can activate checkpoint instructions using some provided
configurations. In embedded systems, which numbers and types of
tasks are so limited compared to desktop systems, this capability is
feasible to implement based on some predefined instruction
templates.
4.1. Checkpointing optimization

There are trade-offs between applying frequent- and infrequent
checkpoints for tasks in a system. Frequent checkpointing de-
creases re-execution time in the presence of faults, while task exe-
cution time is increased. On the other hand, infrequent
checkpointing has lower time overhead in the absence of faults,
whereas the amount of re-execution will be increased if a fault is
detected [11].

Same as [1], let us assume that the time overheads of getting/
saving a checkpoint (Cs) and recovering from a checkpoint (Cr)
are constant for each task and are proportional to the worst-case
execution time of each task. As described in [18] we have
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Cs ¼ u� C ð4Þ
Cr ¼ l� C ð5Þ

where u and l are constant factors. Similar to the related works in
[18,21], equidistant check pointing, which benefits from equality in
checkpointing intervals throughout the execution time tasks, is
used in this paper. Hence, D = C/m + 1 is the checkpoint interval
for an isolated task regarding m checkpoints. We denote the jth exe-
cution part of the task si by si(j). In [14], it is shown that the optimal
number of checkpoints considering k faults through the task can be
given by:

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
k� C

Cs

r
� 1

�����
����� ð6Þ

Considering Eq. (6), the worst-case response time of a task using
checkpointing with rollback recovery (Cc) is given by:

Cc ¼ ðC þm� CsÞ þ k� ðCsþ CrÞ þ k� C
mþ 1

ð7Þ

where the term (C + m � Cs) is the execution time of si using check-
pointing without any faults, and (Cs + Cr) + C/m + 1 is the cost of
fault recovery for single fault, which is multiplied by k to recover
maximum of k faults (see also [18]).

4.3. Hardware replication

Although checkpointing with rollback recovery methods have
the advantage of reducing time overhead by re-executing only
(a)

(b)

(c)

Fig. 3. Fault-tolerant scheduling for a set of three tasks: (a) replication-only, (b) check
combination of two methods.
one part of the task in the presence of faults, they cannot utilize
available spare resources (i.e. other processing cores in multicore
systems) in order to reduce the schedule length. If the rate of fault
occurrence on one processing core is high, a task needs more time
to recover from faults, which means that the task is likely to miss
its deadline. Hardware replication methods have the ability of par-
allel execution of the redundant copies of original tasks on the
other processing cores. Hardware replication methods are gener-
ally classified into two distinct categories: (1) active replication
[21] in which all the task replicas are executed simultaneously
and (2) passive replication [17] in which the backup replicas are
executed only if a fault occurs. In this work, a hybrid method com-
posed of these two categories is used; the replica of a task may be
executed with a delay from the execution of the primary execution.
Since in the dynamic assignment of fault-tolerance policies, there
may be some cases where sufficient resources are not available
to schedule and map two replicas of one task in the same time.
Hence, the scheduler may postpone the execution of the second
replica until at least one separate processing core becomes idle.
5. Dynamic fault-tolerant scheduling

In the proposed method called dynamic fault-tolerant scheduling
(DFTS), a hybrid method composed of time- and hardware-based
redundancies is used; therefore, based on: (1) available hardware
resources, (2) task utilization, and (3) expected number of faults
for each task, the scheduler selects an appropriate fault-tolerant
method.
point-only cause deadline miss where all tasks meet their deadlines in (c) by the
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5.1. Policy assignment using task utilization

Task utilization is used to indicate deadline tightness of each
task. When the worst-case execution time of a task is considerably
greater than its relative deadline, i.e. critical task, the scheduler has
no flexibility to defer the execution of the task. Furthermore, there
is not enough time to re-execute the task or even rollback the task
to the last saved checkpoints in the presence of faults. In this case,
hardware replication is the only solution to guarantee that at least
one execution unit will perform correctly.

For noncritical tasks, there is some flexibility to use time redun-
dancy methods. Hence, checkpointing with rollback recovery
Fig. 4. Dynamic fault-tolerant sc
method can be applied to reduce the cost of hardware replication.
It is worth mentioning that the task utilization and the time at
which the scheduler assigns resources to a task are the parameters
that should be considered during policy assignment. There may be
some cases that a task with low utilization, where there are no idle
resources to be allocated for the task; therefore, the task execution
should be deferred. Consequently, the role of criticality threshold
will be prominent.

Note that h is not constant and may vary from one task to an-
other and even to another job of the same task. For example, when
the first job of a task enters the ready list, the scheduler applies
checkpointing to the task; however, for the second job of the task,
heduling algorithm (DFTS).
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the scheduler replicates the task since the execution of the second
job has been deferred due to the absence of idle resources. So this
task becomes critical.

