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Abstract—Virtual cystoscopy is a developing technique for
bladder cancer screening. In a conventional cystoscopy, an optical
probe is inserted into the bladder and an expert reviews the
appearance of the bladder wall. Physical limitations of the probe
place restrictions on the examination of the bladder wall. In virtual
cystoscopy, a computed tomography (CT) scan of the bladder is
acquired and an expert reviews the appearance of the bladder wall
as shown by the CT. The task of identifying tumors in the bladder
wall has often been done without extensive computational aid to
the expert. We have developed an image processing algorithm
that aids the expert in the detection of bladder tumors. Compared
with an expert observer reading the CT, our algorithm achieves
89% sensitivity, 88% specificity, 48% positive predictive value,
and 98% negative predictive value.

Index Terms—Anatomical atlas, bladder wall, computer-aided
diagnosis, thickness measurement, tumor detection, virtual cys-
toscopy, virtual endoscopy.

I. INTRODUCTION

T UMORS of the bladder constitute 7% of all malignancies
in men and 4% in women [1]. Every year, bladder tumor

is diagnosed in more than 50 000 subjects. If doctors detect the
tumor when it is still small, they can treat it with a resection, or
chemotherapeutic agents, or a combination of both. However,
in 60% of the cases, another bladder tumor will appear [2], [3].
Therefore, the patients need regular monitoring to avoid the re-
currence of the disease.

Cystoscopy is the conventional procedure for monitoring
the bladder [4]. The clinician inserts a probe into the patient’s
bladder, and orients it to observe on a monitor the surface of
the bladder cavity. The clinician has to distinguish the surface
deformations due to tumors, from the surface deformations due
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Fig. 1. CT scan of the abdomen shows the bladder cavity in black, and the
bladder wall in light gray (thin contour around the cavity). (left) Slice through
an abdomen CT scan for one patient. (right) Slice through an abdomen CT scan
for a second patient. The arrows point to wall regions with abnormal thickness.

to the neighboring structures. As a routine exam, conventional
cystoscopy exhibits four major problems. First, it is painful;
hence, many patients refuse the exam [5]. Second, it increases
the risk of urinary tract infection [6]. Third, it does not easily
show the diverticula and the bladder neck, especially in males
[7]. Fourth, it only shows the inner surface of the bladder wall;
the interior of the wall, and the neighboring structures are not
visible.

To observe the interior of the bladder wall and the neigh-
boring structures, one can acquire a three-dimensional (3-D)
scan of the patient’s abdomen. Computed tomography (CT) is
the preferred modality of acquisition (see Fig. 1). Other modal-
ities can highlight some useful characteristics, but the images
generally exhibit a lower contrast. From the CT scan, a 3-D
grid of voxels (i.e. volume elements) is constructed typically
with an inslice spacing of 0.5 mm and an interslice spacing of
1–5 mm. To locate potential tumors in the bladder, the clini-
cian reviews the 3-D grid images in the plane of acquisition, or
in an orthogonal plane. With this technique, the bladder cavity
and neighboring structures are visible in addition to the bladder
wall. However, the clinician loses the 3-D visualization and the
intuitive navigation the probe offers. Even an experienced radi-
ologist can find it difficult to fully appreciate the 3-D shape of
the bladder from the two-dimensional (2-D) images.

II. RELATED WORK

Vining et al.[8] segment, and render the surface of the bladder
cavity for interactive 3-D visualization from CT scan. In the
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same way, the clinician manipulates the probe in the conven-
tional cystoscopy, she or he manipulates the computer mouse to
navigate inside the bladder cavity. Hence, this scan-based tech-
nique is namedvirtual cystoscopyor CT cystoscopy. To con-
struct a surface model of the bladder, the CT scan must be seg-
mented. First, the inner boundary of the bladder is contoured
in every slice. Then the 3-D surface of the bladder is recon-
structed from the pile of segmented slices. Various algorithms
can automate the contouring of the bladder cavity since the air
regions and the tissue regions appear with very different inten-
sities in the CT scan. The air and tissue classification results in
a 3-D image with only two scalar values. An isosurface extrac-
tion algorithm, such as the Marching Cubes [9], automatically
triangulates the surface between the two values. Finally, the tri-
angulated surface, called amesh, is rendered on the clinician’s
screen. Using an interactive software (e.g., [10]), the clinician
rotates, and cuts the bladder surface, and zooms in the regions
of interest.

