
Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

 1

Abstract— Mechatronic systems operating in industrial

environments are subject to a variety of threats because of harsh

conditions. Industrial systems usually use Commercial Off-The

Shelf (COTS) equipment which are not robust and safe against

hostile conditions and therefore require fault tolerance

considerations. This paper presents a novel and efficient method

for online detection of control flow errors, called Software-based

Control Flow Checking (SCFC). It is implemented purely in

software and does not manipulate the hardware architecture of

the system. Redundant instructions and signatures are embedded

into the program at compile time and are utilized for control flow

checking at run time. The signatures of the basic blocks are

derived from the program graph. It is shown in the paper that

SCFC method can increase single detection capability to 14.7%

and the fault coverage to 6.12% averagely in comparison with

other methods without any increase in memory and performance

overheads. In the paper, besides experimental evaluations,

analytical evaluations are also carried out, based on probability

principles. The detection ability of each method used is thus

computed. These computations verify the experimental results

and show that SCFC can detect more errors than other methods

suggested in literature. Considering the memory limitations in

some (such as space) applications and the trend towards the

requirement for faster execution of programs, we suggest a novel

metric; called fitness parameter which incorporates these. It is a

better measure than the previously proposed ones since it

considers the fault coverage, the memory overhead and the

execution time (performance overhead) of each method

simultaneously, as well as the detection capability.

Index Terms— Commercial Off-The-Shelf, control flow

checking, fitness parameter, fault injection, analytical evaluation,

software-based error detection.

I. INTRODUCTION

N the selections of the electronic equipment to be used in

industrial environments there are two options: to go for

specially designed, high reliability but costly or the

Commercial Off-The Shelf (COTS) equipment. Utilizing

Copyright (c) 2011 IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be

obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

S. A. Asghari and H. Pedram is with the Department of Computer

Engineering and Information Technology, Amirkabir University of

Technology, Tehran, Iran (email: seyyed_asghari@aut.ac.ir,

pedram@aut.ac.ir).

H. Taheri is with the Department of Electrical Engineering, Amirkabir

University of Technology, Tehran, Iran (email: htaheri@aut.ac.ir,).

O. Kaynak is with the Department of Electrical Engineering, Bogazici

University, Istanbul, Turkey (e-mail: okyay.kaynak@boun.edu.tr).

robust equipment can be prohibitively costly; therefore, the

use of COTS equipment is the appropriate option in most

applications [1-13].

It has been experimentally shown that about 33 to 77

percent of the transient faults cause control flow errors (CFE)

and the remaining are converted into data errors [14]. It can

therefore be concluded that by the use of new techniques

based on control flow checking, instead of the traditional

techniques of transient fault detection in the application layer,

the additional costs of detecting the faults that will finally be

ineffective can be avoided. The system efficiency and its cost

can thus be reduced [14-17].

For detecting transient faults some techniques are suggested

in literature that would fall into two general classes, hardware

or software redundancy. The methods based on hardware

redundancy have a better fault coverage but impose higher

costs and overheads on the system and therefore may not meet

the requirements of some general purpose applications.

Software-based techniques have less fault coverage and larger

delay; however, they mean lower cost and overhead on the

system and can be utilized in different types of COTS systems

due to their flexibility. Another point to be considered in

comparison with hardware-based methods is that in software-

based methods, there is no dependency on hardware or no

need for its reconfiguration [15-17].

For control flow checking, the general approach adopted is

that the source code is divided into some basic blocks and the

code running inside the blocks and the branches between them

is checked (for example by a watchdog processor). Each basic

block consists of some instructions that are located among

jump instructions. Errors that should be analyzed in these

methods are classified into three general categories:

� Illegal jumps intra basic blocks

� Illegal jumps inter basic blocks

� Illegal jumps from a basic block to the unused space of

the memory

These illegal jumps lead to control flow errors that can be

grouped into the following categories:

Type 1: an error caused by an illegal jump from the end of

a basic block to the beginning of another basic

block,

Type 2: an error caused by a legal but incorrect jump from

the end of a basic block to the beginning of

another basic block,

Type 3: an error caused by a jump from the end of a basic

Software-based Control Flow Checking against

Transient Faults in Industrial Environments

Seyyed Amir Asghari, Hassan Taheri, Hossein Pedram, and Okyay Kaynak, Fellow, IEEE

I

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

 2

block to any point of another basic block,

Type 4: an error caused by a jump from any point of a

basic block to any point of another basic block,

Type 5: an error caused by a jump from any point intra a

basic block to a point intra the same block,

Type 6: Errors caused by a jump from any point intra a

basic block to a space inter basic blocks (this type

is equivalent to illegal jumps from a basic block

to the unused space of the memory. In other

words, unused space refers to the space inter basic

blocks).

It should be noted that in industrial applications, whatever

approach is used, whether it is, software or hardware-based, it

should be able to handle the errors mentioned above as much

as possible and, in doing so, impose as little memory

overhead and as little increase in execution time as possible.

The latter is commonly referred to as performance overhead in

literature and in what follows we will also refer to it as such.

We propose a novel fitness factor in this paper that can

compare different approaches, based on their fault coverage,

memory and performance overheads. It is to be noted that

there exists a tradeoff between these parameters, depending on

the number of redundant instructions inserted for checking the

control flow of the program. However it is important to

appreciate that these parameters are all important and the

method adopted should consider all of them as much as

possible.

The method presented in this paper is effective and

applicable in all industrial processes in which a controller is

used which may be an embedded system or built on a PLC, a

PC, a microcomputer and as such. With the technological

developments of recent years, the embedded systems are seen

more commonly and in the following parts of the paper the

reference will be to such systems.

