
1346 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 12, DECEMBER 1994

Theory and Applications of Cellular Automata
in Cryptography

S. Nandi, B. K. Kar, and P. Pal Chaudhuri

Abstract-This paper deals with the theory and application
of Cellular Automata (CAI for a class of block ciphers and
stream ciphers. Based on CA state transitions certain funda-
mental transformations are defined which are block ciphering
functions of the proposed enciphering scheme. These fundamental
transformations are found to generate the simple (alternating)
group of even permutations which in turn is a subgroup of the
permutation group. These functions are implemented with a class
of programmable cellular automata (PCA) built around rules
51, 153, and 195. Further, high quality pseudorandom pattern
generators built around rule 90 and 150 programmable cellular
automata with a rule selector (Le., combining function) has been
proposed as running key generators in stream ciphers. Both the
schemes provide better security against different types of attacks.
With a simple, regular, modular and cascadable structure of CA,
hardware implementation of such schemes idealy suit for VLSI
implementation.

Zndex Terms-Cryptography, block ciphers, cellular automata,
simple group, even permutations, stream ciphers and key stream
generator.

I. INTRODUCTION
HE DESIGN style of digital logic has been significantly T influenced by the VLSI technology. Designers always

look for simple, regular, modular and cascadable logic circuit
structure to realize a complex function. All these parameters
are supported by the local neighborhood additive Cellular
Automata (CA). Its applications in various fields have been
proposed in [2]-[5], [15], [21], [22]. Recently, theory and
application of CA as pseudo exhaustive pattern generators has
been reported in [16]. Theory and applications for generation
of error correcting code using CA is reported in [17]. Further,
VLSI applications have been also proposed [23]-[25]. Appli-
cation of CA in stream cipher cryptography was mentioned
by Wolfram [26] with nonlinear CA rule. In the present paper,
we establish the theory and application of additive CA as the
basic data encryption hardware module.

With the ever increasing growth of data communication, the
need for security and privacy has become a basic necessity.
Cryptography is an essential requirement for communication
privacy or concealment of data in a data bank. Encryption
may be achieved by constructing two different types of ci-
phers-stream ciphers and block ciphers. A block cipher is
the one in which a massage is broken into successive blocks

Manuscript received February 5, 1993; revised July 8, 1993.
The authors are with the Department of Computer Science and Engi-

neering, Indian Institute of Technology, Kharagpur-721 302, India; e-mail:
ppc@cse.iitkgp.ernet.in.

JEEE Log Number 9404360.

and they are encrypted using single key or multiple keys. On
the other hand, in a stream cipher the message is broken into
successive bits or characters and then the string of characters
is encrypted using a key stream. In the present paper schemes
for a class of block ciphers and stream ciphers have been
developed around the rugular structure of CA.

The block cipher operates on vectors of the N dimensional
vector space VN over GF(2). Certain transformations, to
be called fundamental transformations in this paper, have
been constructed using CA state transitions. These funda-
mental tranformations are the block ciphering functions of
the proposed enciphering scheme. In the enciphering process,
these transformations are applied on the clear text vectors
resulting in encrypted vectors. Thus the block ciphering func-
tion is a randomly chosen function of V , onto itself and
it poses a difficult challenge to the intruders. The mathe-
matical tool used in the present scheme is the permutation
group Sv, on the vector space VN. It has been shown
that the fundamental transformations form a well defined
subgroup of Sv,. This subgroup is the alternating group
or the simple group A 2 ~ where A ~ N is the group of all
even permutations on VN. The fundamental transformations
are built around additive CA rules having group proper-
ties, and are simple in nature. In this regard this scheme
is applicable to encipherment of data stored in a computer,
as well as to transmission of secret messages. One striking
feature of this enciphering scheme lies in its good mea-
sure of strength. While another important characteristic is
that the fundamental transformations are self inverses, re-
sulting in that decipherment is carried out exactly in the
same way as encipherment. A class of block ciphers arising
in computer privacy has been studied in [6], [8]-[lo], our
present block cipher scheme being a particular case of this
class.

The stream ciphers play an important role in cryptographic
practices-both diplomatic and military-that protect com-
munications in very high frequency domain. The central
problem in stream cipher cryptography, however, is the diffi-
culty of generating a long unpredictable sequence of binary
signals from a short and random key. Unpredictable se-
quences are desirable in cryptography because it is impossible,
given a reasonable segment of its signals and computer re-
sources, to find out more about them. Pseudorandom bit
generators have been widely used to construct these se-
quences [6], [41, [8]-[l l l , [13], [141. Three basic requirements
for cryptographically secure key stream generators are as
follows.

0018-9340/94$04.00 0 1994 EEE

NAND1 et al.: THEORY AND APPLICATIONS OF CELLULAR AUTOMATA IN CRYPTOGRAPHY I347

1) The period of the key stream must be large enough to
accommodate the length of the transmitted message.

2) The output bits must be easy to generate.
3) The output bits must be hard to predict. That is, given a

portion of the output sequence, the cryptanalyst should
not be able to generate other bits forward or backward.

Application of CA in various fields has already been pro-
posed in the literature [2], [15]. One of the applications
project CA as pseudorandom pattem generators. Quality of
randomness has been evaluated as per the criteria set by
Knuth [18]. It has been established that the pattem gener-
ated by maximal length CA’s meet all the criteria and the
quality of randomness of the patterns generated by CA’s
is significantly better than that of Linear Feedback Shift
Register (LFSR) based structures. Further enhancement of
the quality of randomness can be embedded with the help
of a Programmable CA (PCA) with dynamically alterable
rule vector. The proposed key stream generator based on
a PCA satisfies all the three essential yardsticks of “secure
pseudorandom bit generators” noted above.

The proposed schemes for both block and stream ciphers
can be found to be attractive in view of the following facts.

1) As per the work reported in [12], [19], DES-like function
can be realized with the alternating group. The structure
of PCA can be employed to generate the alternating
group. This results in considerable saving of hardware
compared to the existing schemes.

2) The programmability feature of PCA has enabled the
realization of nonlinear enciphering function along with
the generation of a large number of multiple keys rather
than a fixed set key(s) usually employed.

3) For higher speed of operation, hardwired implementation
of enciphering and deciphering schemes is a necessity.
The schemes reported in the present work employ the
regular, modular and cascadable structure of the three
neighborhood CA that idealy suits for VLSI implemen-
tation. It can be operated at higher speed due to local
interconnections.

4) Encipherment and decipherment proceed with the same
protocols.

5) Measure of strength against intrusion can be found to be
comparable, if not better, than the existing schemes.

