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a b s t r a c t

Most common chronic diseases are caused by the interactions of multiple factors including the influ-
ences and responses of susceptibility and modifier genes that are themselves subject to etiologic
events, interactions, and environmental factors. These entities, interactions, mechanisms, and pheno-
typic consequences can be richly represented using graph networks with semantically definable
nodes and edges. To use this form of knowledge representation for inferring causal relationships,
it is critical to leverage pertinent prior knowledge so as to facilitate ranking and probabilistic treat-
ment of candidate etiologic factors. For example, genomic studies using linkage analyses detect
quantitative trait loci that encompass a large number of disease candidate genes. Similarly, tran-
scriptomic studies using differential gene expression profiling generate hundreds of potential disease
candidate genes that themselves may not include genetically variant genes that are responsible for
the expression pattern signature. Hypothesizing that the majority of disease-causal genes are linked
to biochemical properties that are shared by other genes known to play functionally important roles
and whose mutations produce clinical features similar to the disease under study, we reasoned that
an integrative genomics–phenomics approach could expedite disease candidate gene identification
and prioritization. To approach the problem of inferring likely causality roles, we generated Semantic
Web methods-based network data structures and performed centrality analyses to rank genes
according to model-driven semantic relationships. Our results indicate that Semantic Web
approaches enable systematic leveraging of implicit relations hitherto embedded among large
knowledge bases and can greatly facilitate identification of centrality elements that can lead to
specific hypotheses and new insights.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The identification of genes responsible for causing or preventing
human disease provides critical knowledge of underlying patho-
physiological mechanisms and is essential for developing new diag-
nostics and therapeutics. Traditional approaches such as positional
cloning and candidate gene analyses, as well as modern methodolo-
gies such as gene expression profiling tend to fail to converge on spe-
cific genes or features that underlie a disease [1,2]. Quantitative trait
loci intervals identified by positional genetics usually include any-
ll rights reserved.
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where between 5 and 300 genes [3] and expression studies generate
hundreds of unprioritized differentially regulated genes [4]. The
identification of the right set of genes from these generated lists
for further mutation analysis to associate with the disease under
study is termed gene prioritization [5–8]. Prioritizing candidates
within these lists tends to be difficult, thus techniques and tools to
identify key candidates from gene lists generated by disease pro-
cess-associated gene discovery methods would be very desirable.
Moreover, the demonstration of successful methods for the identifi-
cation of disease-critical genes would also serve to validate specific
computational approaches useful for knowledge representation and
inference for the improvement of human health.

The discovery of genes and specific gene variants that cause or
modify disease has been shown to be accelerated by knowledge
integration and the application of a variety of computational
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methodologies, in particular to genome-scale experiments [5].
Integrating diverse functional genomic data has several advantages
as described by Giallourakis et al. [1]. First, a more comprehensive
description of functional gene networks can be formed by essen-
tially combining complementary view-points generated from
interrogation of diverse aspects of gene function from different
technologies. Second, data integration reduces noise associated
with each experimental limitation that limits false positives and
increases sensitivity and specificity to detect true functional rela-
tionships. However, large-scale data aggregation efforts tend to
be manual and lack sufficient semantic abstraction to allow for
mechanistic generalizations.

Several gene prioritization methods have been developed
[2,3,5–17]. Some of them [4,5,9,10,12] use training gene sets to
prioritize candidate test genes based on their similarity with
the training properties obtained from the reference set. The sig-
nificant drawback in these methods is the dependence on there
being a sufficiently large number of training set genes. In many
practical situations, relevant training sets are not available and
results may also vary depending on different approaches used
to delineate the particular training set. Though there are meth-
ods [2,6–8,11,13,14] that do not require any training set, their
potential is limited by their reliance on a small number of data
sources. Here, for the first time we utilized Semantic Web (SW)
[18] standards and techniques for finding human disease genes.
Resource Description Framework (RDF) (www.w3.org/RDF/) and
Ontology Web Language (OWL) (www.w3.org/2004/OWL/) are
used to integrate genomic and phenomic annotations associated
with the candidate gene set. The resulting BioRDF (i.e. RDF gen-
erated from life science datasets) is a conventional directed acy-
clic graph (DAG) on to which centrality analysis is applied to
score the elements in the network based on their importance
within network structure. Centrality analysis determines the rel-
ative importance of a node within a graph, by performing a
graph theoretic measure on each node [19]. There are several
measures to quantify centrality. Here we have utilized degree
centrality analysis, which considers the number of links incident
upon a node. In the context of RDF, resources that have a high
in-degree (the number of links coming into a node in a directed
graph) or out-degree (the number of links going out of a node in
a directed graph) implicate a highly significant node. Central ele-
ments in biological networks are generally found to be essential
for viability and their delineation within a network leads to new
insights and potential to generate new hypotheses [20]. In this
approach, score of each gene depends on the functional impor-
tance inferred from the genomic knowledge combined with the
clinical features representing phenomic knowledge. Centrality
measures are calculated from a modified version [21] of the
Kleinberg algorithm [22] similar to Google’s Page rank algorithm
[23] extended for the Semantic Web. While Semantic Web que-
rying languages do not per se naturally rank the retrieved results
from RDF graphs, we have adapted a technique described by M.
Sougata et al. [21,24] for domain-specific ranking to rank the re-
trieved genes from BioRDF using SPARQL (http://www.w3.org/
TR/rdf-sparql-query/). RDF graphs provide the ability to aggre-
gate and recombine loosely associated disease and molecular
information into a formal knowledge structure. This semantic
mashup can be viewed together or analyzed as a complete set.
In addition, semantic mashup are not just for viewing facts, they
can support analytical lenses and algorithms for uncovering dee-
per meaningful associations.