In the second section of this paper, the related works on

hardware and software control flow checking methods are

reviewed. The third section introduces the proposed method.

The experimental and analytical results of different methods

are given in the forth section of the paper.

II. REVIEW OF THE LITERATURE

Computer systems (especially embedded real time systems)

are subject to transient faults due to gamma-rays, x-rays,

protons, neutrons and energetic photons. These parameters

induce ionization which increases immediate and delayed

voltages in devices. These in turn cause transient behaviors in

circuits and systems that can disrupt the operation and

functionality of the system. The occurrence of transient faults

in computer systems during the running of the program

resulted in a well-known concern in microelectronic systems

since these faults may lead to considerable disruptions and

damages. For example, undesired modifications of storage

memory cells may occur.

Control flow error detection is one of the effective

techniques for achieving reliability. In order to detect such

errors, many methods have been proposed since 1980s that

can be divided into two categories as hardware and software-

based techniques.

Fig. 1. The structure of a system with watchdog processor

 One of the classical hardware methods for control flow

checking is the use of a watchdog processor. Watchdog

processor is a processing element can detect control flow

errors by monitoring the processor behavior on the

communication bus. Fig. 1 shows a structure in which a

watchdog processor is used for control flow checking [16-19].

In the first phase, information gathered through monitoring the

processor and the bus is given to the watchdog and then in the

next phase (while the program is running), the watchdog as a

co-processor can monitor the flow of the program. Fault

detection process is completed when the collected

information, such as memory access mechanism, control flow,

control signals, and logical results, is compared with the

information gathered in the first phase.

In software-based methods, the general procedure of

operation is similar to the hardware-based methods. The main

difference is that in software methods, the control flow

checking is performed by the main processor; instead of any

additional hardware [14-17]. The basis of CFC (Control Flow

Checking) methods is comparing the control graph of the

running program with the one predicted at the beginning of the

program. Software based methods are usually performed by

code and data (signature) insertion which can be done at the

procedure level or the statement level [20-25]. Some

machine-level instructions may also be added to the program.

Moreover, the running program of the processor is divided

into some basic blocks that are branch-free and a signature is

assigned to or derived from each block. During the running of

the program, control flow is checked by these signatures until

the correct points of program blocks are entered and exited.

Figure 2 shows the program partitioning into basic blocks and

the partitioning instructions. The program is shown by a direct

graph in which each node shows an instruction of the machine

and the edges are the control flow [14-17]. In Fig. 2(a), the

instruction 2 is a branch instruction and so is a divider

between basic blocks. The instruction 4 that is the destination

of a branch is also used for partitioning between blocks. In this

way and as it can be seen in Fig. 2(b), the main program is

divided into three basic blocks.

Due to the special environment in space (the existence of

high radiation in this environment and its destructive effects

on electronic equipment) and the pressing need of high

reliability in this environment, numerous works have appeared

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

 3

in literature for enhancing the reliability of space equipment

[26-32]. One of the works in this field is Relationship

Signature CFC (RSCFC) [20] in which the program is divided

into some basic blocks. In the first stage, the relationship

between blocks is extracted and then based on the kind of the

relationship, a signature is assigned to each block in which the

existing relationships are coded in it. The faults in the control

flow of the program are detected by ANDing the runtime

signatures with the information at the beginning and end of the

blocks. In comparison to the previous works, this method has

more fault coverage and a better efficiency and it also

consumes less memory [21].

1

2

3

4

5

1

2

3

4

5

a) Program graph b) The program graph partitioned

into basic block

Partition Instruction

Basic Clock

Fig. 2. Program dividing into some basic blocks

In Control Flow Checking by Software Signature (CFCSS)

[21] method, a signature of s and a signature of d are assigned

to each basic block. A global variable of G is also added to the

program which consists of a running block signature amount.

During the running of the program, whenever the program

enters into a new basic block, G is updated to a new amount

[17, 21].

The Enhanced Control Flow Checking using Assertion

(ECCA) [22], that is another control flow checking method, is

implemented in high level of Register Transfer Level (RTL).

In high level implementation, ECCA adds a prime number,

two instructions and an ID, to each basic block.

III. THE PROPOSED METHOD

In the previous section, some of the control flow error

detection techniques based on software and hardware were

reviewed. SCFC method is a software-based one which

benefits from the merits of these kinds of techniques. Like

other methods in this field, SCFC divides the program into

some basic blocks and assigns a signature for each block.

Figure 3 shows a control flow error between two basic

blocks that causes an illegal jump from the middle of the block

1 to the block number 2. At the end of the basic block 2, this

error is detected and the program control is transferred to the

function (Exception Handler or CFE Manager) that can correct

this error.

Exception Handler

(CFE Manager)

Region 1

Added Instruction

B
a

si
c

B
lo

ck
 1

Added Instruction

Added Instruction

Region 2

Added Instruction

Region 3

Region 1

Added Instruction

B
a

si
c

B
lo

ck
 2

Added Instruction

Added Instruction

Added Instruction

Region 3

Region 2

C
o

n
tr

o
l F

lo
w

 E
rr

o
r

(C
F

E
)

R
e

co
v
e

ry
 fr

o
m

 C
F

E

Fig. 3. Detection and correction of control flow errors in processors

SCFC assigns a signature to each basic block like other

methods of this field. This signature is Si variable that shows

the successor and the destination blocks of the present block.