5.2. Motivational example

Fig. 3 shows an application consists of three tasks, which are
scheduled and mapped on a dual-core processor. The checkpoint
saving and recovery overhead is set to 10% of the worst-case
execution time of each task, and the fault rate for each core is 0.05.
Regarding these values, the optimal number of checkpoints is 1, 2
and 3 fors1, s2 and s3, respectively. In this figure, the task s3 has more
utilization compared to the other two tasks. On the other hand, using
EDF leads to s1, s2 and s3 having the highest priority to be scheduled
in the system, respectively. As depicted in Fig. 3(a and b), applying
only hardware replication or checkpointing with rollback recovery
policies for all tasks will cause the task s3 miss its deadline.

Using DFTS in Fig. 3(c), the criticality threshold for s1 and s2 are
0.55 and 0.57 respectively. So these two tasks are not critical and
checkpointing with rollback recovery can be applied. For s3, the
criticality threshold is calculated to be 0.32, which means that this
task is critical; consequently, it is replicated on P1 and P2. In this
case, all the tasks have met their deadlines and all the occurred
faults have been tolerated.

5.3. Fault-tolerant scheduling based on task criticality

Fig. 4 shows the proposed algorithm for dynamic fault-tolerant
scheduling. This algorithm selects a suitable fault-tolerance policy
assignment for each task when there are available resources. No
task will be scheduled until all other tasks with higher priorities
are scheduled, and previous faults in the system are tolerated as
well. The scheduler calculates criticality threshold (h) for the task
at top of the ReadyList as soon as there is an idle core available in
the system. The time when an idle core is assigned to each task
is defined as Resource Allocation time (RAi). As discussed before,
the difference between the time when a task enters the ReadyList
and its Resource Allocation time is a determinant factor to compute
the criticality threshold of the task. We define another parameter,
Delayi for each task, by:

Delayi ¼ RAi � Ri ð8Þ

where Delayi indicates the wasted time between the time when a
current job of task si entered the ReadyList and the time when the
scheduler assigns hardware resources to this task and applies
fault-tolerance policies. Increasing Delay parameter for a task may
result in a noncritical task become critical. In order to tolerate ex-
pected faults for each task, the scheduler applies checkpointing to
noncritical tasks and hardware replication to critical tasks. In order
to compute criticality threshold, it is important to note that the
maximum response time of a task in the case of checkpointing with
rollback recovery (Cci) should be less than the remaining time to its
deadline. So, we have

Cci < Di � Delayi ð9Þ

Using Eq. (7), this inequality can be represented as:

Ci þm� Csþ kðCsþ CrÞ þ K � Ci

mþ 1
< Di � Delayi ð10Þ

By replacing the values of Cs and Cr from Eqs. (4) and (5), we
have

Ci þm� Ci �uþ k� Ciðuþ lÞ þ k� Ci

mþ 1
< Di � Delayi ð11Þ

Ui 1þm�uþ kðuþ lÞ þ k
mþ 1

� �
< 1� Delayi

Di

� �
ð12Þ
and by rearranging the inequality, we have

Ui <
1� Delayi

Di

1þm�uþ kðuþ lÞ þ k
mþ1

¼ h: ð13Þ

This inequality implies that by increasing Delayi, checkpointing
cost, and the expected number of faults for each task, the criticality
threshold will be decreased, and therefore, the task will become
critical.

If a task is noncritical, the checkpointing needs to be applied.
Hence, the maximum response time of a task (Cci) in the case of
checkpointing with rollback recovery will be calculated and its
core will be reserved during Cci. For the critical tasks, the scheduler
checks whether at least two idle cores are available and then,
schedules two copies of them. If only one idle core is available,
the scheduler adds the second copy to the ReadyList and waits until
a processing core becomes idle.

If the first copy of a task is critical, consequently, the replicated
copy will be critical since the second copy has less or equal time
than the first copy to be recovered from faults. However, in this pa-
per, it is assumed that only two copies of a critical task will be exe-
cuted. This is managed by ExecutionCount in the proposed
algorithm which indicates the number of task copies scheduled
in the system. The default value of this parameter is ‘‘1’’ for every
task. For the second copy, ExecutionCount becomes ‘‘2’’, and there-
fore, no other copies of the task will be added to the ReadyList.