Thus, although there have been several other approaches
developed that either include purely genomic data [3,5–7,10,25]
or genomic data combined with either human [2,8,9,11,12,
14,26] or mouse phenomic [4] data sets in order to expedite dis-
ease gene search, our approach enables for the first time system-
atic gene prioritization without the assertion of a focus training
set by utilizing both mouse phenotypes and human disease clin-
ical features as well as their GO and pathways relationships. Our
method does not use any training data set, but extends the earlier
hypothesis that majority of the disease-causal genes are function-
ally important and share clinical features with related diseases
[5,8,11,12]. We reasoned that an integrative genomic–phenomic
approach utilizing the available human gene annotations includ-
ing human and mouse phenomic knowledge will provide more
comprehensive and valid disease candidate gene identification
and prioritization. In this study, we have focused on cardiovascu-
lar system diseases (CVD). We tested our hypothesis by prioritiz-
ing genes from the recently reported (a) hypertrophic
cardiomyopathy susceptibility loci (chromosome 7p12.1–7q21)
[27] (b) dilated cardiomyopathy loci (chromosome 10q25–26)
[28] and (c) among genes differentially expressed in dilated car-
diomyopathy [29].
2. Methods

2.1. Knowledge sources

Genomic and phenomic knowledge representation was accom-
plished by RDF conversion of datasets from multiple data sources
(see Fig. 1). These are described as follows:
2.1.1. Genomic knowledge sources

(1) Gene Ontology (GO) [30] was downloaded from Gene Ontol-
ogy website (geneontology.org/ontology/gene_ontology_
edit.obo). Corresponding human GO-gene annotations were
downloaded from NCBI Entrez Gene ftp site (ftp.ncbi.nih.gov
/gene/DATA/gene2go.gz). The resultant data set contained
15068 human genes annotated with 7124 unique GO terms.

(2) Gene-pathway annotations were compiled from KEGG [31],
BioCarta (http://www.biocarta.com/), BioCyc [32], and Reac-
tome [33]. 4772 human genes had at least one pathway
association (a total of 672 pathways).

2.1.2. Phenomic knowledge sources

(1) Mammalian Phenotype (MP) ontology [34], mouse gene
phenotype annotations and the corresponding orthologous
human genes were downloaded from Mouse Genome Infor-
matics (MGI) website (http://www.informatics.jax.org). This
data set contained 4127 human genes annotated with 4066
mouse phenotypes.

(2) A total of 977 records (423 have at least one implicated
gene) were downloaded in XML format from OMIM [35] by
searching for terms ‘‘cardiovascular” or ‘‘heart” or ‘‘cardiac”
occurring in clinical synopsis (CS) or text section (TX). JAVA
XML parsers (http://xerces.apache.org/xerces-j/) were used
to extract OMIM ID, disease name and the associated CS
and TX sections from each OMIM record. We also parsed
each TX section of OMIM record as it provides additional
clinical features to the ones available from CS section, which
is evident from Fig. 2. The entire clinical feature space encap-
sulates both clinical symptoms and affected anatomy. Clini-
cal features under the categories such as ‘‘Inheritance” and
‘‘Molecular Basis” were eliminated. Nonspecific terms such
as ‘‘syndrome” or ‘‘disease” or ‘‘disorder” were ignored.
OMIM ID and the corresponding gene associations were
downloaded from NCBI Entrez Gene ftp site (ftp://ftp. ncbi.
nlm.nih.gov/gene/DATA/mim2gene).

ecup 2227010
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Fig. 1. Schema diagram. (a) Test gene set is obtained from a locus identified by linkage analysis or differentially expressed genes from a microarray experiment. (b) Genome
and phenome knowledge sources considered to create BioRDF includes GO: Molecular Function, GO: Biological Process, GO: Cellular Component, Pathways, Mammalian
Phenotype, OMIM and Syndrome DB. (c) Each resource in the BioRDF (information space) is scored for its importance in the network. (d) By issuing a SPARQL query relevant to
a disease—gene set, prioritized genes are obtained after computing the score for each result.
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(3) The Multiple Congenital Anomaly/Mental Retardation data-
base (Syndrome DB) was not available for download and
JAVA HTML scripts were used to extract the data directly
from their website (http://www.nlm.nih.gov/archive//
20061212/mesh/jablonski/syndrome_toc/toc_c.html). This
resource was developed by Stanley Jablonski [36] and con-
sists of structured descriptions of approximately 1600–
2000 syndromes belonging to congenital abnormalities
known to be associated with mental retardation. Each entry
has a ‘major features (MF) section’ (e.g. mouth and oral struc-
tures, abdomen and skin) similar to the CS section of OMIM. A
subset of 152 records having corresponding OMIM identifier
and ‘cardiovascular system’ as one of the major clinical fea-
tures were extracted.