SCFC inserts four instructions in each basic block. The first

instruction is control that checks the entrance flow at the

beginning of each basic block. The goal of control is to detect

illegal jumps to the beginning of basic blocks. The ID variable

(an identification assigned to each basic block that identifies

the order of every basic block running in control flow graph)

that is updated at the end of all basic blocks and initialized to

zero, is compared with the destination of the block number

that is saved in each block and any inconsistency means that

the destination of this jump is not the current block or that the

ID variable is not updated in the last block and the flow is

transferred from the intra of the last block to the present block.

In both cases, a control flow error is occurred.

The second redundant instruction is called check and its task

is to confirm that the destination is assigned correctly and the

current running block is one of the successors of the source

basic block. For monitoring the correctness of the availability,

Equation 1 is utilized:

 error = S [ID]; (1)
S is Si variable that is updated during the program running. If

ID
th

 bit that shows the present basic block number equals 1 at

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

 4

the middle of each basic block, the destination has been

assigned correctly. Otherwise, error signal, which is the sign

of an error, is activated and the program is stopped. Check

instruction is inserted in the middle of a basic block to detect

control flow error in case of an illegal jump occurrence to the

intra of a basic block. In this, illegal jumps from the beginning

and intra of the last basic block to the intra of the next basic

block can be detected.

The third instruction is called update and updates S at

runtime. For updating control flow signature, Equation 2 is

designed:

 S = Si (2)
Therefore variable S is updated in the middle of each basic

block in preparation for going to the next destination. It should

be noted that S is set to 000…1 for the first time to be able to

go to the first basic block. Any other jump is therefore not

allowed. This redundant instruction is inserted in the intra of a

basic block to detect illegal jumps inter the block. By inserting

the present block signature in the signature variable, the next

legal successors that should be run, are assigned.

The last instruction is called exit that is run at the end of

each basic block and updates the ID variable to the number

that shows the present basic block.

Check and update instructions are placed in the middle of each

basic block and in this way some of the errors caused by

illegal internal jumps in a specific basic block are detected.

After the detection an error, error signal equals 0 and the

program will stop.
It should be mentioned that the assigned signature of each

basic block in this method, has N bits. N shows the number of

basic blocks in the program control flow graph. Bits related to

successor nodes of the present block equal 1 in N bit of the

signature. Figure 4 shows a sample program code, control

flow graph and the signatures of each block. The sample

program considered has 5 basic blocks; therefore, the

signature of control flow graph related to each block has 5

nodes and bits. For example, successor nodes of the second

basic block of the graph are the blocks 3 and 4 and therefore

the signature of this basic block is 01100.

Figure 4(a) shows control flow graph of a sample program

and the derived signatures of each block derived signatures.

Figure 4(b) shows the structure of a basic block and its

redundant instructions. Basic blocks interconnections of a

sample program are shown in the control flow graph of Fig.

4(a). As shown in this figure, the signature of each basic block

is derived from its successor blocks. Figure 4(b) shows the

interior structure of each basic block after inserting the

redundant instructions.

Figure 5 shows more basic block structure changes shown

in Fig. 4.

Compare ID, ID Current Block

Instruction 1

.

.

.

Instruction [N/2]

Error = S [ID]

S=Si

Instruction [N/2] + 1

.

.

.

Instruction N

Update ID

Block 1

Block 2

Block 4Block 3

Block 5

Start

S1=00010

S2=01100

S3=01000 S4=11100

S5=00010

Exit

a) b)
Fig. 4. (a) Control graph of sample bubble sort program, (b) the interior structure of a basic block by inserting redundant instructions

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

 5

Fig. 5. Basic block structure changes

All of the single errors caused by incorrect jumps can be

found by inserting redundant instructions. The proof of this

claim is explained in the following:

A. Illegal jump from node vi to node vj

When an illegal jump occurs from block vi to the block vj.
In these cases, when check instruction is run in vj block, since

ID variable is not updated in block vj, error signal becomes

zero and this error is detected. For example, imagine in Fig. 4,

there is an unwanted jump from the end of the first basic block

to the middle of the second block. In this case, since ID

variable at the end of the first block is not updated, its amount

remains zero. When operation is reached to check and update

instructions of the second basic block, the first bit (zero bit

position) of variable S, that now has Signature of Basic Block

1 (equal to 0), is assigned to error signal. The error signal

receives the amount of 0 and the error is detected. In this case:

S = Signature of Basic Block 1 = 00010,

S [zero bit position] = 0,

error = S [zero bit position] = 0

B. Illegal jump from node vi to itself

When an illegal jump occurs from one instruction before

check and updates to the instructions after them. In this

case, since S has not been updated during program running,

error is detected in check instruction of the next block. For

example, imagine an unwanted jump occurs from the

beginning of the first block to the middle or end of the same

block. In this case, the update instruction has not been run so S

takes its initial amount that is 00001. At the end of the first

block, ID amount is updated to 1 and the program enters the

second basic block. In the second basic block and in check

instruction, the first bit of S is updated to 1 and the occurred

error will be detected:

S = Sinitial = 00001, err = S [ID] = 0

IV. EXPERIMENTAL RESULTS

In this section, the environment used for tests is described

and the experimental results are given.

A. Test environment

For analyzing the proposed method, the infrastructure

shown in Fig. 6 is utilized which contains the following

elements as main parts [33]:

• Background Debug Mode (BDM) module. This

component is a programming tool that can be used for

debugging and fault injection. It is a tool which

Motorola Corporation placed it in their microprocessors

and microcontrollers.