11. PRELIMINARIES

A. CA Preliminaries

CA is an array of sites (cells) where each site is in any
one of the permissible states. At each discrete time step
(clock cycle) the evolution of a site value depends on some
rule (the combinational logic) which is a function of the
present state of k of its neighbors for a k-neighborhood CA.
Wolfram [1] has investigated cellular automata using empirical
observations and simulations. For 2-state 3-neighborhood CA,
the evolution of the ith cell can be represented as a function
of the present states of (i - l)th, (i)th, and (i + 1)th cells
as: zi(t+ 1) = f { 3 : ; - l (t) , ~ i (t) , ~ ~ + ~ (t) } , where f represents
the combinational logic.

Clock

Rule 150 Rule 90 Rule 102 Rule 150
Fig. 1. A hybrid CA.

For a 2-state 3-neighborhood cellular aut:maton there are 23
distinct neighborhood configurations and 22 distinct mappings
from all these neighborhood configurations to the next state,
each mapping representing a CA rule. The CA, characterized
by a rule known as rule 90, specifies an evolution from
neighborhood configuration to the next state as:

111 110 101 100 011 010 001 000
0 1 0 1 1 0 1 0 Decimal 90

The corresponding combinational logic of rule 90 is

zi(t + 1) = Zi+l(t)zi-l(t) +zi+l(t)zi-l(t)
= zi-l(t) 63 zi+l(t),

that is, the next state of ith cell depends on the present
states of its left and right neighbors (Fig. 1). Similarly, the
combinational logic for rule 150 is given by

zi(t + 1) = ai-l(t) @ G (t) @ G+l(t) ,

that is, the next state of ith cell depends on the present states
of its left and right neighbors and on its own present state
(Fig. 1).

A CA characterized by EXOR and/or EXNOR dependence
is called an additive CA. If in a CA the neighborhood
dependence is EXOR, then it is called a noncomplemented
CA and the corresponding rule is referred to as a noncom-
plemented rule. For neighborhood dependence of EXNOR
(where there is an inversion of the modulo-2 logic), the CA is
called a complemented CA. The corresponding rule involving
the EXNOR function is called a complemented rule. In a
complemented CA, single or multiple cells may employ a
complemented rule with EXNOR function. There exist 16
additive rules which are:

Rule 0, 15, 51, 60, 85, 90, 102, 105, 150,
153, 165, 170, 195, 204, 240 & 255.
If in a CA the same rule applies to all cells, then the CA is

called a uniform CA; otherwise the CA is called a hybrid CA
(Fig. 1). There can be various boundary conditions; namely,
null (where extreme cells are connected to logic ‘O’), periodic
(extreme cells are adjacent), etc.

The following three complemented rules are employed for
our block cipher scheme; the logic function for the correspond-
ing noncomplement rules are also noted in Table I.

I348 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 12, DECEMBER 1994

TABLE I
RULES USED IN BLOCK CHIPER SCHEME

noncomplement

Fig. 3. A more general PCA cell with three control lines.

Control
Signal

Fig. 2. A 3-cell Programmable CA structure and a PCA cell.

Complete characterization of additive CA based on matrix
algebraic tools has been reported in [3] , [2], [16]. The charac-
teristic matrix T of a CA and the Characteristic polynomial are
illustrated with the following example. The next state ft+l(x)
of an additive CA is given by ft+l(x) = T x f t (z) , where
ft(x) is the current state, t is the time step.

Example I : A four cell null boundary hybrid CA (Fig. l),
with the rule vector (102, 150, 90, 150) applied from left
to right, may be characterized by the following characteristic
matrix

The characteristic polynomial is X4 + X3 + 1; TI5 = I .
If the characteristic polynomial of a CA is primitive, then

it is referred to as a maximal length CA. Such an L cell CA
generates all the 2L - 1 states in successive cycles, excluding
the all zero state. If all the states of the CA form a single
or multiple cycles, then it is referred to as a group CA.
The following Lemmas are required for the mathematical
foundation of our schemes,

Lemma I 121: A CA is a group CA iff T P = I , I being
the identity matrix and p is positive integer.

Lemma 2 [2]: Let T p denoting application of the comple-
mented rule T for p successive cycles, then
-
TPf(rC) = [I + T + T 2 + ‘ ‘ ’ + T q [F (x)] + [T P] [f (Z)]

where T is the characteristic matrix of the corresponding
noncomplemented rule vector and [F (z)] is an L-dimensional
vector (L = number of cells) responsible for inversion after
EXORing. F (z) has ‘1’ entries (i.e., nonzero entries) for CA
cell positions where EXNOR function is employed.

Control
Signals -1

Fig. 4. A PCA cell with EXNOR, rule.

From I right

Lemma 3 [2]: The complement of a group CA is also group
CA.

Lemma 4 [#I: CA rules 60, 102 and 204 form groups for
all lengths (1) with a group order O(G) = n = 2 a ; a =
O,1,2,.. .;n 2 1 > n/2.

Programmable CA (PCA): Positional representations of
rule 90 and rule 150 show that their neighborhood dependence
differ in only one position, viz., on the cell itself. Therefore,
by allowing a single control line per cell (Fig. 21, one can
apply both rule 90 and rule 150 on the same cell at different
time steps. Thereby, an L cell CA structure can be used
for implementing 2 L CA configurations. Realizing different
CA configurations on the same structure can be achieved
using a control logic to control the appropriate switches and
a control program, stored in a ROM, can be employed to
activate the control. The l(0) state of the ith bit of a ROM
word closes (opens) the switch that controls the zth cell. Such
a structure is referred to as a Progrummablr CA. Fig. 2 shows
a programmable CA with simple control structure-allowing
one control input per cell that configures the rule, applied to
that cell, either to rule 90 or rule 150. The L bit control word
for an L cell PCA has l(0) on ith cell if the rule 150(90)
is applied to the ith cell. For example, the control word
(0110) for a four cell PCA leads to the 1st and 4th cells to
be configured with rule 90, while the 2nd and 3rd cells are
configured with rule 150. Such a structure has been used in
our stream ciphering scheme.

By allowing more complex control one can introduce im-
mense flexibility to this programmable structure. A more
general 3-neighborhood programmable CA cell is shown in
Fig. 3 . Using such a cell structure for all the cells, all possible
additive noncomplemented rule combinations can be achieved
to realize any hybrid additive CA. Such an L cell PCA can
implement 23L number of different CA configurations. A
3-neighborhood programmable CA cell with complemented
additive rule is shown in Fig. 4. While Fig. 5(a) shows a
programmable CA with lesser number of control switches, in
which rule 51, 153 or 195 can be realized. Such a structure

1349 NAND1 et ai.: THEORY AND APPLICATIONS OF CELLULAR AUTOMATA IN CRYPTOGRAPHY

From From

left right

Cell#i

Control
Signal

I

From
right

From

le[ryj Cell#i

Control

i

Fig. 5. A PCA cell with EXNOR rule and modified control lines.

is employed for block ciphers. The value of control switches
(cl , Q) corresponds to

c1c2 rule applied
00 or 01 51

10 195
11 153.