The scheduling of an application on a target platform can be
infeasible if one of the following three cases occurs: (1) the sched-
uler cannot find any idle core for the primary copy of a critical task
before its deadline, (2) the primary copy is faulty and the backup
copy of a critical task misses its deadline, and (3) both primary
and backup copies of a critical task are faulty due to multiple fault
occurrence. In these cases, the task misses the deadline, and there-
fore, the other upcoming tasks cannot be scheduled on the
platform.
6. Experimental results

In order to evaluate the proposed method, a time-driven task
scheduler simulator written in C++ has been used. The number of
cores in the multicore processors, the fault-arrival rate, and the
parameters of checkpoint cost and checkpoint recovery for tasks
are given to the simulator as inputs. The software block diagram
of the system simulator used in this paper is depicted in Fig. 5. Dur-
ing each round of execution, a given application as a set of non-
scheduled tasks is being scheduled on a multicore processor. The
simulator has the capability to schedule tasks in both Non-Fault-
Tolerant (NFT) and fault-tolerant scheduling methods. Here, three
fault-tolerant methods are used: (1) checkpointing with roll back
recovery, (2) hardware replication, and (3) the proposed method,
i.e. DFTS. The NFT is a basic application scheduling based on EDF
Fig. 5. The block diagram of system simulator.



Fig. 7. Feasibility rate of DFTS compared to simple checkpointing, and replication
by varying the amount of checkpoint saving and recovery cost with constant fault
rate (k = 0.01).
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(similar to the example shown in Fig. 2). NFT is utilized to find the
best total execution time for a given application on the target
architecture without any fault-tolerance time overhead.

From the implementation point of view, fault injection proce-
dure is developed using ‘‘Fault Injection Module’’ which runs in
parallel with task scheduler. According to the specified fault rate,
the Fault Injection Module selects one of the processing cores ran-
domly and generates the fault-occurrence instants with Poisson
distribution for each core separately. At these times, the status
of the selected core will become faulty, and therefore, the task
running on the core will fail to complete its execution. ‘‘Fault
Detection Module’’ is also needed to run in parallel with scheduler
in order to detect whether the primary and backup or both are
faulty. In the case of both are faulty, this module will send a fail-
ure scheduling message to the scheduler. Fault Detection Module
will start at the end of each task scheduling time when a task
is ready to run.

In our experiments, a set of 50 different applications, each of
which consists of 10 tasks is generated. The worst-case execution
times of each task are randomly generated using uniform distribu-
tion function within 10–100 ms. Other task parameters such as re-
lease time, and deadline are also randomly generated.

We are able to derive the feasibility analysis for each task set
scheduled on a given architecture over the maximum execution
time of the simulator results. The experiments are performed
using Intel� core™ i7-2670QM processors with 4 GB of RAM.
The first evaluation of the proposed algorithm is the feasibility
analysis of DFTS over well-known fault-tolerance policies such
as checkpointing with rollback recovery (CH) and hardware rep-
lication (RP). Fig. 6 shows the feasibility rate of DFTS versus
checkpointing and replication methods with variations of fault-
arrival rates (k). As it can be seen in this figure, the feasibility
rate of DFTS is considerably higher than the other methods for
different fault rates. However, by doubling the k, the feasibility
rate of all methods will be decreased. The feasibility rate of DFTS
decreases from 79% to 4% within varying k from 0.005 to 0.04.
The reason is that by growing k, the maximum expected faults
(k) for each task will increase. This will result in the criticality
threshold being decreased; hence, the probability of fault occur-
rence on replicated tasks will increase as well.

In Fig. 7, the effect of checkpointing parameters such as check-
point saving ratio (u) and checkpoint recovery ratio (l) on the fea-
sibility rate of DFTS over CH and RP with the constant fault rate of
k = 0.01 is shown. As depicted in this figure, doubling the check-
point saving cost decreases the feasibility rate of DFTS from 60%
to 37% for constant checkpoint recovery cost. This is due to the
double effect of checkpoint saving time in the worst-case response
Fig. 6. Feasibility rate of DFTS compared to simple checkpointing and replication for
quad-core processors regarding doubled fault arrival rates.
time of task using checkpointing. In contrast, for constant check-
point saving cost, doubling the checkpoint recovery cost does not
have a significant impact on the feasibility rate.

The effect of increasing number of processing cores on the
feasibility rate of DFTS compared to the other methods is also de-
picted in Table 2. For processors with two and four cores, 50
applications with 10 tasks are considered and for processors with
8, 12, 14, and 16 cores, 50 applications with 20 tasks are consid-
ered. The reason of having different number of tasks is when
hardware resources increases, number of tasks should also be in-
creased to get better comparison between methods. Otherwise,
all methods’ feasibility rate may be close to 100% when hardware
resources are so many to use. Based on achieved results, none of
the three fault-tolerant methods can achieve high feasibility rate
in the case of dual-core processors. Moreover, it can be seen that
the effect of doubling the number of processors from 2 to 4 on
feasibility rate is considerably higher than increasing from 4 to
8. For example, the feasibility rate of DFTS increases from 47%
for 8-core processors to 73% for 12-core processors. It can be con-
cluded that replication method has the worst feasibility rate
compared to the others since when replicas are running, re-
sources are busy to be used by the others. Moreover, checkpoint-
ing with rollback recovery does not have good feasibility rate
since it is applied on each task regardless of other tasks that
may be critical to run dynamically.