• PhyCORE-MPC555 (a product of a PHYTECH

technology holding company) evaluation board
• A personal computer

An additional technique that is used for fault injection is the

manual manipulation of the jumps of the program as follows:

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

 6

• Direct fault injection into processor registers by the use

of BDM module in bit flip model (the conversion of 0

to 1 and vice versa);

• Applying jump instructions to the program (JMP, JL,

JG, JNE, JLE, JGE, CALL and RET);

• Changing jump instructions.

Fig. 6. Fault injection mechanism structure by the use of BDM [33].

Fault injection operation is applied to three benchmark

programs, Bubble Sort (BS), Quick Sort (QS) and 40×40

Matrixes Multiplication (MM) and about 5000 faults are

injected to them. Since in the method of direct fault injection

onto processor registers by the use of BDM, processor

registers can be directly manipulated, it is considered to be a

good solution with much higher speed and capability that is

close to reality. For example, in this method, PC (Program

Counter) register and SR (Status Register) can be directly

manipulated. On the other hand as it is shown in [33],

exception occurrence probability is very high by manipulating

registers. Therefore, besides this method another fault

injection approach is also used that has three kinds:

• Random jump deletion in the program, in which some

branches of the program are deleted randomly;

• Random jump changing, in which some branches of the

program or their operands changes randomly;

• Random jump insertion, in which some branches are

inserted at different parts of the program.

By the mentioned fault injection methods, the control flow

errors will be produced and the efficiency of different methods

can be compared with each other. The faults are injected to the

assembly code of benchmarks and at random places of it. On

the other hand, by using BDM method, registers and program

counter of the program are changed and control flow errors

occur in the program. Therefore, the efficiency of different

methods can be evaluated.

 Five versions are considered for each benchmark for fault

injection:

• The original code (the code of the benchmark);

• Adding CFCSS method to the original code;

• Adding ECSS method to the original code;

• Adding RSCFC method to the original code;

• Adding SCFC method to the original code.

For each version, the program is compiled and its assembly

code is generated. Then one method of fault injection is

randomly selected that changes the program or its registers.

Finally the faulty code is compiled and executed. This process

is repeated 5000 times for each of the mentioned versions.

The injected faults can result in five different cases

according to the effect they produce in the running of the

program:

• CR (Correct Result): the fault does not change the

final result of the program

• OS (Operating System): the fault is detected by

operating system and its exceptions

• WR (Wrong Result): the fault changes the final

result of the program and produces a wrong output

• TO (Time Out): the fault changes the program

execution time and it does not end in a specified

amount of time

• SD (Single Detection): the fault is detected by the

instructions that are used for control flow checking

The occurrence percentages of these cases are shown in

Table 1. It should be noted that the fault coverage of each

method is equal to its Single Detection (SD) percentage since

the first four cases can be detected without the use of any

control flow error detection method. In other words, Single

Detection (SD) percentage that is shown in the last column of

Table 1 indicates the error detection capability of the proposed

method embedded into the stated benchmark. Since three

numbers are given for 3 different benchmarks, we can derive

an overall number that describes the single detection

capability of the methods considered by taking the averages of

these 3 numbers. For example for the proposed SCFC method

the average is:

43.55% + 48.56% + 49.70 % = 47.27 %

For the other methods, the corresponding figures are

31.81%, 33.84% and 32.10% respectively. Therefore, single

detection capability is increased by 14.7% on average in the

SCFC method, in comparison with the other methods.

Figures 7, 8 and 9 compare the fault coverage, the memory

and the performance overhead of CFCSS, ECCA and RSCFC

methods with the proposed technique of this paper, the word

average indicating the average of the figures when the

methods are embedded into three benchmarks; BS, MM and

QS.

SCFC memory and performance overheads are calculated

as follows:

MethodNormalofTimeExecutionorStorageMemory

MethodHardenedofTimeExecutionorStorageMemory

In this equation, Hardened Method refers to the program

running by the use of the proposed method. In this running,

software redundancy caused by adding signatures to the basic

blocks is considered as overhead (for example, in the proposed

method, after dividing the program into basic blocks and

adding unique signatures to the basic blocks, the program size

is 1.43 times larger as compared to the other methods).

Normal Method refers to running the program without

considering any error detection mechanism. In other words,

the proposed method is not utilized in this running.

For performance overhead, this action is repeated with the

execution time factor. As it can be seen in Fig. 7, SCFC

method in comparison with ECCA, RSCFC, and CFCSS

methods increases the fault coverage in average to 6.12%.

Meanwhile it has less memory overhead and its performance

overhead can compete with other methods (Fig. 8 and 9). As

it was mentioned in the previous sections, fault coverage is as

important as memory and performance overheads of a system.

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

 7

An appropriate method should be able to balance these

parameters with each other and does not consider only one of

them. For this purpose, a new parameter, called Evaluation

Factor (EF), is introduced in this paper. It considers overheads

and fault coverage of each method as shown in Equation 3:

OverheadePerformancOverheadMemory

CoverageFault
FactorEvaluation

×

=

(3)

The averages of the evaluation factors of the different

methods when embedded into the 3 benchmark programs are

shown in Table 2. As it can be predicted, SCFC is better than

previously mentioned methods considering fault coverage,

performance and memory overheads.

As shown in figures and tables and based on the

experiments, the proposed method of this paper outperforms

others in fault coverage and overheads. Due to the ability of

SCFC in intra block control flow error checking, it can detect

more errors than other techniques. It also takes less

instructions and variables than other methods for control flow

error detection. In the following, the fault coverage of

different methods is studied analytically.