For 26 patients, Songet al. [11] compare conventional cys-
toscopy, and a combination of transversal CT images and vir-
tual cystoscopy. In their study, 10% of 40 bladder lesions were
detected by conventional cystoscopy, but undetected by CT im-
ages and virtual cystoscopy. These lesions were all smaller than
5 mm. However the cystoscopic exam is not concerned with de-
tecting every small lesion and irregularity. The purpose of a cys-
toscopic exam is to judge whether or not the patient will require
surgery to remove a tumor. The presence of a single confirmed
tumor is enough to ensure the patient will go for surgery.

To enhance the tumors in virtual cystoscopy, Schreyeret al.
[12] render colored bladder meshes based on the bladder wall
thickness. First, they threshold the CT scan to segment the
bladder cavity. Second, they edit the contour in every slice to
segment the bladder wall. Third, for every voxel on the inner
boundary of the bladder wall, they measure the distance to
the closest voxel on the outer boundary. This distance locally
estimates the bladder wall thickness. Fourth, they triangulate
the inner surface with the Marching Cubes algorithm, and
map the thickness values onto the mesh vertices. Finally, the
clinician can visualize the inner surface, or the outer surface,
or both. Colors from red to blue represent thicknesses from 0
to 15 mm.

Fieldinget al. [13] compare the sensitivity and specificity of
three tumor detection methods on 31 patients. The methods are
conventional cystoscopy, review of axial CT images, and virtual
cystoscopy. They create surface renderings of the bladders based
on the thickness representation of Schreyeret al.. In a compar-
ison with conventional cystoscopy, they report 83% sensitivity,
36% specificity, 42% positive predictive value, and 71% nega-
tive predictive value.

Our contribution is to detect bladder tumors based on a com-
parison with a normal thickness atlas. During the training, our
software needs a set of segmented bladder volumes. For testing
a new patient, it inputs a segmented scan of the patient’s bladder,
and outputs the location of the tumors in the scan, if any. The
expert’s intervention is limited to the segmentation of the 3-D
scan, and the review of the tumor regions the software detects.

The remainder of this paper is structured in four sections.
Section III describes the acquisition and segmentation of the

image, the construction of the thickness atlas, and its use to de-
tect tumors. Section IV presents our experiments on 26 patients.
Section V explains our results and proposes potential improve-
ments. Finally, Section VI concludes the paper.

III. M ETHOD

We manually segmented the bladder wall in the CT scan, and
then automatically detected the tumors in the bladder wall. Our
method was based on five steps: the acquisition of the CT scan,
the segmentation of the bladder wall in the scan, the estima-
tion of the thickness of the bladder wall, the construction of a
thickness atlas, and the measurement of how much the thickness
differs from the atlas. A large difference allowed for the local-
ization of a tumor. These five steps are described below.

A. Image Acquisition

For 26 patients with a history of bladder cancer, we acquired
a CT scan of the abdomen. A 12-French Foley catheter was
inserted into the bladder, the residual urine drained, and the
bladder insufflated with approximately 300 cc room air or to tol-
erance. The balloon of the catheter was inflated with 5 cc saline.
To make urine produced during the scan discernible from the
bladder wall, two cubic centimeters diatrizoate meglumine and
diatrizoate sodium were instilled through the Foley catheter into
the bladder. A 3-D CT image of the bladder was then obtained
with the patient in the supine position. The resolution of the 3-D
image was cubic millimeters.