2.2. Mapping clinical features to find UMLS concepts

OMIM ID’s and the corresponding features from CS section were
parsed using JAVA XML scripts from the downloaded XML files. The
CS section of OMIM and the MF section of Syndrome DB are pre-
sented as loosely defined free textual descriptions. There is incon-
sistency in the use of clinical feature terms both semantically (e.g.
increased sweating and diaphoresis) and syntactically (e.g. neonatal
hypotonia and hypotonia, neonatal). In order to overcome these lim-
itations, we have chosen to directly map these terms to Unified
Medical Language System (UMLS) (http://umlsks.nlm.nih.gov) con-
cepts using MetaMap [37,38]. It is a NLP (Natural Language Pro-
cessing) tool which takes free text from biomedical domain and
maps noun phrases to a potential list of matching concepts from
UMLS Metathesaurus. Fig. 3 provides an example of overcoming
orthographic (spelling variants) problem inherent among clinical
terms represented in OMIM records by mapping to UMLS concepts.
We used an online version of MetaMap program (SKR-MetaMap)
that is available as part of Semantic Knowledge Representation
project (SKR) (http://skr.nlm.nih.gov/), that aims to provide a
framework for exploiting UMLS knowledge resources for NLP.

The extracted clinical features were uploaded into the SKR-
MetaMap batch mode module and a JAVA script was written to
parse the results. The parser extracts score for each match, original
textual phrase, mapped Concept Unique Identifiers (CUIs) and the
Semantic Type it belongs to from the list of final candidate map-
pings. To avoid the erroneous mappings, UMLS Semantic Network
is used to restrict the mappings belonging only to semantic types
under ‘Disorders’ semantic group. These sets are further refined
by selecting scores ranging from 570 to 1000 and after careful
manual curation incorrectly assigned concepts were removed.

The online SKR-MetaMap works well for short phrases but
requires exceptionally long processing times when handling the
TX section of OMIM as it contains large sections of free text as op-
posed to small phrases in CS. We used GATE toolbox (General
Architecture for Text Engineering) [39], produced at Sheffield Uni-
versity. GATE is a general purpose text engineering system, whose
modular and flexible design allows us to use it to create a more
specialized biological IE system. In our case, we used GATE for clin-
ical feature entity recognition in the TX section of OMIM using

http://www.nlm.nih.gov/archive//20061212/mesh/ablonski/syndrome_toc/toc_c.html
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Fig. 2. Text (TX) and clinical synopsis (CS) sections from OMIM for cardiomyopathy dilated 1D (OMIM No. 601494). As shown, TX section provides additional clinical features
to the ones mentioned in CS.

Fig. 3. clinical synopsis sections for arterial tortuosity syndrome (OMIM No. 208050) and Mucolipidosis IIIA (OMIM No. 252600) disorders. Figure explains overcoming
orthography by semantic normalization of clinical features to UMLS concepts.
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gazetteers, an important component of GATE holding a list of
members of a particular category. Here, the input to gazetteers is
a list of clinical feature keywords supplied from UMLS concepts
belonging to ‘Disorders’ semantic group. For each concept belong-
ing to this group, preferred names and synonyms were extracted
and supplied to the gazetteers. GATE scans through each OMIM
TX section and identifies the clinical features matching to the key-
words present in the gazetteers, a post-processing step is



R.C. Gudivada et al. / Journal of Biomedical Informatics 41 (2008) 717–729 721
performed to find the appropriate UMLS concepts for the extracted
clinical features. Table 1 provides the statistics before and after
performing semantic normalization of the OMIM clinical features
to UMLS concepts and the table does not indicate the MetaMap
performance evaluation. MetaMap mitigates the manual curation
to a large extent by controlling semantic types and keeping us fo-
cused on less scored mappings and this process is also scalable to a
much large data sets. The advantage of using UMLS concepts in-
stead of raw clinical features from unstructured text extremely re-
duced the total clinical feature space by around 50%. We have to
consider the entire UMLS for the semantic normalization of OMIM
clinical features as no single terminology or ontology is sufficient
to provide the necessary coverage (Table 2A and B).

2.3. Mapping clinical features to genes

The Phenome network was constructed from gene to clinical
features associations derived from individual OMIM records. As de-
scribed in the previous step we normalized the clinical features to
UMLS concepts, where each clinical feature has an associated
OMIM id. Further association of genes to features is done through
OMIM id using ‘mim2gene’ (ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/
mim2gene) dataset.

2.4. Generating RDF

The Resource Description Framework (RDF), an official W3C
recommendation, provides a generic framework to describe entity
properties, relationships, and constraints, and can be used to form
Table 1
Total clinical features extracted from OMIM and Syndrome DB before and after
performing semantic normalization (mapping to UMLS concepts)

Clinical features Total extracted
features

Total features
after semantic
normalization

% Of clinical feature
reduction after
semantic
normalization

Clinical
symptoms

16979 8504 50.08

Affected anatomy 8062 3364 41.7

Table 2

Source name Sourc

(A) List of the top 10 source terminologies in UMLS to which OMIM clinical features have as
SNOMED clinical terms SNOM
Medical dictionary for regulatory activities terminology (MedDRA) MDR
ICPC2–ICD10 thesaurus ICPC2
UMLS Metathesaurus MTH
Medical subject headings MSH
Online mendelian inheritance in man OMIM
National cancer institute thesaurus NCI
Canonical clinical problem statement system CCPSS
National drug file—reference terminology NDFR
Dxplain DXP