TABLE 1: FAULT INJECTION RESULTS IN ORIGINAL PROGRAM, CFCSS, ECCA,

RSCFC AND SCFC METHODS (CR: CORRECT RESULT, OS: OPERATING

SYSTEM, WR: WRONG RESULT, TO: TIME OUT, AND SD: SINGLE DETECTION)

Benchmarks CR OS WR TO SD

BS 19.54% 35.68% 37.33% 7.45% 0%

MM 11.76% 38.84% 39.82% 5.58% 0%

QS 20.29% 37.65% 36.72% 5.34% 0%

BS-CFCSS 45.65% 6.88% 11.80% 2.87% 32.80%

MM-CFCSS 44.50% 12.87% 13.14% 3.06% 26.34%

QS-CFCSS 38.13% 11.20% 9.40% 4.96% 36.31%

BS-ECCA 38.05% 13.00% 10.25% 4.10% 34.60%

MM-ECCA 42.70% 11.09% 11.20% 5.87% 29.14%

QS –ECCA 40.70% 6.66% 10.54% 4.30% 37.80%

BS-RSCFC 42.30% 11.10% 11.6% 2.50% 32.50%

MM-RSCFC 40.96% 12.34% 9.7% 2.50% 34.50%

QS –RSCFC 39.09% 13.65% 11.2% 6.56% 29.50%

BS-SCFC 42.23% 6.90% 3.33% 3.99% 43.55%

MM- SCFC 37.20% 6.70% 5.20% 2.34% 48.56%

QS – SCFC 36.20% 6.20% 4.60% 3.30% 49.70%

TABLE 2: AVERAGE VALUE OF EVALUATION FACTORS FOR DIFFERENT

METHODS

Techniques
Averages of

Evaluation Factors

CFCSS 39.09

ECCA 44.32

RSCFC 35.47

SCFC 47.76

88.55 89.33 89.1

95.12

84

86

88

90

92

94

96

avg-CFCSS avg-ECCA avg-RSCFC avg-SCFC

Average Fault Coverage

Fig. 7: Total fault coverage comparison

1.5
1.45

1.6

1.43

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

avg-CFCSS avg-ECCA avg-RSCFC avg-SCFC

Average Memory Overhead

Fig. 8: Memory overhead comparison

1.51

1.39

1.57

1.4

1.3

1.35

1.4

1.45

1.5

1.55

1.6

avg-CFCSS avg-ECCA avg-RSCFC avg-SCFC

Average Performance Overhead

Fig. 9: Performance overhead comparison

B. Analytical computation of fault coverage

In above the effectiveness of the proposed method, is

demonstrated by experimental results. In this section, an

analytical computation for the fault coverage of the proposed

method is presented. The equations show that how much the

probability of illegal jumps occurrence that is known as

control flow error is by considering the number of instructions

and basic blocks. Moreover, by considering the capability of

the presented techniques in detecting different control flow

errors, it is assigned that which of these probabilities is

detected by the presented technique. By considering the

number of instructions and the basic blocks, equations are

derived that indicate the probability of the occurrence of

illegal jumps, i.e. the control flow error.

The following states are considered for analyzing

impermissible jumps that lead to control flow errors:

1. The illegal jump from one basic block to another: In

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

 8

this case, the error that occurs in PC register leads to an

unwanted jump from a basic block to another incorrect

basic block. Therefore, the probability of a case when

program flow is in i
th

 basic block and due to an error

occurrence is transferred to j
th

 basic block, should be

calculated. This probability is calculated in Equation 4:

(4)

 Ptype-1 = PBasic Blocki * PBasic Block i —› Basic Block j * (1 - Pprogram crash)

2. An illegal jump from one basic block to the

partition block: In this case, the error that occurs in

PC register leads to an illegal jump from a basic block

to a memory space out of the basic blocks. These

places are called Partition Block (PB). Therefore the

probability of a case in which the program flow is in i
th

basic block and is transferred to PB basic block due to

an error occurrence, should be calculated. This

calculation is shown in Equation 5:

(5)

 Ptype-2 = PBasic Block i * PBasic Block i —› Partition Block * (1 - Pprogram crash)

3. The jump from a basic to itself: In this case, the error

that occurs in PC register leads to an illegal jump from

a basic block to a place inside the same basic block.

Therefore, the probability of the case in which the

program flow is in i
th

 basic block and is transferred to

another place in the same i
th

 basic block due an error

occurrence should be calculated. This probability is

shown in Equation 6:

(6)

 Ptype-3 = PBasic Block i * PBasic Block i —› Basic Block i * (1 - Pprogram crash)

If the error of the third type (the jump from a basic block

to the same basic block) is analyzed in more detail, two

states can be extracted for illegal jump inside a basic block.

One state is when jumps occur from the upper part to the

lower part of the basic block and vice versa. Another state is

when jumps occur from the upper part to the upper part and

from the lower part to the lower part. For calculating the

probability of the first state of the third type error, Equation

7 and for the second state, Equation 8 can be used:

(7)
Ptype-3-1 = PBasic Block i * (PBasic Block iu —› Basic Block iD + PBasic Block iD —› Basic

Block iu) * (1 - Pprogram crash)

(8)
Ptype-3-2 = PBasic Block i * (PBasic Block iu —› Basic Block iu + PBasic Block id —› Basic

Block id) * (1 - Pprogram crash)

Adding all of the above stated states in one statement,

Equation 9 is obtained:

(9)

PBasic Block i—›Basic Block i=PBasic Block iu —›Basic Block iu+PBasic Block id—› Basic Block

id + PBasic Block iu —›Basic Block id + PBasic Block id —› Basic Blockiu

Considering a Bernoulli random variable z that shows the

jump direction, the following can be written

PBasic Block iu —› Basic Block iu (x, y) = P (PBasic Block iu —› Basic Block iu | z=1)

P (z=1) + P (PBasic Block iu —› Basic Block iu | z=0) P (z=0)

P (z = 0) = P (z=1) = 1/2
For staying in the upper part of the basic block, the

following conditions should be met:

P (PBasic Block iu —› Basic Block iu | z=1) = P (L(x) <= y)
P (PBasic Block iu —› Basic Block iu | z=0) = P (L(x) <= SBasic Block/2 - y)
In above, SBB variable shows the average size of a basic

block based on bytes and is computed by multiplying the

average length of program instructions and the average

number of instructions of each basic block. The y random

variable has uniform distribution and indicates the distance (in

bytes) of the place where the fault occurs from the beginning

of the basic block [2].