B. Segmentation Method

To segment the bladder wall, we thresholded the bladder
scans, and manually outlined the outer boundary of the bladder
wall. Note that the contrast in CT scans between air and tissue
allows for our automated segmentation of the inner boundary
of the bladder wall. However, the contrast between wall tissue
and other tissues is much smaller, and their intensities vary over
the 3-D CT scan. Therefore, a simple thresholding would not
represent the bladder wall correctly. Thus, we used a manual
segmentation for the outer boundary of the bladder wall.

We stored the segmentation results in two sets of black (in-
tensity 0) and white (intensity 1) images. In the first set, only
the bladder cavity appears in white. In the second set, both the
bladder cavity and the bladder wall appear in white. Fig. 2(a)
and (b) shows one slice through the first set Fig. 2(a) and the
second set Fig. 2(b). We then applied the Marching Cubes algo-
rithm [9] with an intensity of 0.5 on each set of images to create
a pair of triangular surface meshes. The mesh extracted from the
first set of images models the inner surface of the bladder wall;
while the mesh extracted from the second set of images models
the outer surface of the bladder wall. A pair of such meshes are
rendered in Fig. 2(c) and (d). The left mesh models the inner
bladder surface, while the right mesh models the outer bladder
surface.

The appearance of the surface is coarse, but its accuracy is
below the voxel size. Extracting the isosurface from the CT scan
without segmentation would create a smoother surface. How-
ever, noise in the CT scan would create many handles, and the
surface of the bladder would not be correctly defined.
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(a) (b)

(c) (d)

Fig. 2. We model the bladder with two meshes extracted from the segmented
volume. (a) One slice of the CT scan after segmentation of the bladder cavity.
(b) Same image where the white area includes the bladder wall. (c) Mesh of the
inner surface of the bladder. (d) Mesh of the outer surface of the bladder. Both
meshes are extracted using the Marching Cubes algorithm on the segmented
volume.

C. Thickness Estimation

To estimate the bladder wall thickness, we computed for
every vertex of the inner mesh its distance to the closest vertex
of the outer mesh. The mesh discretization resulted in mesh
vertices being separated by distances similar to the bladder wall
thickness. In order to form an accurate estimate of the bladder
wall thickness, the triangle meshes were upsampled by a factor
of eight by subdividing every triangle of the outer mesh into
64 coplanar triangles. Fig. 3 shows the thickness map for the
bladder of two patients. Thin regions of the bladder wall are
color-coded in blue, while thick regions are color-coded in red.

D. Atlas Construction

Bladder tumors are characterized by a thickening of the
bladder wall. However, the thickness distribution varies over
the bladder surface. Our idea was to compare the thick regions
with a normal thickness map (atlas) to distinguish pathological
thickness from normal thickness.

To build the atlas, we used a leave one out cross validation.
We left one patient out of our set of 26 patients, and built the
atlas for the other 25 patients. The first patient is called the
testingpatient, while the other patients are called thetraining
patients. For every testing patient, we computed one atlas with
the average, one atlas with the standard deviation, and one atlas
with the coefficient of thickness variation. The coefficient of
variation is the ratio of the standard deviation over the average

Fig. 3. Distance from inner mesh vertices to the closest vertex on the outer
mesh gives a thickness map of the bladder wall. For the two patients shown, the
thickness ranges from 0 to 5 mm. We measure a 0-mm thickness when the wall
is not visible in the CT scan. Note a thick spot at the top of the first bladder, and
two thick spots at the center of the second bladder.

of the thickness; it indicates the relative variability of our thick-
ness estimation.

To build one normal thickness atlas, we averaged the thick-
ness values across the set of 25 training patients. For every
patient in the set, we mapped a grid of 600 nodes by 600 nodes
on the top half and on the bottom half of the bladder surface. To
map these two grids, we used the remeshing algorithm of [14].
We linearly interpolated the thickness values of the bladder
mesh to associate values with the new grid nodes. Finally, for
every node of the grid, we averaged the thickness across the
training patients. The thickness average created the normal
thickness atlas for the set of training patients.