Fig. 5(b) shows a circuit with reduced control logic where
either rule 153 or 195 can be employed in a cell.

B. Permutation Groups

A permutation T of a finite set S = {XI , 2 2 , . . . , x,} is
defined to be an injection T : S - S. It can be noted that all
possible permutations on S form a noncommutative group G,
of order TL! under the operation of permutation multiplication.

An important feature of a permutation is its cyclic structure.
By a cycle (y1, y ~ , yy,) of length r ', we mean permutation
T in S such that 7r(yJ) = y3+1. j = 1, 2 , . . . , r - 1. and
7r(yT) = y1, while leaving all other elements of S fixed.

It is easy to see that every permutation may be uniquely
expressed as a product of disjoint cycles. By a transposition
we shall mean a cycle of length two. An even permutation is
the one that is expressible as a product of an even number of
transpositions; otherwise a permutation is called an odd per-
mutation. It is a well known result that all even permutations
on S form a normal subgroup of G,, which is the alternating
group A , of degree n and order (n!)/2. In fact A, is the only
normal subgroup of index two of G,-such a group is called
a simple group.

111. PERMUTATION REPRESENTATION OF CA STATES

Let us consider a nonmaximal length CA in which there
are r cycles with ci number of states on the ith cycle. Such
a CA has a cyclic group representation of the form,G =
{R , R2, R". . . . , El"}; where R" = I , the identity.

3 6 11 2 5 13 9

0 0
Fig. 6. The state transition diagram of a maximal length group CA

In this representation R is the generator of G. and x =
lcm(c,, i = l , Z , . " , r) ; where Icm means lowest common
multiple. Such a group may be called a rule group. This is
equivalent to the fact that, a CA gives rise to a cyclic group if
and only if the mapping corresponding IO the state transition
graph is a permutation. The reason behind this is the fact
that, in case of a CA forming a rule group, each state in its
transition graph has exactly one predecessor i.e., the transition
mapping is a bijection which obviously has a permutation
representation.

Example 2: Consider the 4 bit hybrid CA (90, 150,90. 150)
under the null boundary condition. It's state transition graph
is shown in Fig. 6.

It is easy to see that the above CA forms the cyclic group

G = {R,R2,R3,...,R15 = I }

While its state transition graph may be represented by the
permutation found at the bottom of the page. It may also be
stated that in case of a CA forming a rule group of order x
and having the permutation representation T , one can have:
7rx = (0)(1)(2) . . . (2" - 1) = I; n being the length of the CA.

A. Permutation Representation of CA Having
Equal Cycles of Even Length

Lemma 4 (introduced in section 2) provides the CA rules
that generate cycles of length 2a ,a = 0, 1. 2:.-. The
following L,emma establishes the corresponding results for
uniform and hybrid CA's with complemented rules 51, 153,
and 195. The corresponding noncomplemented rules are 204,
102 and 60.

Lemma 5. Complemented CA rules 195, 153 and 51 form
groups for all lengths with group order O(G) = rn = 2";

Pro@ Consider a CA with rule R and characteristic
matrix T , where R is a combination of the rules 60, 102, and
204. Then, as per Lemma 2, the corresponding complemented
CA, with characteristic matrix T, may be expressed as:

(u = 1 , 2 . 3 . ' . .).

-m
T f(.) = [I+T+T2+. '.+Tm-l][F(x:)]+(I.m][f(:~)]. (1)

The fact that R is a group CA rule implies that T" = I for
n as some integral power of 2 (Lemma 4). As per Lemma 3,
complement of a group CA is also a group CA. So,

I 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
0 3 5 6 1 4 1 3 1 1 8 4 7 1 2 1 0 9 1 5 1 2

7 r = [

1350

number of
CA cells

4
4
4
8
8
8

IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 12. DECEMBER 1994

Rule generated cycles
vector number length

51,51,51,51 8 2
153,153,153,153 2 8
195, 195,195,195 2 8
51,51,51,...,51 128 2

153,153,153,. . .,153 16 16
195,195,195,. . .,195 16 16

where m is the cycle length of the complemented CA. From
(1) and (2),

[Tm + I] [f (z)] = [I + T + T2 + . . . + Tm-'][F(z)]
+ [T + I] [I + T + T 2 +. . .+ T " - '] [f (~) l
= [I + T + T2 + . . . + T"-l][F(z)].

Assume [I + T + T2 + . . . + Tm-'] # 0 , consequently

[T + Il[f(41 = [F(z)l* (3)

If the CA under consideration consists of L number of cells,
then (3) is a system of L linear equations, and the condition
for its solution to exist is

rank[T + I] = rank[T + IF(%)].

In the case of R, being any combination of rules 60, 102 and
204, it can be directly shown that rank [T + I] < L, owing to
fact that one row of matrix T + I is null in such a case.
Also, since each entry of F (z) is 1 (as in the case of all
complemented rules), it follows that

rank[T + I] # rank[T + I F (z)] .

This is a contradiction and, hence, it follows that

1 + T + T 2 + - . . + T m - l = O (4)
=+ Tm[f(41 = Tm[f (z) l = f(.) (5)

+ Tm = I .

Let m = bn, where b is nonzero positive integer. For b = 2,

I + T + T2 + . . . + Tm-l (as m = 2n)
= I + T + T2 + ... + T"-' + T"

+ Tn+l + Tn+2 + . . . + T2"-l

[I + T + T 2 + ... + T"-']
+ [I + T + T 2 + . s . + Tn-l]

=
(as T" = I)

= 0 (since modulo-2 summation is involved).

So, the relation (4) always satisfies for b = 2. For particular
values of T , relation (4) may hold for b = 1. Hence, the value
of m is either n or 2n.

LLy
Fig. 7. The state transition diagram of a nonmaximal length group CA.

Now we need to show that m is a nonzero positive integral
power of 2. As per Lemma 4 in Section 2, n is of the form
2a, (a = 0 , 1 , 2 , . . .). We consider the following two cases.