SEU errors in the program counter lead to control flow

errors. Consider a random variable x between 0 to 31 for the

erroneous bit number in the program counter and define L(x)

with the value 2
x
 as the variable that indicates the number of

impermissible jumps by and changing x
th

 bit in the program

counter [2].

For computing jump probability of each basic block to

another basic block, Equation 10 is utilized (in this equation,

IAN is the average number of instruction bytes):

(10)

PBasic Block i —› Basic Block j (x) = 1/NBasic Block * 1/2 * 1/NPartition Block

∑∑∑
−

===

1i

1j

N

1i

N

0k

BlockPartitionBlockBasic

P (IAN.k + j.SPartition Block+ (j-1)SBasic Block

< L(x) < IAN.k + j.SPartition Block+ j.SBasic Block) + 1/NBasic Block * 1/2

* 1/NPartition Block ∑∑∑
−

===

iN

1j

N

1i

N

0k

BlockPartitionBloackPartitionBlockBasic

P(SBasic Block –

IAN.k + j.SPartition Block + (j-1) SBasic Block < L(x) < SBasic Block –

IAN.k + j.SPartition Block + j. SBasic Block)

The jump probability from one basic block to a place

outside the program is computed by Equation 11:

(11)

PBasic Block i —› Basic Block j (x) = 1/NBasic Block * 1/2 * 1/NPartition Block

∑∑∑
−

===

1i

1j

N

1i

N

0k

BlockPartitionBasicBlock

P (IAN.k + (j-1).SPartition Block+ (j-1)SBasic

Block < L(x) < IAN.k + j.SPartition Block+ (j-1).SBasic Block) + 1/NBasic

Block * 1/2 * 1/NPartition Block ∑∑∑
−

===

iN

1j

N

1i

N

0k

BlockPartitionBlockPartitionBlockBasic

P(SBasic

Block – IAN.k + (j-1).SPasic Block + (j-1) SBasic Block < L(x) < SBasic

Block – IAN.k + j.SPartition Block + (j-1). SBasic Block)

It is seen that SCFC method should have a better fault

coverage in comparison with the other methods due to being

able to detect a percentage of the first kind of Type 3 jump

(Type 3-1). Table 3 shows the results of applying SCFC

method on Quick Sort, Matrix Multiplying, and Bubble Sort

benchmarks in terms of the detection percentage of each kind

of jump.

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

 9

TABLE 3: RESULTS OF APPLYING SCFC METHOD ON THREE BENCHMARKS

Benchmarks Ptype-1 (%) P type-2 (%) P type-3*
 (%)

QS 74.7 15.7 9.6

MM 72.1 16.7 11.2

BS 78.6 12.6 8.8

Average 75.13 15 9.86

* Ptype 3-1(QS)=4.4, Ptype 3-1(MM)=5.3, Ptype 3-1(BS)=3.3, Ptype 3-1(Average)=4.33
 Ptype 3-2(QS)=5.2, Ptype 3-2(MM)=5.9, Ptype 3-2(BS)=5.5, Ptype 3-2(Average)=5.53

It can be concluded from the equations given and the figures

of Table 3, SCFC is able to detect Type1, Type 2 and Type 3-

1 (as shown in the bottom part of Table 3) errors. As it was

mentioned before, other error detection methods do not have

Type 3-1 error detection capability. Therefore, it can be

derived from Table 3 figures that SCFC method has at least

4.33% more error detection capability than other methods.

This figure is consistent with the results of experimental

methods.

V. CONCLUSION

This paper presents a new control flow checking method,

SCFC, which divides the program into some basic blocks and

inserts redundant instructions and a signature in them. The bit

number of the signature is equal to the number of basic blocks

and is derived from the control flow graph of the program and

based on the successors of each block. SCFC inserts some

redundant instructions in the middle of basic blocks, so that it

can detect a percentage of illegal intra block jumps beside

inter block ones. On the other hand, this method has less

memory and performance overheads in comparison with the

other proposed methods in this field. Errors that occur in harsh

industrial environments, such as in space environments, may

lead to destructions that can have very costly results such as

human hazards and the loss of very costly equipment.

Therefore, increasing reliability in these systems is very

important. The method proposed in this paper therefore

carries a greater importance in comparison with similar works

in this field.

In this paper, a new metric called Evaluation Parameter is

introduced that simultaneously considers fault coverage,

memory and performance overheads. In this way each method

can be evaluated efficiently. SCFC is used with three standard

benchmark programs of this field, i.e., bubble sort, quick sort

and matrix multiplication. The fault coverage is computed

experimentally and analytically. The results obtained indicate

that SCFC has better fault coverage and less memory and

performance overheads in comparison with the previously

proposed methods in literature. One other difference of the

proposed method from the other software-based methods is

the utilization of a hardware fault injection tool that decreases

the fault injection time. Furthermore, the injection

environment is, in this case, more similar to the real

environment. For example, SR (Status Register) and PC

registers can be directly manipulated.