The aforementioned procedure would give a correct atlas if
no patient in the training set had tumors. Since this was not the
case, the tumors would bias our atlas, and decrease the sensi-
tivity of our tumor detection method. To reduce the bias, when
one vertex of a training mesh had a thickness value larger than
5 mm, we discarded that value for the atlas computation. We
chose a 5-mm threshold since we were interested in small tu-
mors, clinically defined as tumors smaller than 5 mm. Note that
the other thickness values for the same training mesh were still
inspected. Fig. 4 shows the average atlases for two patients. The
values of every atlas are colored on the mesh of the testing pa-
tient. We observe that the thickness is 1-mm larger at the top
than at the bottom of the bladder.

To build the standard deviation atlas, we again considered
every node of the grid for every patient in the set of training
patients. This time, we used both the thickness value, and the
previously computed average to compute the standard devia-
tion. To build the coefficent of variation atlas, we only consid-
ered the nodes of the standard deviation atlas, and the nodes
of the average atlas. For every node, we computed the ratio of
the standard deviation, and the average. Fig. 5 shows the varia-
tion atlases for the two patients selected in Fig. 4. The first row
shows the atlases for the standard deviation of the thickness.
Note that our thickness estimation has a slightly larger variation
at the bottom than at the top of the bladder. The last row shows
the atlases for the coefficient of variation. The images confirm
that the thickness estimation varies more at the bottom than at
the top of the bladder.
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Fig. 4. Average thickness atlases show the distribution of the wall thickness
over the bladder surface. The figure shows two atlases computed from a different
set of bladder scans. Both atlases indicate that the thickness is 1 mm larger in
average at the top of the bladder than at the bottom.

Fig. 5. Variation of the atlas thickness for the sets of patients used in Fig. 4.
The first row shows the standard deviation, and the second row the coefficient of
variation, i.e., the ratio of the standard deviation over the average. The variation
in the atlas appears slightly higher at the bottom than at the top (the standard
deviation is 0.6 mm larger).

E. Measurement of Abnormality

We used a Z score to compare the bladder wall thickness for
the testing patient to the normal thickness in the atlas. The Z
score for a thickness valueis the ratio of its difference to the

Fig. 6. Relative thickness difference between the patient bladder and the atlas,
measured by the Z score, indicates the region of abnormal thickness. (top left) Z
score for one patient. (top right) Zoom in the CT scan for this patient. Similarly,
the bottom row shows Z score and CT scan for a second patient. At the top of
the first bladder, the Z score reveals a region of abnormal thickness (red). At the
center of the second bladder, the Z score reveals two spots of abnormal thickness
(red).

average over the standard devation, as shown in (1). This
ratio without units characterizes the abnormality of the thick-
ness . We wanted to find the optimal Z-score threshold for
bladder tumor detection. Regions where the Z score was below
the threshold would not be detected as diseased; regions above
the threshold would be detected as diseased. We evaluated sev-
eral Z score thresholds for some arbitrarily selected cases, and
found that allowed for a good detection of tumors for
those cases

(1)

Positive Z scores characterize thickness larger than the
average, while negative Z scores characterize thickness smaller
than the average. Since tumors create a thickening of the
bladder wall, we only considered the positive Z scores. The
larger the Z score, the more atypically thick the bladder wall.
Fig. 6 shows the Z score computed for two testing patients.
Most of the bladder area has a Z score smaller than one (blue
in the figure). The thickness in this area is smaller than or
close to the average thickness. The top of the first bladder (top
left image) exhibits a region with a large Z score (red in the
figure). Since the Z score exceeded 2.5, our software detected
this region as diseased. We observe two orange-red spots in
the second bladder (bottom left image). Again, our software
detected these regions as diseased since they exceed the 2.5-Z
score threshold. The right column shows one slice through
the CT scan for each patient. For every region our software
detected as diseased, an arrow points to the region in both the
rendering and the CT slice.
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IV. RESULTS

To validate our method, we performed a leave one out cross
validation. We successively picked one bladder scan out of our
set; this bladder scan was our testing data. Our software built
an atlas based on the other bladder scans; these bladder scans
were our training data. Our software detected the tumors on the
testing data. Initial readings made by a radiologist experienced
in radiology of the pelvis served as the ground truth. We, thus,
compared the outputs of our software with the expert read CT
scans. The expert reviewed every bladder scan, and detected the
tumors in the scan. Since we had 26 bladder scans in our set,
we performed this experiment 26 times with a training set of 25
scans, and a testing set of one scan.