Case I : for n = 2' = 1 I

* T = I

+ I + T = O (6)

Considering equations (4) and (6) we arrive at the conclu-
sion that m = 2 for n = 1.
Case 2: for n = 2a, (a = 1 , 2 , 3 , . . .);
we know that m is either n or 2n.
So m is also a nonzero positive integral power of 2. 0
Theorem 1: If a null boundary uniform or hybrid CA

configured with rules 51, 153 and 195 is a group CA, then
its state tIansition diagram consists of equal cycles of even
length.

Proof: From Lemma 5, it can be seen that group CA,
under different configurations of rules 51, 153, and 195,
generate cycles of even length m (positive integral power of
2). Now we have to prove that factors of rn can not be a
cycle lengths. Assume that the group CA has a cycle of length
mi [where mi is a factor of ml. Then it must satisfy the
following equations:

I+T+T2 + . . . + T".-l = 0

and T"'[[f(z)] = T m a [f (~)] = f(z).

This implies that mi is the group order of all cycle lengths
of the group CA, suggesting that m; is equal to m, i.e., all
cycles are equal in length.

Hence, the theorem. 0
For the sake of illustration, cycle structures of a few null

boundary CAS with rules 51, 153, and 195 are tabulated in
Table 11.

In case of periodic boundary conditions, the only rule
available forming equal cycles of even length is rule 5 1. This
phenomenon is true for CA of any length.

Now considering the CA (153, 153, 153, 153), under null
boundary conditions, we obtain cycles as shown in Fig. 7.

This CA has the permutation representation found at the
bottom of the page, where 7r4, being a product of even number
of transpositions, is an even permutation.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
. = [1 5 12 9 10 3 0 5 6 7 4 1 2 11 8 13 141

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
1 4 1 1 4 1 1 0 1 5 0 5 6 3 1 2 9 2 7 8 1 3 1 3 7r2 =

* n4 = (0,8)(1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)

1351 NAND1 et 01.: THEORY AND APPLICATIONS OF CELLULAR AUTOMATA IN CRYPTOGRAPHY

51, 153 (or 195)
153, 195

TABLE ID
EVEN NUMBER OF EVEN LENGTH CYCLES OF CA FOR L = 8 AND 16

I Rule applied I Number of CA configurations generating

184 47190
7 523

even number of even length cycles I to I 8 cell CA having I 16 cell CA having - -
[8 length cycles 1 16 length cycles

51, 153, 195 I 691 I 493521

In general, CA’s having equal cycles of even length each,
may be expressed as some even power of an even permutation.
This phenomenon has been extensively used in our present
encryption scheme. Table 111 shows a number of L cell CA
configurations, each generating cycles of length 8 or 16.

Iv. DEFINITION OF FUNDAMENTAL TRANSFORMATIONS

To encipher blocks of binary data we shall define certain
transformation functions and call them fundamental trans-
formations. These are fundamental in the sense that any
enciphering function will be constructed using them. The
fundamental transformations are built up using the following
combinational logic representing CA rules 195, 153, and 51:

Q (t) = z;-l(t - 1) CB zz(t - 1) (7)
xz(t) = z;(t - 1) 69 z2+1(t - 1) (8)
sz(t) = zz(t - 1). (9)

In the enciphering process, each bit of a block of message is
input to a CA cell. Each cell is updated according to some
transformations which are depicted in (7)-(9).

Each of these rules is a group rule and thus the correspond-
ing CA exhibit rule group properties. It can also be observed
that such a CA forms equal cycles of even length each-a
phenomenon which is a basic requirement of our enciphering
scheme. The cycle length distribution of this class of CA’s
has been discussed in Section 111.

If 2r is the cycle length of uniform or hybrid CA with a rule
R (i.e., a combination of 51, 153, and 195), then a fundamental
transformation using the R rule CA is defined by
s = rT , where 7~ is a permutation representation of the R rule
CA.

It is easy to see that K~~ = I (the identity permutation).
So, s is an involution (i.e., self inverse transformation). It is
also a transposition.

For example, the fundamental transformations s, y, z built
up on 4-bit uniform null boundary CA using the aforemen-
tioned rules can be represented as follows:

s = 7r;‘

Y = 4
z = 7T3

where the permutation representations of T I , 7r2, and ~3 are
in (13)-(15), found at the bottom of the page. In these cases
7~: = ~ 2 ” = 7 ~ ; = I (the identity permutation); resulting in
involutions s, y, z which are also transpositions.

One can easily observe that:

Each being a product of even number of transpositions.
The fundamental transformations may be regarded as even
permutations.

A. Fundamental Transformations Generate a Group

This subsection establishes the promising result that the
fundamental transformations, constructed earlier, generate the
simple group or altemating group A 2 ~ of even permutations,
which in tum is a subgroup of the permutation group S2N. To
achieve this we have the following results.

Theorem 2: A2.- cannot be generated by a single basic
transformation.

Proofi It is quite easy to observe that if A 2 ~ is gener-
ated by a single basic transformation g (say), then A 2 ~ =
{ g , g2 = l } which is in contradiction to the fact that A 2 ~

0
This obviously leads to the following corollary.
Corollary 1: If n is the number of basic transformations

required to generate A2N, then 2 5 n < P -- 1.
Theorem 3: A2.- is generated by 3-cycles.
Theorem 4: If a normal subgroup of contains a 3-cycle

then it must be the whole of A 2 ~ .
Theorem 3 and 4 are well established results, the proofs of

which may be found in any standard text of abstract algebra,
such as [7].

We illustrate our enciphering scheme for 8 bit block with
five fundamental transformations. These transformations are

contains as many as (zN)!/2 elements.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
T 1 = [15 14 12 13 9 8 10 11 3 2 0 1 5 4 6 71

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
1 5 1 2 9 1 0 3 0 5 6 7 4 1 2 1 1 8 1 3 1 4 7T2= [
0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

7T3= [15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 03

1352 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43. NO. 12, DECEMBER 1994

constructed using the following 8 bit null boundary CA with
rules 153, 195, and 51. Each CA configuration generates cycles
of length 8:

(153.153,153.153.51.51.51.51)
(195,195,195.195.51.51.51.51)

(51,51,153,153,153,153.51.51)
(51,31,195,195,195,195,51,51)
(51, L53,153,153,153,153,153,51).

In order to reduce circuit complexity, only five such config-
urations with either rule 153 (or rule 195) along with rule
51 are chosen out of 184 available combinations. Each of
these 184 hybrid CA's of 8 bit each generate equal cycles
of even length. One is free to take any number of such
fundamental transformations to enhance invulnerability of the
scheme. Complexity analysis of this scheme against different
types of attacks is noted in Section VII.