(B) Illustrating the need to map to entire UMLS to achieve better coverage rather than restr
Medical dictionary for regulatory activities terminology (MedDRA)
ICPC2–ICD10 thesaurus
UMLS Metathesaurus
Medical subject headings
Online mendelian inheritance in Man
National cancer institute thesaurus
Canonical clinical problem statement system
National drug File—reference terminology
DXplain
directed acyclic graph (DAG) representations of multidimensional
data and web resources. It is a semi-structured data model in
which complex relations can be readily modeled [40]. RDF state-
ments describe a resource, the resource’s properties and the values
of those properties. Each statement is referred to as a ‘‘triple” that
consists of a subject, predicate (property), and object (property va-
lue). Statements in RDF can be represented as graph of nodes (re-
sources) connected by edges (properties) to values. For example
the triplet, <‘ATM’ ‘is a’ ‘Gene’>, expresses ‘ATM’ as subject, ‘is a’
the property and ‘Gene’ as object of the statement. Disease Card
Ontology (DCO), an ontology currently under internal development
[41] to model and help relate mechanisms of actions (pathways) to
biological entities, influence of genotypes and clinical findings that
are operative in a diseased state is used to provide the required
semantic framework in generating RDF. DCO is being developed
using Protégé [42,43] in OWL, a language layered on top of
RDF to offer support for axioms and inference. Jena (www.jena.
sourceforge.net), a JAVA frame work for building Semantic Web
applications is used to generate the required triples for RDF.

In the current version, the data is retrieved from local relational
databases to create BioRDF instantly on the fly for the specific dis-
ease and gene set under study. The data includes genomic informa-
tion (pathways and gene ontology annotations) and phenomic
information (OMIM, Syndrome DB clinical features and Mouse
Phenotypes) associated with the test genes under study (Fig. 1).
Fig. 4 provides a portion of DCO and associated BioRDF. As we
are focusing on CVD, mouse phenotypes are restricted under ‘car-
diovascular system phenotype’ a parent node in the Mouse Pheno-
type Ontology.

2.5. Ranking on Semantic Web (SW)

In real world Semantic Web, most queries will result in large
numbers of retrieved results. Therefore, developing efficient infor-
mation retrieval techniques for discovering relevant knowledge
will be crucial towards realizing the vision of Semantic Web. In
our approach, we see the ranking of retrieved disease genes as
essential since researchers will tend to consider only the first few
results. Our approach to ranking Semantic Web resources is based
on an algorithm developed and successfully implemented in the
BioPatentMiner System [24] that itself was an extension to an
e abbreviation Version Number of mapped concepts

sociated concepts
EDCT 2007 6587

10 4391
ICD10ENG 200412 3467

2007 3052
2007 3038
2007 2993
2006 2223
1999 2046

T 2004 2021
1994 1978

Number of clinical features missing in SNOMED (2007)

icting to one single terminology such as SNOMED
599
314
285
305
313
397
160
96
141

http://www.jena.sourceforge.net
http://www.jena.sourceforge.net


Fig. 4. Portion of BioRDF generated for DMD gene based on the DCO ontology. The upper network is the ontology providing the required semantics (Classes) for the lower RDF
network consisting instance data.
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earlier WWW link-analysis algorithm [22] to identify relevant web
pages based on the number of pages linking to it and also the
importance of linking pages. The extended algorithm considers
specific aspects of Semantic Web such as information complexity
compared to a traditional web since it contains different kinds of
resources and relations between them as well as ontological rela-
tions and references. In addition, it follows the same principle as
Google that ranking the search results should not be determined
just for specific queries but rather by the importance of the results
in the overall information space (RDF graph) [21]. Google search
result ranking relies on web content analysis performed over the
full information space prior to any query and the same logic can
also be applied in querying for the disease genes on an integrative
functional Bio-RDF network created for a particular disease. The
algorithm is recursive and the score of each node is passed to the
adjacent node in the next iteration, until score becomes constant
with further iterations. This score indicates the relevance of the
node in the network based on the importance it has in relative to
the overall disease information space. In the next section, we
briefly describe the algorithm and metrics in calculating scores
for each resource. For a more complete in-depth analysis and
explanation of the algorithm, refer to the original paper [24,44].

2.5.1. Calculating resource importance
In the world of Semantic Web, a resource can be considered rel-

evant if it has relations with many other resources where the
meaning and significance of these other resources have been recur-
sively defined as relevant with respect to their associated
resources. Resource relevance, scoring RDF network elements
according to their idiosyncratic defining relationships within the
network structure, can be calculated from the complete set of these
relationships within the RDF graph set. In the context of a graph,
resources that have a high in-degree or out-degree should be con-
sidered relevant, i.e. may contain causal or predictive (correlative)
relations. In SW networks (graphs), two important metrics were
defined to estimate the importance of each resource, Subjectivity
Score (SS) and Objectivity Score (OS) parallel to Kleinberg’s [22]
hub and authority scores for the WWW graph (Fig. 5). Kleinberg
not only considers the number of links to and from a node but also
the relevance of linked nodes. Accordingly, if a resource in SW is
pointed to by a resource with high SS, its OS increases. Conversely,
if a resource points to a resource with a high OS, its SS is increased.
Initially these scores are set to 1.0 and resources with high subjec-
tivity/objectivity scores are the subject/object of many of RDF
triples.