To compare the location of the tumors detected by the soft-
ware, with the location of the tumors detected by the expert, we
separated the bladder wall in six anatomical zones: the top zone,
the bottom zone, the anterior zone, the posterior zone, the left
zone, and the right zone. For every zone, and for every bladder
scan, we compared what the software detected, with what the ex-
pert detected. If they both detected a tumor, we counted one true
positive. Similarly, if they both detected no tumor, we counted
one true negative. If the software detected a tumor, and the ex-
pert did not, we counted a false positive (FP). Conversely, if
the software detected no tumor, and the expert detected one, we
counted a false negative (FN).

Note that we counted the number of diseased zones, not the
number of tumors. The detection of several tumors in the same
zone gave the same output as the detection of only one tumor
in this zone. As an automated screening exam, our software
is not intended to accurately locate every tumor, but to detect
whether the bladder is diseased or not, and to approximately lo-
cate the potential tumors. The detection of one tumor in a zone is
enough for sending the patient for further inspection. The soft-
ware skims out the healthy cases, and only sends the suspicious
cases to the clinician. The load of work for the clinician can be
reduced, or the number of patients can be increased.

We summed the number of TP occurences together. Similarly,
we summed the TN occurences, the FP occurences, and the FN
occurences. Our experiments with 26 patients gave TP ,
FP , FN , and TN . We report these fig-
ures in Table I. The meaning of these numbers is the following.
Our software correctly detected 16 diseased zones; it incorrectly
detected 17 other zones as diseased; it missed two diseased
zones; it correctly classified 123 zones as healthy. Note that
TP FP TN , since our data set contained 26 pa-
tients, and every patients had six bladder zones. Based on the
occurences in Table I, we computed the medical statistics for-
mulated in (2)–(5)

Sensitivity (2)

Specificity (3)

Positive Predictive Value (4)

Negative Predictive Value (5)

TABLE I
COMPARISON OFTUMOR DETECTION BY AN EXPERT OBSERVER AND

BY OUR AUTOMATED TUMOR DETECTION

For every zone and for every bladder, the expert and the software classify
the zone as either diseased or healthy. TP is the number of zones detected as
diseased by both the expert and the software. FP is the number of zones detected
as healthy by the expert and as diseased by the software. FN is the number of
zones detected as diseased by the expert and as healthy by the software. TN is
the number of zones detected as healthy by both the expert and the software.

Ideally, a detection software should have a 100% score for
all these statistics. A 100% sensitivity would indicate that it de-
tects all diseased zones. A 100% specificity would indicate that
it never detects a tumor in a healthy zone. A 100% positive pre-
dictive value would indicate that, when the software detects a
diseased zone, the zone is actually diseased. A 100% negative
predictive value would indicate that, when the software detects
no diseased zone for a patient, the patient is actually healthy.

V. DISCUSSION

In this section, we comment the results of our validation, we
discuss the choice of the ground truth, we compare our method
with standard cystoscopy, and we propose applications to other
medical problems.

A. Results of the Validation

Table I reports that of the 18 diseased zones detected by the
expert our algorithm detected 16 zones and missed the other
two. Of the 140 healthy zones, our software correctly classified
123 zones as healthy, and only misclassified 17 as diseased. The
resulting high sensitivity (89%) and specificity (88%) indicate
that our software could be incorporated in a screening proce-
dure.