V. PCA BASED BLOCK CIPHER SCHEME

Let us recall that the N dimensional vector space VN
consists of all of our messages, each N bit long. In our present
enciphering strategy, whole message is divided into a number
of sub-blocks. Each sub-block will contain N bits if total
message length is a multiple of N , else the leftmost block
will be filled with zeros. Let us assume N = 8.

The space of our enciphering functions is S28 with cardi-
nality 28! which is a considerably large number. Let E E S2s
be an enciphering function and M E V, be a message to
be encrypted. Then our scheme yields the encrypted mes-
sage C = E M . The enciphering function consists of q
fundamental transformations. Each of the fundamental trans-
formations is derived from different rules. By permutation of
q fundamental transformations we can generate q! enciphering
functions.

As a specific example, let E = syzuw, with q = 5. Thus
C = E M . In the decryption process, one obtains:

M = E-lC
= (syzuv)-1C
- (w-1u-12-1 -1 -1
- Y 3)C
= (vuzys)C.

Hence, to decrypt a message, the fundamental transformations
are applied on the encrypted message in reverse order.

The fundamental transformations constructed taking into
account the aforesaid considerations are:

Here, T: = I ; i = 1, 2, 3, 4, 5; implying that s, y, z , u, v are
involutions.

The above scheme may be implemented through a circuit
whose block diagram is presented in Fig. 8.

I I I .$ [p q y 7 " ?]
CONTROLBUS ROM

DATA BUS
I I)

I jO UNIT

Block diagram of the circuit for block cipher scheme. Fig. 8.

A. Number of Enciphering Functions

In our block cipher scheme one message block is enciphered
by one enciphering function. The deciphering, as noted ear-
lier, is achieved by applying the same enciphering functions,
with the fundamental transformations for each function being
applied in the reverse order. Let p be the number of enci-
phering functions used in the proposed scheme, which are
noted as {Eo, E l , E2 ~ . . . , Ep-l }, while for deciphering it is
{E;', El'. E;'. . . . , In the block cipher process, the
first block of message is enciphered with Eo, the second block
with El, the third block with Ea, and so on. This process
repeats until enciphering of all the message blocks is complete.
The enciphering function changes in every message block
i.e., if ith block is enciphered with E,, then the next block
enciphering function is E(z+l)mod,. After every enciphering
operation, the output of PCA is taken as the encrypted mes-
sage block. At the receiving end, the deciphering process is
analogously applied with {E;' , E,', ET1 , . . . , Ep-?l }. These
p enciphering functions are constructed using permutation, of
q fundamental transformations (Le., each enciphering function
consists of q fundamental transformations). The definition of
fundamental transformation is given in the Section IV.

The fundamental transformations can be realized by PCA
as follows. Load PCA with a state ft(x). Configure PCA
with complemented rules 51, 153 and 195 as discussed in
Section 111-A. Then run the PCA for T cycles, Le., 7" f t (z) =
f t+Jx) [where T2'ft(x) = ft(x)I.

The equivalent permutation representation (Le., the funda-
mental transformation) of this is 7rr [where 7rar = I , the
identity permutation].

A fundamental transformation is realized with a CA configu-
ration. The control signals corresponding to a CA configuration
are stored in a ROM word. For an N-bit PCA having u
control signals per CA cell, there are Nw-bits in a ROM
word. An enciphering function is realized with q fundamental
transformations. Therefore, q consecutive ROM address spaces
are required to store one enciphering function. Hence, p x q
ROM address spaces are sufficient to store p enciphering
functions.

Now, for a given value of IC (the ROM address space) and
q (the number of fundamental transformations), the number of
enciphering functions used in the block cipher scheme can be
computed as follows.

NAND1 et al.: THEORY AND APPLICATIONS OF CELLULAR AUTOMATA IN CRYPTOGRAPHY I353

- The number of enciphering functions that can be formed

- The number of enciphering functions possible to store

- So the number of enciphering functions (p) used by the

The sequential steps for encryption/decryption are noted in
the Algorithm 1.

with q fundamental transformations is q! .

in ROM is r k / q] .

scheme is min{ [k / q l , q ! } .

Description of the Circuit
PCA (Programmable Cellular Automata): It is an N-bit

null boundary, uniform or hybrid CA loaded with the rules
51, 195, and 153. The rules 153 and 195 do not appear
simultaneously in the same CA configuration. The control
structure of such a PCA cell is shown in Fig. 5(a). Selection of
this type of rule configuration reduces the circuit complexity.
The control signals for a CA configuration are stored in the
ROM and loaded into the PCA via the DATA BUS. One bit
signal RMODE is 0(1), indicating that the data bus contains
rule 195(153) and 51. RMODE represents the c2 input for all
cells in the PCA. The control input c1 for each of the cells
is derived from the corresponding bit position of the ROM
word. Thus for an N bit CA, the ROM word size is N + 1 bit.

Control Unit: It consists of several counters to generate
different types of control signals for PCA and ROM. These
counters are as follow$.

C, : counts the number of clock cycles ‘r’ the PCA will run
to realize a fundamental transformations.
C,: counts the number of fundamental transformation ‘q’ in
an enciphering function.
Program Counter (PC) is of [log, IC1 -bit length modulo q x p
counter and is used to store address of the ROM where next
PCA rule configuration control word is located.
The control sequences of the circuit are described in the
Algorithm 1 noted below.
ROM (Read Only Memory): It is of size k x (N + I), which

can store rule configuration control word of PCA, with the
1)th-bit being used to control the RMODE control signal

line.
I/O UNIT: It is an input I output unit for data transfer

between PCA and outside world.
Only two extemal signals are required to operate the whole

circuit, i.e., CLOCK for running the circuit and START for
reset and start the circuit.

Algorithm I :
Input: For encryption (decryption) the input is plaintext
(ciphertext).
Step 1: Reset (111 counters in control unit.
Step 2: While (not end of plaintext (ciphertext)) execute
steps 3 to 6.
Step 3: Load PCA with one byte plaintex (ciphertext) from
I10 UNIT and set C, = 0.
Step 4: Load rule configuration control word from the ROM
into the PCA and set C, = 0.
Step 5: Run PCA for r-cycles.
Step 6: Increment C, and PC by 1. If (C, = q) then send
one byte ciphertext (plaintext) to I/O UNIT; otherwise go to
step 4.

VI. STREAM CIPHER STRATEGY
In stream ciphers pseudorandom pattem generators are

widely used to generate the key stream.

A. Key Stream Generators

Many key stream generators are based on combining two
or more generators (i.e., LFSR’s) by using nonlinear func-
tions [I I], [13], [14]. It is already established that maximum
length CA’s generate patterns having high quality of pseudo-
randomness [20]. Using CA properties we have proposed two
types of key stream generators-(I) PCA with ROM, and (2)
Two stage PCA. Fig. 2 shows a 90 / 150 I T A cell used in
the key stream generators.