2.5.2. Significance of subjectivity (SW) and objectivity weights (OW)
In the present WWW, all links are of equal weight and considered

equally important while calculating hub and authoritative scores.
But the SW space is more complex, where each property might not
be equally important and depends on the subject and object it is
associated with. For example, consider the property ‘associatedPath-
way’ where it links a gene to a pathway it has role in. A gene associ-
ated with multiple pathways can be considered to be more relevant
than compared to a pathway having multiple genes because any
mutation in the multipathway-linked gene could affect several path-
ways manifesting into a disease. Therefore, importance of a pathway
resource should not increase if it has many genes. However, the rel-
evance of a gene resource obviously depends on the pathways it’s
associated with, paralleling the causal flow from gene products to
the pathways in which they participate. Fig. 6 illustrates the signifi-
cance of semantic weights on gene-pathway association. In order to
influence the scoring scheme, each property is assigned with ini-
tial zsubjectivity and objectivity weights, which control the sub-



Fig. 6. (a) Illustrating that the significance of a gene associated with multiple pathways is
disease context. (b) Assigning subjectivity and objectivity weights to the property ‘assoc

Fig. 5. Kleinberg’s authoritative and hub nodes.
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ject/object scores (resource importance) for that property. Conse-
quently, properties like ‘associatedPathway’ are assigned with higher
subjectivity weight and lower objectivity weight. As gene is the sub-
ject of all triples (from Fig. 4), every property is assigned with higher
subjectivity weights and lower objectivity weights. Since the rela-
tive strength between subjectivity and objectivity is really what
important, the choice of exact weights can be arbitrary, however,
one constraint is that for each property the sum of subjectivity and
objectivity weights must be equal to 1.0. We have chosen a subjec-
tivity weight of 0.9 and objectivity weight of 0.1. The modified Klein-
berg’s algorithm [21] to calculate Subjectivity and Objectivity scores
of Semantic Web resources with predefined Subjectivity and Objec-
tivity weights is as follows:

1. Let R be the set of resources (nodes) and E be the set of proper-
ties (edges) in the BioRDF graph.

2. For every resource r in R, let S[r] be its subjectivity score and
O[r] be its objectivity score.

3. Initialize S[r] and O[r] to 1 for all r in R.
4. While the vectors S and O have not converged:

(a) For all r in R, O½r� ¼
P
ðr1;rÞ2ES½r1��objWtðeÞ where objWt is

the objectivity weight of the property representing the
edge.

(b) For all r in R, S½r� ¼
P
ðr;r1Þ2EO½r1��subWtðeÞ where subWt is

the subjectivity weight of the property representing the
edge.
(c) Normalize the S and O vectors.
The modification is that while determining the subjectivity
and objectivity scores of a node we multiply the scores of the
adjacent vertex by the subjectivity and objectivity weights of
the corresponding link. This will ensure that the scores of certain
resources are not influenced by the total number of resources it’s
associated with for a particular property. For example, a low
objectivity weight for the ‘associatedPathway’ property will en-
sure that the objectivity scores of pathway resources are not in-
creased by the number of genes that pathway is associated with.
As with the original Kleinberg algorithm, our modified version
also terminates with all the vectors converging for any Semantic
Web graph. Convergence is defined when the subjectivity and
objectivity scores for all resources become stable after finite iter-
ations, at which the program is automatically terminated. Final-
ly, the importance of each resource I[r] is determined by adding
its corresponding subjectivity and objectivity score as follows:
I[r] = S[r] + O[r].

considered more important compared to a pathway having multiple genes within a
iatedPathway’ for the triple ‘gene—associatedPathway—Pathway’.
2.5.3. Ranking the retrieved results
Search result ranking is an important research topic in informa-

tion retrieval. The node scores used for ordering the results are not
determined by a specific query but calculated prior through the
relevance of the data nodes in the overall information space. But
for every issued query, the resultant ranked list of nodes are



Table 3
Prioritized genes from loci 7p12.1–7q21 associated with hypertrophic cardiomyop-
athy on chromosome 7

Rank Gene symbol Score

1 GTF2IRD1 173.334
2 GTF2I 120.1975
3 ELN 93.53132
4 SBDS 77.47414
5 EGFR 42.30714
6 LIMK1 40.77264
7 YWHAG 38.65037
8 BAZ1B 20.52658
9 ZNF117 9.506009
10 ZNF273 8.496438
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identified by the SPARQL-SELECT clause and sorted according
to their pre-calculated relevance scores. We used ARQ (http://
jena.sourceforge.net/ARQ/), a query engine for Jena that supports
SPARQL, a RDF query language. A sample query to prioritize genes
associated with cardiomyopathy is shown in Fig. 1. However,
SPARQL does not in itself prioritize the results, hence we borrowed
a technique from Bhuvan and Sougata [21] which adds an extra
computational layer to rank the retrieved results. For each query
the SPARQL returns a set of variable bindings matching to the
query parameters and each unique result produces a graph formed
from the triples matching the criteria. We retrieve the associated
graph for each result using ‘CONSTRUCT’ query form of SPARQL
[45], and compute a score for every result. The original equation
was designed to handle queries ranging from simple to complex
and calculated a score for the relevance of each result by using var-
ious parameters associated with it. But since as we are prioritizing
only genes, the query is more focused and assumes that if a gene
has high relevance in the overall semantic graph, their ranking
should be correspondingly higher. Therefore, most of the variables
in the original equation are assigned 0, but could be incorporated
to handle complex queries such as prioritizing genes associated
with a particular pathway while also being linked to a specific
high-scored Gene Ontology class.
Table 4
Prioritized genes from loci 10q25–26 associated with dilated cardiomyopathy on
chromosome 10