Another parameter studied in this paper in order to evaluate the
performance of the proposed DFTS algorithm is time overhead im-
posed on the system compared to the NFT. Suppose TDFTS and TNFT

be the maximum scheduled length (total execution) obtained by
DFTS and NFT, respectively. Then, the fault tolerance overhead is
defined as TDFTS�TNFT

TNFT
� 100. In Table 3, the minimum, maximum

and average timing overhead of DFTS and CH are depicted for dif-
ferent parameters which are checkpoint saving and recovery cost,
and constant fault rate (k = 0.01). The average overhead of DFTS
is always lower than CH for all the variations of checkpointing
parameters. This is due to the combination of checkpointing with
hardware replication methods which result in decreasing the sche-
dule length of DFTS. Similar to Fig. 7, the effect of increasing check-
point recovery cost is more than the effect of checkpoint saving
cost on the scheduling timing overhead. The minimum timing
overhead of DFTS is considerably lower than CH in all conditions.
However, there are special cases where 53% overhead has been im-
posed on the system by DFTS.

The effect of increasing fault rate on the fault-tolerant timing
overhead of DFTS, CH and RP is shown in Table 4. When the fault
rate is low, the minimum timing overhead of DFTS is at least 8%
and the average overhead of CH is lower than DFTS. The average



Table 2
Feasibility rate of DFTS compared to simple checkpointing and replication for different number of processing cores.

Fault-tolerant method 10-Task applications 20-Task applications

2 Cores 4 Cores 8 Cores 12 Cores 16 Cores 32 Cores

DFTS 5.07 63.24 47.82 73.02 73.54 74.56
CH 2.00 46.00 28.00 36.00 38.00 42.00
RP 0.44 7.84 0.84 1.04 1.08 2.47

Table 3
Timing overhead of DFTS compared to CH considering various checkpoint parameters (constant fault rate k = 0.01).

l U Fault-tolerant method Timing overhead

Minimum (%) Maximum (%) Average (%)

0.05 0.05 DFTS 22.01 48.78 37.52
CH 31.41 42.16 37.69

0.1 DFTS 27.06 51.47 42.55
CH 38.95 48.0 43.90

0.1 0.05 DFTS 23.46 49.51 40.22
CH 33.84 42.86 40.37

0.1 DFTS 28.32 52.99 42.53
CH 40.51 50.17 45.49

Table 4
Timing overhead of DFTS compared to CH and RP considering various fault rates (constant checkpointing cost l = u = 0.05).

k Fault-tolerant method Timing overhead

Minimum (%) Maximum (%) Average (%)

0.005 DFTS 8.15 50.99 33.09
CH 8.15 50.99 31.63
RP 29.69 51.01 40.88

0.01 DFTS 22.01 48.78 37.52
CH 31.41 42.16 37.69
RP 29.69 51.01 41.13
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time overhead of DFTS increases less than CH when the fault rate
increases. However, the time overhead of RP does not change for
various fault rates.
7. Conclusions and future works

In this paper, a dynamic fault-tolerant scheduling algorithm
called DFTS has been proposed. This algorithm uses task utilization
to dynamically select the type of fault recovery method in order to
tolerate the maximum number of multiple spatial and temporal
faults. Each task is categorized into critical or noncritical based on
the task utilization and the time at which scheduler allocates re-
sources to the task. Noncritical tasks are scheduled on a single core,
and checkpointing with rollback recovery will be applied to them.
Critical tasks will be replicated on separated cores to increase the
probability of on time completion of the task in the presence of
faults. Experimental results on several applications running on
multi-core processors show that fault-tolerant scheduling feasibil-
ity rate of DFTS is higher than conventional methods for different
fault rates and checkpoint costs. Moreover, the maximum fault-tol-
erance overhead is lower than the checkpointing with rollback
recovery method, whereas the maximum overhead of DFTS is al-
ways lower than 53% for various checkpoint parameters.

Concerning to optimality of the proposed method, it should be
mentioned that the proposed method is a heuristic method utiliz-
ing EDF. Each heuristic method is not necessarily optimal. How-
ever, experimental results reveal that the proposed method has
better fault-tolerance property compared to the other related
works.
As a future work, a real implementation of the proposed meth-
od on a typical embedded system is offered. Authors try to use to-
day’s embedded system platforms like ARM-based embedded
boards, to show the method efficiency practically. ARM processors
are so rich in terms of hardware and software-based fault detection
mechanisms, so they are good candidates for implementation
purposes.
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