PCA With ROM us a Key Stream Generator: Let L be the
number of cells in the PCA and ‘ti’ be the number of maximal
length CA’s with rule 90 and rule 150. Assume that 1 maximal
length CA’s are chosen out of w maximal length CA’s.
These rules are noted as {Ro,R,, Rz,...,R~-~}. The rule
configuration control word corresponding to a rule K , is stored
in a ROM word. Initially the PCA is confgured with rule
Ro and loaded with a non zero seed. With this configuration
the PCA runs one clock cycle. Then it is reconfigured with
the next rule (Le., R,) and runs another cycle. This process
repeats until CLOCK signal to PCA is made inactive. The
rule configuration of PCA changes after every run, i.e., if in
the ith run rule configuration is R,, then in the next run, rule
is R(z+l)modl. After each clock cycle, the output of PCA is
taken as a pseudorandom pattem.

Now our objective is to show that this output sequence is
a pseudorandom pattem sequence. The following Theorem
provides the background.

Theorem 5 [2/, [20]: If the characteristic polynomial of a
CA is primitive then it generates pseudorandom pattem.

Corollary 2: A PCA built with maximal length CA config-
urations generate pseudorandom patterns.

Proof All the maximal length CA’s generate pseudo-
random sequences, individually. The sequence generated by
the PCA can be taken as a set of subsequences generated
by a particular maximal length CA. As the subsequences
are pseudorandom in nature so the overall sequence is also

The above key stream generator scheme may be imple-
mented through a circuit whose block diagram is presented
in the Fig. 9.

pseudorandom in nature. 0

Description of the Circuit:
PCA (Programmable CA): It is an L-bit null boundary,

uniform or hybrid CA configured with the rule 90 and 150. The
control signals corresponding to a CA configuration are stored
in the ROM and loaded into the PCA via the DATA BUS.

ROM (Read Only Memory): It is of size 1! x L (1 words,
each of L bits), and it stores the control signals for the PCA.

Control Unit: It consists of several counters to generate
different types of control signals for PCA and ROM. The
control sequences of the circuit are described in the Algorithm
2 below. Program Counter (PC) is (log, @bit (i.e., 1 is power
of 2) up counter and is used to store address of the ROM
where next PCA rule is present.

1354 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43. NO. 12, DECEMBER 1994

CLOCK START

I I

If 0 CONNECTIO

Fig. 9. PCA based pseudorandom pattern generator.

I/O Connection: It is an input/output unit for data transfer
between PCA and outside world.

Only two extemal signals are required to operate the whole
circuit, Le., CLOCK for running the circuit and START for
reset and start the circuit.

Details of the Experimental PCA Chip: The PCA is the
major block in the designs. In view of this, for building the
prototype system, we have designed, fabricated and tested 16
bit and 32 bit PCA chips. The chips have been fabricated
with a 3 micron gate array library at ITI (Indian Telephone
Industries). Details of the 32 bit PCA chip with 90 and 150
rules are : 1) 64 pin DIP, 2) area equivalent 1284 two input
NAND gates, 3) power -316 mW, (iv) current -57 mA, and
(V I operating clock speed of 10 Mz.

Algorithm 2:
Step 1: Reset all counters in the control unit.
Step 2: Load PCA with L-bit initial seed from I/O connec-
tion.
Step 3: Read the ROM control word and configure the PCA.
Step 4: Run PCA for one cycle.
Step 5: Read pseudorandom pattem from I/O connections
and increment PC by 1.
Step 6: If (CLOCK active) then go to step 3.
Step 7 : Stop.

In the above scheme, the PCA configured by a rule (stored
in the ROM) is assumed to run one cycle only. By using
some extra ROM bits & additional control, we can specify the
number of cycles the PCA should run for each configuration.
Such modification can substantially enhance the quality of
encipher.

Two Stage PCA as a Key Stream Generator: In the ROM
based key stream generator, the main disadvantage is the
increased area overhead with lower speed of operation due
to use of ROM for storage of control signals. This can be
avoided by replacing the ROM with another maximal length
90/150 rule PCA (i.e., PCA2) as shown in the Fig. 10. A single
chip can be fabricated with PCA1, PCA2 and the CONTROL
UNIT. The control signals (R) to configure PCA2 and the
input seed (1,) for PCAz can be concatenated to the input
seed (11) of PCAl to form the key (Le., (R , 1 2 , I l)) for the

DATA BUS v 1/0 CONNECTIO

Fig. 10. Two stage PCA based pseudorandompattern generator.

key stream generator. The PCA2 generates the control signals
to configure PCA1.

Description of the Circuit:
PCAl(Programmab1e CAI) It is an L-bit null boundary,

uniform or hybrid CA loaded with the rule 90 and 150. The
control signals to configure PCAl are loaded from the output
of PCAz via the DATA BUS.

PCAz(Programmab1e CA2) It is an L-bit null boundary,
uniform or hybrid CA configured with the rule 90 and 150.
Rule (R) is part of the key and it is loaded into the PCA2 via
the DATA BUS.

Control Unit: It consists of several counters to generate
different control signals for PCAl and PCA2. The control
sequences of the circuit are described in the Algorithm 3
below.

I/O Connection: It is an input I output unit for data transfer
between PCA1, PCA2 and outside world.

Algorithm 3:
Step 1: Reset all counters in the control unit.
Step 2: Conjigure PCA2 with the control signals (R) from
the I/O connections.
Step 3: Load PCAl and PCA2 with initial seed I1 and 1 2 .
Step 4: Run PCAz for one cycle.
Step 5: Configure PCAl with the control signals from the

Step 6: Run PCAl for one cycle.
Step 7 : Output pseudorandom pattern from I / 0 connections
(i.e. output of PCA1).
Step 8: If (CLOCK active) then go to step 4.
Step 9: Stop.
The enciphering process using this type of generator fails

if PCAl goes to all zero graveyard state [2]. Analogous to
modified LFSR design, with some extra logic it is possible to
design the PCAl to have a transition out of all-zero state. On
the other hand, it is necessary to avoid a situation where PCA2
enters in a graveyard state resulting in PCAl being configured
with the same rule all through out. So, the user of the scheme
must avoid such a key combination from the simulation study.

output of PCA2.