Rank Gene symbol Score

1 FGFR2 144.9478
2 GRK5 138.7307
3 ADRB1 122.455
4 TIAL1 100.2871
5 EMX2 97.13126
6 GFRA1 82.81983
7 BUB3 47.78852
8 DMBT1 46.70792
9 SLC18A2 20.62583
10 PRLHR 19.57693
3. Results

3.1. Benchmark of the method

To explore the feasibility of our approach in candidate gene pri-
oritization, we randomly selected 60 diseases from a total of 423
CVD from OMIM database having at least one implicated gene with
associated clinical synopsis. The algorithm was not provided with
any explicit link between target gene and the disease to validate
that our method detects the true functional relationship between
the disease and the gene. For every OMIM disease from our dataset,
we extracted the genes from the locus specified in the OMIM data-
base. On an average we ensured that each list contained around
300 genes including the implicated gene. These gene lists are used
to validate how efficient our approach can be in finding the real
implicated gene from the other non-disease genes (�300 genes)
in that specific locus. The benchmark results were quite promising,
since in 44 out of 60 cases (74%) the related gene is ranked in the
top 10 and in 33 cases (55%) ranked in top 5.

3.2. Application

We tested the efficacy of our method in prioritizing candidate
genes from cardiovascular disease (CVD)-implicated genomic re-
gions (from LOD scores) and from differentially expressed genes
from expression studies.

3.2.1. Prioritizing candidate genes from CVD-implicated genomic
regions

Linkage analysis is a proven method to associate diseases with
specific genomic regions. However, these regions are often large,
containing hundreds of genes, which make experimental or auto-
mated methods employed to identify the correct disease gene dif-
ficult and costly. We used our integrative based ranking approach
to prioritize candidate genes from the CVD-implicated genomic re-
gions. As test sets, we used known gene lists from 2 loci recently
implicated in cardiomyopathy [27,28].

3.2.1.1. Prioritization of genes at a locus for hypertrophic cardiomy-
opathy on chromosome 7p12.1–7q21. We ranked the 110 genes
occurring in the chromosome locus 7p12.1–7q21(�27.2 megabas-
es), a recently reported susceptibility region for inherited cardio-
myopathy on human chromosome 7 [27]. Mutations in the top
ranked genes (Table 3), namely, GTF2IRD1 [46–48], GTF2I
[49,50], ELN [51–53], LIMK1 [54–56], and BAZ1B [57–59] (in
mouse or human or both) have been associated with Williams–
Beuren Syndrome(OMIM ID: 194050). Though this syndrome is
primarily recognized as a mental retardation syndrome, it is also
associated with cardiovascular symptoms such as atrial septal de-
fect, supravalvar aortic stenosis and less frequently hypertrophic
cardiomyopathy [60].

3.2.1.2. Prioritization of genes at a locus fordilated cardiomyopathy on
chromosome 10q25–26. After prioritizing the 68 genes in the chro-
mosome 10q25–26 region (�9.5 mega bases, locus for cardiomy-
opathy, diffuse myocardial fibrosis, and sudden death) [28], we
identified FGFR2 as the top ranked gene. FGF signaling via FGFR2
regulates myocardial proliferation during midgestation heart
development and in the absence of this signal newborn mice devel-
op dilated cardiomyopathy [61]. From a study [62], comparing the
GRK5 (second ranked) expression in patients with left ventricular
volume-overload disorders and dilated cardiomyopathic hearts, a
relation exists between the expression of GRK5 and alterations in
myocardial b-adrenoceptor signaling in volume-overload. The re-
sult point to myocardial GRK5 regulation in cardiac disease local-
ized to ventricles. Jahns et al. [63] have provided direct evidence
that an autoimmune attack directed against the cardiac b(1)-
adrenergic receptor, ADRB1 (third ranked) may play a causal role
in dilated cardiomyopathy (DCM). A recent study reports the use
of ADRB1 as a prognostic marker, a risk predictor, and adverse clin-
ical effects by stimulating antib1-antibodies in DCM [64]. Table 4
provides the top 10 prioritized genes at this loci for dilated
cardiomyopathy.

3.2.2. Prioritizing Candidate Genes from the Differentially Expressed
genes in CVD

Microarray analysis is a powerful technique for high-through-
put, global transcriptonomic profiling of gene expression. It holds
great promise for analyzing the genetic and molecular basis of var-
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ious complex diseases and permitting the analysis of thousands of
genes simultaneously, both in diseased and non-diseased tissues
and/or cell lines [65]. However, it often provides researchers with
too many candidates without necessarily identifying causative ele-
ments. To assess our prioritization approach with such studies, we
used a dataset of differentially expressed genes in human idio-
pathic dilated cardiomyopathy [29].