ACKNOWLEDGMENT

We would like to acknowledge Ms. Atena Abdi who helped

us in simulations.

REFERENCES

[1] A. Rajabzadeh, G. Miremadi, and M. Mohandespour, “Error detection

enhancement in COTS superscalar processors with performance

monitoring features,” J Electron Testing: Theory Appl (JETTA), vol 20,

pp. 553–67, 2004.

[2] A. Rajabzadeh, and G. Miremadi, “Transient detection in COTS

processors using software approach,” Elsevier Journal of

Microelectronics Reliability, vol 46, pp. 124-133, January 2006.

[3] J. Srinivasan, and K. Lundqvist, “Real-time architecture analysis: a

COTS perspective,” Presented at the 2002 in Proc. 21th digital avionics

systems, pp. 5D4-1–9.

[4] Y. He, and A. Avizienis, “Assessment of the applicability of COTS

microprocessors in high-confidence computing systems: a case study,”

Presented at the 2000 Int. Conf. Dependable Systems and Networks

(DSN- 2000), pp. 81–6.

[5] CD. Gill, RK. Cytron, and DC. Schmidt, “Multiparadigm scheduling for

distributed real-time embedded computing,” IEEE Journal, vol 91, pp.

183–97, January 2003.

[6] N. Oh, PP. Shirvani, and EJ. McCluskey, “Error detection by duplicated

instructions in super-scalar processors,” IEEE Trans. Reliab, vol 51, pp.

63–75, 2002.

[7] A. Malinowski, and H. Yu, “Comparison of Embedded System Design

for Industrial Applications,” IEEE Trans. Industrial Informatics, vol. 7,

pp. 244-254, May 2011.

[8] Y. Zhang, H. Zhou, S. J. Qin, and T. Chai, “Decentralized Fault

Diagnosis of Large-Scale Processes Using Multiblock Kernel Partial

Least Squares,” IEEE Trans. Industrial Informatics, vol. 6, pp. 3-10,

February 2010.

[9] M-D Ma, D.S.-H. Wong, S-S Jang, and S-T Tseng, “Fault Detection

Based on Statistical Multivariate Analysis and Microarray

Visualization,” IEEE Trans. Industrial Informatics, vol. 6, pp: 18-24,

February 2010.

[10] M. H. Kim, S. Lee, and K. C. Lee, “Kalman Predictive Redundancy

System for Fault Tolerance of Safety-Critical Systems,” IEEE Trans.

Industrial Informatics, vol. 6, pp. 46-53, February 2010.

[11] P. Conmy and I. Bate, “Component-Based Safety Analysis of FPGAs,”

IEEE Trans. Industrial Informatics, vol. 6, pp. 195-205, May 2010.

[12] G. Gaderer, P. Loschmidt, and T. Sauter, “Improving Fault Tolerance in

High-Precision Clock Synchronization,” IEEE Trans. Industrial

Informatics, vol. 6, pp: 206-215, May 2010.

[13] A. Quagli, D. Fontanelli, L. Greco, and L. Palopoli, A. Bicchi, “Design

of Embedded Controllers Based on Anytime Computing,” IEEE Trans.

Industrial Informatics, vol. 6, pp. 492-502, November 2010.

[14] D. Zhu, and H. Aydin, “Reliability Effects of Process and Thread

Redundancy on Chip Multiprocessors,” Presented at the 2006 in Proc. of

the 36th Annual IEEE/IFIP International Conference on Dependable

Systems and Networks.

[15] M. Jafari-Nodoushan, G. Miremadi, and A. Ejlali, “Control-Flow

Checking Using Branch Instructions,” Presented at the 2008 in Proc. of

the 8th Int. Conf. on Embedded and Ubiquitous Computing.

[16] S. A. Asghari, A. Abdi, H. Taheri, S. Pourmozaffari and H. Pedram,

“SEDSR: Soft Error Detection using Software Redundancy,” Journal of

Software Engineering and Applications, vol. 5, pp. 664-670, 2012.

[17] S. A. Asghari, A. Abdi, H. Taheri, H. Pedram, S. Pourmozaffari,

“I2BCFC: An Effective Intra-Inter Block Control Flow Checking

Method against Single Event Upsets,” Research Journal of Applied

Sciences, Engineering and Technology, vol. 4, pp. 4367-4379, 2012.

[18] P. Kongetira and K. Aingaran, and K. Olukotun, “Niagara: A 32-Way

Multithreaded Sparc Processor,” IEEE Micro, vol 25, pp. 21–29, 2005.

[19] A. Rajabzadeh, and G. Miremadi, “CFCET: A hardware based control

flow checking technique in COTS processors using execution training,”

Elsevier journal on Computer Microelectronics and Reliability, vol. 46,

pp. 959-972, May 2006.

[20] A. Li, and B. Hong, “On-line control flow error detection using

relationship signatures among basic blocks,” Computers and Electrical

Engineering Journal, Elsevier, vol 36, pp. 132–141, 2010.

[21] N. Oh, P. P. Shirvani, and E. J. McClusky, “Control Flow Checking By

Software Signature,” IEEE Trans. Reliab, vol 5, pp. 111-122, 2002.

[22] Z. Alkhalifa, V. S. S. Nair, N. Krishnamurthy, and J. A. Abraham,

“Design and evaluation of system-level checks for on-line control flow

error detection,” IEEE Trans. Parallel Distributed Systems, vol 10, pp.

627–641, 1999.