B. PCA Based Stream Cipher Scheme

Fig. 11 depicts the class of proposed stream ciphers (where
L = 16). The output of the message source is regarded as
a stationary random sequence. Each component takes values

NAND1 et al.: THEORY AND APPLICATIONS OF CELLULAR AUTOMATA IN CRYPTOGRAPHY 1355

- _ _ -

random pattern

Select
MUX lines(sl) lines(s1)

Message 1 , Cipher I

Encryption Decryption

Fig. 1 I . Proposed stream cipher scheme.

from a finite set S M . In this encipher the incoming message
sequence is divided into message words of 4 bit in length.

The key source output is regarded as a random variable
K taking equiprobable values in a set SK with ZL elements,
where L is the length of PCA as described in the previous
section. From the L bit key the proposed method takes any
consecutive 4-bits for encryption. The key stream output and
the message source output are statistically independent.

An encipher produces the ith bit (i = 1 , 2 , 3 , 4) of cryp-
togram word C from the ith bit of the message word A4 and
the ith bit of the key word K by using EXOR function.

c; = Mi e3 Ki.

This is a mapping from SM x SK to SC, where SC is the set
of cryptogram word.

The deciphering strategy follows the same scheme where
the EXOR gates produce message text taking cryptogram and
key stream as inputs. This is a mapping from SC x SK to SM.

The overall block diagram of the proposed stream cipher
scheme is presented in Fig. 11. Where PCA based pseudoran-
dom pattern generator is of type shown in Fig. 9 or Fig. 10.
Selector of [log2(sl)l-bit length (sl denotes the number of
select lines to MUX (Fig. 11)) used to select any one of first,
second, third and last 4-bit of the PCA. These 4-bit EXORed
with plaintext (ciphertext) produce ciphertext (plaintext). The
sequential steps of encryption (decryption) are noted in the
Algorithm 4.

Algorithm 4:
Step 1: Initialize and configure PCA based pseudograndom
pattern generator with key.
Step 2: While (not end of plaintext (ciphertext)) do Step 3
through step 4.
Step 3: Generate key streams by running the generator once.
Step 4: EXOR 4-bit key stream with next 4-bit plaintext
(ciphertext) and produce output 4-bit ciphertext (plaintext).
Step 5: Terminate (Le., deactivate CLOCK) PCA based
pseudorandom pattern generator and stop.

VII. INVULNERABILITY OF THE SCHEME

Security of the schemes against possible attacks are now
discussed.

A. Block Ciphers

I) Ciphertext Only Attack: As per the proposed scheme,
same ciphertext may be generated from different plaintext,
as well as any ciphertext may give rise to different plaintext
under different CA rule configurations. Thus, the scheme is
guarded against cryptanalyst's ciphertext only attack.

2) Known and Chosen Plaintext Attack: In the case of
known plaintext attack, the intruder is assumed to possess a
considerable length of plaintext and corresponding ciphertext.
While, in case of chosen plaintext attack, the intruder is able
to acquire an arbitrary number of corresponding message and
cipher pairs (M , C) of his own choosing. Naturally, immunity
against these attacks will directly depend on the available
key space. The following theorem establishes the relationship
between security and key space.

Theorem 6 [a]: A necessary condition that a cryptosystem
has perfect secrecy is that it has at least as many keys as
messages.

In this context, we evaluate the available key space in the
proposed scheme as follows. Assume that size of the message
block is N . So the number of elements in the altemating group
A p is (2 x) ! / 2 . Let 2 number of these elements be realized
by CA with fundamental transformations and q fundamental
transformation be used for one enciphering function. The
number of choice of q fundamental transformations is 'C,.
Again these q transformations can be arranged in g! different
ways. Let there be p enciphering functions stored in the ROM.
So, the enciphering functions can be stored in n:zi(q! - i)
ways. In our case, the key is nothing but the rule sequence
stored in ROM. Hence, the key space is "Cq nrzi(q! - i).

Thus the key space can be made to be comparable with
message size by proper choice of N . q, and ROM space.

For example, if N = 8 , Z = 184 (as per Table III), q = 5
and ROM address space of 1024, then the key space of the
scheme is 1s4C5 x ((5!)!)-an extremely large value.

B. Stream Ciphers

I) Ciphertext Only Attack: A common type of running key
generators employed in stream-cipher systems consists of L
(mostly maximum-length) binary LFSRs whose output se-
quence (Xl , X 2 , X 3 , . + . , X m) are combined by a nonlinear
boolean function @[13 ,14 ,11] . This is defined as

K = @ (X l 1 X 2 , X 3 : . . . , X ~ t .)

The inputs for the function is generated by independent
and identically distributed random variables. It is desirable
that the combining functions should not leak information
about the individual LFSR-sequences into the key stream. In
this context, the concept of correlation immunity has been
introduced in [13] in order to prevent divide and conquer
correlations attacks. For nonlinear combiners there is a trade
off between the nonlinear order of the boolean function and its

1356 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 12, DECEMBEK 1994

order of correlation immunity. The trade off can be avoided if
the function is allowed to have memory [l l] .

In the proposed CA based stream cipher scheme, the key
stream has been derived with the PCA based nonlinear enci-
phering function @* as, K,+1 = @*(R,. Sz), where R, is the
7th rule configuration stored in ROM and S, is the ith state
of the CA. The successive states of PCA are not independent,
rather they evolve from the rule R, and S,, which in tum
depends on all previous states and rules. Also the PCA realizes
different rule configurations in the same block with L memory
cells. This ensures desired immunity against the schemes
analogous to conventional correlation attack. However, all
possible ciphertext only attacks against the proposed scheme
are being evaluated.

-3) Known Plaintext Attack: Cracking key stream genera-
tors amounts to the same thing as conducting known-plaintext
attacks on stream ciphers. The complexity to crack key stream
generators can be evaluated as follows.

a) PCA with ROM: The 1 maximal length CA can be
taken from w maximal length CA in ”Ct ways. The
next state of a CA fully depends on its current state
and the rule configuration. Again for maximal length
CA, portion of next state does not purely depend on
rule configuration. So, the complexity to get the rule
sequence for a particular seed can be evaluated as,

wcl x (1 + (1 - 1) + (1 - 2) + . . ‘ + 3 + 2 }
= “C, x { 1 (1 + 1)/2 - l}.

The PCA can be loaded with the initial nonzero seed in
ZL - 1 ways. Hence, complexity to get the rule sequence
and initial seed for the proposed key stream generator
is (ZL - 1) x “’(7, x {1(1 + 1)/2 - l}. For example,
for L = 8, = 32 (as per simulation) and 1 = 16, the
cracking complexity is (Z 8 - 1) x 32C16 x (32 x 31/2- 1)
Le.. O(10)l3. For 71 = 16, ‘uf = 4096 (as per simulation
results) and 1 = 2048 then the cracking complexity is

b) Two Stage PCA: The number of different configurations
of PCAp is Z L . Initial seed of both PCAl and PCA2
can be loaded in (Z L - 1) ways. Hence the worst case
complexity to get the key is 2L(2L - l) (Z L - 1). For
example, in case of L = 16 the complexity of the order

(21G - 1) x “Oy6C~o~8 x (2048 x 2047/2 - 1).

of o(1014).