3.2.2.1. Gene prioritization of differentially expressed genes in human
idiopathic dilated cardiomyopathy (DCM). We used our prioritiza-
tion approach to rank 216 differentially expressed genes (Table 5
lists the top 10 genes) from the expression profiles of myocardiac
biopsies from 10 DCM patients [29]. The top ranked gene is
DMD, which is already well known in cardiac function and malfor-
mation. Specific DMD gene mutations may protect against or inhi-
bit development of DCM. The K336E mutation in ACTA1 (Ranked 2)
is associated with fatal hypertrophic cardiomyopathy [66]. A mis-
sense mutation of CRYAB (Ranked 5), Arg157His, was found in a
familial DCM patient and the mutation affected the evolutionary
conserved amino acid residue among a-crystallins [67]. Although
GJA1 (ranked 8th) is not associated with hypertrophic cardiomyop-
athy, but disturbances in Cx43 expression and localization are re-
ported to influence heart embryogenesis and maturation and also
contribute to hypertrophy and dysfunction of the right ventricle,
including arrhythmias in children with tetralogy of fallot [68].
RYR2, ranked 10th in our list, encodes ryanodine receptor found
in the cardiac muscle sarcoplasmic reticulum. Mice with the
R176Q cardiac RYR2 mutation exhibit catecholamine-induced ven-
tricular tachycardia and cardiomyopathy [69]. RYR2 mutations are
also known to cause cardiomyopathies and sudden cardiac death
[70].

4. Advantages of using Semantic Web technologies

4.1. Flexible integration and query of genomic and phenomic networks
Querying

An important feature of our framework is the ability to include
multiple knowledge sources related to different disease features
for modeling and prioritization. RDF provides a very flexible way
to integrate different layers of information and also to mine the
integrated network by applying graph theory-based analytical
algorithms. We assessed whether our sequential integrative geno-
mic–phenomic approach is capable of prioritizing implicated genes
for the 60 sample diseases. Sensitivity and specificity values are
computed for the 60 prioritizations using the methodology de-
scribed in [4,5]. Sensitivity refers to the frequency (% of all priori-
tizations) of all known disease implicated genes that are ranked
above a particular threshold position. Specificity refers to the per-
centage of actual non-implicated genes ranked below this thresh-
old which is different from negative predictive value which
Table 5
Prioritized genes from differentially expressed genes in human idiopathic dilated
cardiomyopathy

Rank Gene symbol Score

1 DMD 91.29173
2 ACTA1 64.82657
3 UQCRB 53.62478
4 SDHB 50.8915
5 CRYAB 46.62995
6 SDHA 40.74193
7 LDB3 40.38424
8 GJA1 37.38691
9 ACTC1 34.42755
10 RYR2 20.97512
states that the proportion of less ranked genes that are truly
non-implicative. We plotted rank receiver operating characteristic
(ROC) curves to prove that increasing the number of heterogeneous
knowledge bases enhances the probability in predicting the dis-
ease implicated gene. ROC curves from Fig. 7 illustrate that sequen-
tial addition of genomic to phenomic knowledge integration
improves the overall performance of ranking. The greater the area
under the curve (AUC) the better the performance and as can be
seen from Fig. 7, the area with all the sources is comparatively lar-
ger than all the other areas with partial sources, thus supporting
our hypothesis.

In addition to ROC curves, the following example illustrates
how RDF based integrative approaches assisted to home in on
the gene SDHB underlying Paragangliomas 4 (OMIM ID: 115310),
a disorder having several cardiovascular symptoms (palpitations,
tachycardia, and hypertension). SDHB is one of the 245 genes
located at the genomic region 1p36.1–p35. Fig. 8 explains how
flexible and incremental integration provided by RDF improves
the rank of the implicated gene. To conclude, RDF facilitates the
flexible and modular additions of specific knowledge sources to
enhance its overall performance. Moreover, the algorithm also
requires repeated traversals of the graph with each database addi-
tion to properly score each node in the network and SPARQL
provides the required graph querying capabilities.

4.2. Adding context through semantic weights

As discussed in the methods section and also from Fig. 6, incor-
porating context specific subjectivity (SW) and objectivity weights
(OW) improved ranking of certain genes. We generated ROC curves
with and without semantic weights (Fig. 9) by including all knowl-
edge sources. Fig. 9 clearly illustrates improved overall perfor-
mance in ranking by assigning weights to properties but as the
change in the ranking are only for few genes we did not consider
doing a further statistical test of these two ROC curves. For exam-
ple, the ACADVL gene implicated in mitochondrial very-long-chain
acyl-CoA dehydrogenase deficiency (as evidenced in OMIM ID:
201475) ranked 53 without any Subjectivity and Objectivity
weights, but improved to rank 9 after including weight functions.