[23] L. Jianli, T. Qingping and Xu. Jianjun, “A Software-Implemented

Configurable Control Flow Checking Method,” Presented at the 2010 in

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

 10

Proc Int Symposium on Parallel Architectures, Algorithms and

Programming (PAAP).

[24] M. J. Gadlage, R. D. Schrimpf, B. Narasimham, J. A. Pellish, K. M.

Warren, R. A. Reed, R. A. Weller, B. L. Bhuva, L. W. Massengill, and

X. Zhu, “Assessing Alpha Particle-Induced Single Event Transient

Vulnerability in a 90-nm CMOS Technology,” IEEE Electron Device

Letter, vol 29, pp. 638-640, 2008.

[25] J. A. Felix, J. R. Schwank, M. R. Shaneyfelt, J. Baggio, P. Paillet, V.

Ferlet-Cavrois, P. E. Dodd, S. Girard, and E. W. Blackmore, “Test

Procedures for Proton-Induced Single Event Latchup in Space

Environments,” IEEE Trans. Nuclear Science, vol 55, pp. 2161-2165,

August 2008.

[26] K. Kruckmeyer, R. L. Rennie, and V. Ramachandran, “Use of Code

Error and Beat Frequency Test Method to Identify Single Event Upset

Sensitive Circuits in a 1 GHz Analog to Digital Converter,” IEEE Trans.

Nuclear Science, vol 55, pp. 113-117, August 2008.

[27] M. R. Shaneyfelt, J. R. Schwank, P. E. Dodd, and J. A. Felix, “Total

Ionizing Dose and Single Event Effects Hardness Assurance

Qualification Issues for Microelectronics,” IEEE Trans. Nuclear

Science, vol 55, pp. 1926-1946, August 2008.

[28] J. A. Maestro, and P. Reviriego, “Reliability of Single-Error Correction

Protected Memories,” IEEE Trans. Reliab, vol 58, pp: 193-201, March

2009.

[29] E. L. Petersen, “Single-Event Data Analysis,” IEEE Trans. Nuclear

Science, vol 55, pp. 2819-2841, December 2008.

[30] S. Askari and M. Nourani, “Design methodology for mitigating transient

errors in analogue and mixed-signal circuits,” Circuits, Devices &

Systems, IET, vol.6, no.6, pp.447-456, Nov. 2012.

[31] H.R. Mahdiani, S.M. Fakhraie and C. Lucas, “Relaxed Fault-Tolerant

Hardware Implementation of Neural Networks in the Presence of

Multiple Transient Errors,” IEEE Trans. Neural Networks and Learning

Systems, vol.23, no.8, pp.1215-1228, August 2012

[32] C. Hyungmin, L. Larkhoon and S. Mitra, “ERSA: Error Resilient

System Architecture for Probabilistic Applications,” IEEE Trans.

Computer-Aided Design of Integrated Circuits and Systems, vol.31,

no.4, pp.546-558, April 2012.

[33] S. A. Asghari, H. Pedram, H. Taheri, and M Khademi, “A New

Background Debug Mode Based Technique for Fault Injection in

Embedded Systems,” International Review on Modeling and Simulation

(IREMOS), vol. 3, pp. 415-422, 2010.

Seyyed Amir Asghari was born in Lashte

Nesha in Guilan province of Iran, on June

26, 1984. He received his BS degree from

Amirkabir University of Technology in

2007 and MS degree from the same

university in 2009 in Computer

Engineering. He is a PhD Candidate

currently and his interests include reliable

and fault tolerant embedded system design,

real-time system design and operating

systems.

Hassan Taheri Received his BS

degree from Amirkabir University of

Technology in 1975 and MS degree

from University of Manchester

Institute of Science and Technology

(UMIST) in 1978 in Electrical

Engineering. He received his PhD

degree from UMIST University in

1988 in Electrical Engineering. Dr.

Taheri has served as a faculty member

in the Electrical Engineering

Department in Amirkabir University of

Technology. He teaches courses in

Data Communication Network,

Computer Communication, Teletraffic

Engineering, Electronic Switching,

Digital Communications, Telephone

Switching, Probability and Statistics.

Hossein Pedram Received his BS

degree from Sharif University in 1977

and MS degree from ohio State

University in 1980 in Electrical

Engineering. He received his PhD

degree from Washington State

University in 1992 in Computer

Engineering. Dr. Pedram has served as

a faculty member in the Computer

Engineering Department in Amirkabir

University of Technology since 1992.

He teaches courses in computer

architecture and distributed systems.

His research interests include

innovative methods in computer

architecture such as asynchronous

circuits, management of computer networks, distributed systems, and robotics.

Okyay Kaynak (M’80-SM’90-F’03)

received the B.Sc. (first-class honors)

and Ph.D. degrees in electronic and

electrical engineering from the

University of Birmingham,

Birmingham, U.K., in 1969 and 1972,

respectively. From 1972 to 1979, he

held various positions in the industry.

In 1979, he Joined the Department of

Electrical and Electronics Engineering,

Bogazici University, Istanbul, Turkey,

where he is currently a Full Professor,

holding the UNESCO Chair on

Mechatronics. He has held long-term

(near to or more than a year) Visiting

Professor/Scholar positions with

various institutions in Japan, Germany, the U.S., and Singapore. His current

research interests include intelligent control and mechatronics. He is the

author of three and the editor of five books. In addition, he is the author or

coauthor of close to 350 papers that have appeared in various journals and

conference proceedings. Dr. Kaynak is active in international organizations,

has served on many committees of the IEEE, and was the President of the

IEEE Industrial Electronics Society during 2002–2003. Currently he is on the

IEEE MGA Board.