The low positive predictive value (48%) means that the clini-
cian needs to review as many healthy patients as actual diseased
patients. When our software detected a tumor, the probability
the patient actually had a tumor was roughly as high as the prob-
ability the patient was healthy. A method with a higher positive
predictive value (PPV) would further reduce the work load of
the clinician.

The very high negative predictive value (98%) allows the pa-
tient to trust our software when it does not detect a tumor. Nega-
tive predictive value is the important clinical figure. Virtual CT
cystoscopy, when negative, implies that no tumor is present. The
patient does not need a standard cystoscopy. It may be useful for
screening the patient population with hematuria.

Compared with the method of Fieldinget al.[13], our method
improved the sensitivity from 83% to 89%. This improvement
is too small to change the clinical outcome. Besides, they chose
conventional cystoscopy as the ground truth, while we chose
expert read CT scans as our ground truth. New validation ex-
periments with the same ground truth are needed to accurately
compare both methods.
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B. Choice of the Ground Truth

An expert performing conventional cystoscopy served as the
ground truth in the experiments of [13], while our validation
experiments used an expert reading the CT scans. In both cases,
the tumor detection is biased toward the tumors detected by the
expert. The expert may misclassify a zone using either the scope,
or the CT scans. These errors will affect the validation. Since our
validation and the validation of Fieldinget al. use a different
ground truth, both methods are not comparable. Nevertheless,
our goal is different as we propose a method with an automated
reading of the renderings.

Comparison with expert clinical reading is required to val-
idate a tumor detection software before its clinical use. How-
ever, such a validation cannot reveal that the software could do
better than the expert. The advantage of the software is that it
eliminates the variability on the experience and the fatigue of
the expert.

C. Comparison with Standard Cystoscopy

Compared with standard cystoscopy, virtual cystoscopy of-
fers a better visibility of the bladder neck. In a standard cys-
toscopic exam, the clinician may miss tumors in the bladder
neck due to the limited flexibility of the scope near the entrance.
Combined with high-resolution scans, we expect that our virtual
cystoscopy approach will be more accurate in the bladder neck
than conventional cystoscopy.

We used interactive segmentation to locate the bladder
wall surfaces in our experiments. Interactively segmenting the
bladder wall in every slice is time consuming. The widespread
clinical implementation of virtual cystoscopy screening will
require automated segmentation of the bladder wall. We believe
future CT technology will offer higher resolution and better
quality images. This will make the automated and accurate
segmentation of the bladder wall easier. Combining our method
with an automated segmentation software would provide for an
entirely automated screening of bladder scans.

D. Potential Applications

We believe our method could be adapted to address prob-
lems with other organs, such as the brain. Our method could be
advantageous for assessing changes in cortical thickness. The
comparison of the cortex of a patient with an atlas of typical
cortical thickness could aid in the detection and characteriza-
tion of neurodegenerative disorders. As reported by several au-
thors [15]–[17], the main requirement for constructing cortical
thickness estimates is to accurately segment the cortical sur-
face, which is difficult due to the complex folded structure of
the brain and limited spatial resolution of conventional magnetic
resonance imaging. The application of our technique would re-
quire an accurate registration method capable of aligning corre-
sponding cortical features between subjects.

VI. CONCLUSION

Our tumor detection method aligns a bladder wall thickness
atlas, containing the local mean wall thickness and standard
deviation, to a subject. It then identifies tumors as the sections
of the patient bladder wall that exceed the mean thickness by
more than 2.5 standard deviations. Compared with expert-read
CT scans, our tumor detection exhibits 89% sensitivity, 88%
specificity, 48% PPV, and 98% negative predictive value. The
high negative predictive value makes our software suitable
for bladder cancer screening. Our software accurately detects
healthy regions, allowing the clinician to focus on the suspi-
cious bladder scans. It evaluates the bladder neck, a significant
advantage over standard cystoscopy. The limitation of our
current implementation is the interactive segmentation, which
is time consuming and susceptible to error. We expect that
the development of an automated bladder wall segmentation
algorithm would remove this limitation.
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