4.3. Ability to investigate other resources (apart from genes) in BioRDF

As every resource is scored in the integrated BioRDF informa-
tion space, we can issue further SPARQL queries to retrieve and pri-
oritize other entities (apart from genes), such as pathways. Using
the Human Idiopathic DCM example (Section 3.2.2.1), we queried
further for the important pathways. This provides evidence of
other relevant entities shared in the network to corroborate our
initial findings. Fig. 10 illustrates the resulting pathways and SPAR-
QL queries retrieved from multiple sources. This feature is particu-
larly useful in expression studies as the differentially expressed
genes are already related in a particular disease context.
5. Discussion

Our approach to the prioritization of candidate genes differs
from other methods in multiple ways, beginning with more exten-
sive coverage of knowledge bases, flexible data integration meth-
ods, and the application of novel mining algorithms. To the best
of our knowledge, apart from G2D [8], PROSPECTR [7], and POCUS
[6], most of the current tools for candidate gene prioritization
use training gene sets. But in many cases, training gene sets are
not available and results are highly dependent on the quality and
relevance of the training set used. G2D uses MeSH (www.
nlm.nih.gov/mesh) disease terms from publications as clinical fea-
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Fig. 7. Rank ROC curves for validating sequential integrative approach in prioritizing the implicated gene (out of 300 genes on average) from the loci associated with the 60
sample OMIM diseases. The 4 curves, represented in different colors are associated with sequential integration of different genomic–phenomic knowledge sources. The data
sources associated with each ROC curve are indicated on the figure.

Fig. 8. Sequential addition of genome–phenome knowledge improves ranking of SDBH gene implicated in PARAGANGLIOMAS 4.
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tures associated with each OMIM disease. These features are not
comprehensive or granular compared to the clinical synopsis sec-
tion we used, limiting the potential of G2D. In addition, none of
the these other approaches integrate both human and mouse clin-
ical features although the mouse is the key model organism for the
analysis of mammalian developmental, physiological, and disease
processes [71].Our method has two phases, first to find the biolog-
ically functional important genes from the test set by integrating
multiple genomic knowledge sets. This relevance is scored from
their participation in multiple pathways, biological processes and
molecular functions independent of any particular disease. In the
next phase, we apply specific disease context to the genomic net-
work by adding phenotypic or clinical features relevant to the dis-
ease under study (Ex: All clinical features associated with the test
genes restricted to CVD in OMIM). This step improves the ranking
of those specific genes, considered important from relevant geno-
mic knowledge and also associated with clinical features related
to the studied disease. In general, we are applying network central-
ity analysis to rank resources according to their relevance within
the BioRDF graph. Moreover, here, the relevance of a resource is
properly enhanced by integrating multiple diverse knowledge
sources (from genome to phenome) into the RDF information
space. It is also evident from the earlier exemplary work
[26,38,72–75] that integration and mining of phenomic and geno-
mic knowledge provides deep insight in elucidating disease–
molecular relationships. Additionally, resource ranking is per-
formed semantically by including contextual semantic weights
on the properties connecting the resources, which effectively insert
general causal relations (such as genes influencing pathway behav-
ior) into the prioritization process. Our approach however has
some limitations. First, the prioritization can only be accurate as
the underlying online sources from which the annotations are re-
trieved. Second, prioritization can be applied only on diseases
where clinical features are available. However, as more quality
data becomes available and is integrated into BioRDF, we believe
the errors will be washed out. At present, BioRDF graphs are gen-
erated instantly by retrieving knowledge from local relational dat-
abases but the future versions will access a native RDF triple store
to extract large subsets of graphs for a particular disease and gene
set. We are also planning to move towards using a locally installed
version of MetaMap as it can easily handle large sections of free
text [38,76] in contrast to the online version.



Fig. 9. Rank ROC curves for validating the improvement in overall performance in
ranking the implicated gene (out of 300 genes on average) including all sources
with and without semantic weights.

Fig. 10. Ranked pathways from various sources of the BioRDF graph associated with diffe
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6. Conclusion

We have used for the first time in human disease gene prior-
itization a combination of both mouse phenotype and human
disease clinical features from OMIM clinical synopsis. In addition
to such extended coverage of knowledge sources used, we have
also shown for the first time that one can leverage Semantic
Web standards and techniques applied to a specific biological
problem. The direct use of W3C’s RDF and OWL standards for
knowledge integration, the application of network centrality
analysis for mining and the retrieving of ranked results using
graph query languages such as SPARQL. Although in this current
study we focused on the cardiovascular system, our approach
can be applied to any group of genes or diseases. One immediate
application could be to apply our methods to all OMIM diseases
(around 1554) having known loci but unknown molecular basis.
As the functional annotations of human and mouse genes im-
prove over time we envisage a proportional increase in the per-
formance and robustness of this approach. Finally, we strongly
believe that our methods will accelerate the disease gene discov-
ery process by gathering and sifting through all knowledge of
each candidate gene from any source including its homologs
and their phenotypes. Consequently, this will enable targeted
research on the contribution of genetic mutations towards dis-
eases that will provide specific leads towards novel diagnostic
rentially expressed genes in human idiopathic dilated cardiomyopathy (DCM) [16].
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and therapeutic approaches. Our objective in this manuscript is
to make a compelling case and provide evidence that no other
single open standard exists for mapping any data record entry
from any DB into a common graph space and along with associ-
ated ontologies/semantics. Graph models of data are essential to
apply algorithms such as Page rank and SW allows Page rank to
apply not to just pages but to individual data objects.
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