VIII. CONCLUSION

In this work we have proved analytically that CA with
EXNOR rules (i.e., 51, 153, and 195) can generate an al-
ternating group. It is found that alternating groups form a
set of fundamental transformations. Using these fundamental
transformations a block cipher scheme is proposed in this
paper. A scheme for stream ciphers is also proposed employing
PCA. Keystream generators of the stream ciphers consist
of PCA and rule selector. The complexity of the proposed
schemes compare with the available schemes reported so far.
The complexity can be further increased with an increase in
block size for block cipher and in number of CA cells in the
stream ciphers. Enciphering and deciphering process of the

proposed schemes follow the same protocol. One of the main
advantages of proposed schemes is the use of simple, regular,
modular and cascadable structure of CA as the basic building
block that ideally suits for VLSI implementation.

REF ERE N c E s

[I] S. Wolfram, “Statistical mechanics of cellular automata,” Rev. Mod.
Physics, vol. 55, no. 3, pp. 601-644, 1983.

[2] A. K. Das, A. Ganguly, A. Dasgupta, S. Bhawmik, and P. Pal Chaudhuri,
“Efficient characterization of cellular automata,” IEE Pro(.., vol. 137,
Pt. E, no. 1, pp. 81-87, Jan. 1990.

[3] A. K. Das, S. Saha, A. Roy Chowdhury. S. Misra. and P. Pal Chaudhuri,
“Signature analyzer based on additive cellular automata,” in Proc. 20th
Faulf Tolerant Compuring Sysf., pp. 265-272, U.K., June 1990.

[4] W. Pries, A. Thanailakis, and H. C. Card, “Group properties of cellular
automata and VLSI applications,” IEEE Trans. Comput.. vol. C-35, no.
12, pp. 1013-1024, Dec. 1986.

[5] 0. Martin, A. M. Odlyzko, and S. Wolfram, “Algebraic properties of
cellular automata,” Commun. Math. Phys. vol. 93, pp. 219, 1984.

[6] D. E. Denning, Cryptography and Data Security. Reading, MA:
Addison-Wesley, January 1982.

[7] 1. N. Herstein, Topics In Algebra. New Delhi, India: Vikas Publishing
House Pvt. Ltd, 1976.

(81 D. Welsh, Codes and Cryptography. Oxford: Clarendon Press, 1988.
[9] J. Seberry and J. Pieprzyk, Cryptography: An Introduction to Computer

Security. Australia: Prentice Hall of Australia, 1989.
[IO] A. Salomma, Public-Key Cryptography. Berlin Heidelberg: Springer-

Verlag, 1990.
[111 W. Meier and 0. Steffelbach, “Correlation properties of

combiners with memory in stream ciphers,’‘ in Proc. Advances
in cryprolog~~--EI/ROCRYPT’90, Springer-Verlag, 1990, pp. 204- 2 13.

[121 J. Pieprzyk and X. M. Zhang, “Permutation generators of alternating
groups,” in Proc. Advances in Cpptology-A USCRYPT ’YO, Springer-
Verlag, 1990, pp. 237-244.

131 T. Siegenthaler, “Correlation-immunity of nonlinear combining func-
tions for cryptographic applications,” IEEE Trans. Inform. Theory, vol.
IT-30, no. 5 , pp. 77&779, Sept. 1984.

141 -, “Decrypting a class of stream ciphers using ciphertext only,”
IEEE Trans. Compur., vol. C-34, no. I , pp. 81-85, Jan. 1985.

151 P. H. Bardell, “Analysis of cellular automata used as pseudorandom
pattern generators,” in Proc. h t . Test Cont , 1990, pp. 762-768.

161 A. K. Das and P. Pal Chaudhuri, “Vector space theoretic analysis of
additive cellular automata and its application pseudo-exhaustive test
pattern generation,” IEEE Trans. Comput., vol. 42, no. 3 , pp. 340-352,
Mar. 1993.

[17] D. Roy Chawdhury, I. Sengupta, S. Basu, and P. Pal Chaudhuri,
“Cellular automata based error correcting codes (CAECC),” IEEE Trans.
Comput., vol. 43, no. 6, pp. 759-764, June 1994.

[181 D. E. Knuth, The Art of Computer ProKramming-S~,minumerica/ Algo-
rithms.

1191 S. Even and 0. Goldreich, “DES-like functions can generate the
alternating group,” IEEE Trans. Infmn. Theory, vol. IT-29, no. 6, pp.
863-865, Nov. 1983.

[20] P. D. Hortensius, R. D. Mcleod, W. Pries, D. M. Miller, and H. C.
Card, “Cellular automata based pseudorandom number generators for
built-in self-test,” IEEE Trans. Cornput.-Aided Design, vol. 8 , no 8, pp.
842-59, Aug. 1989.

[21] Ph. Tsalides, T. A. York, and A. Thanailakis, “Pseudorandom number
generators for VLSI systems hased on linear cellular automata,” in IEEE
Proc. E. Comput. Digit. Tech, vol. 138, no. 4, 1991, pp. 241-249.

1221 Ph. Tsalides, ‘‘Cellular automata based built-in self test structures for
VLSl systems,” Electron. Left.. vol. 26, no. 17, pp. 1350-1352. 1990.

[23] T. K. York, Ph. Tsalides, €3. Srisuchinwong, P. J. Hicks, and A.
Thanailakis, “Design and VLSI implementation of a mod- 127 multiplier
using cellular automaton-based data compression techniques,” in IEEE
Proc. E. Comput. Digit. Tech., vol. 138, no. 5, 1991, pp. 351-356.

(241 P. Tzionas, Ph. Tsalides, and A. Thanailakis, “Design and VLSI imple-
mentation of a pattern classifier using pseudo @ D cellular automata,”
IEE Proc. G, vol. 139, no. 6 , pp. 661-668, Dec. 1992.

[25] B. Srisuchinwong, Ph. Tsalides, T. A. York, P. J. Hicks, and A.
Thanailakis, “VLSI implementation of mod-p multipliers using homo-
morphisms and hybrid cellular automata,” IEE Proc. E, vol. 139. no. 6,
pp. 486490, Nov. 1992.

[26] S. Wolfram, “Cryptography with cellular automata,” in Advances in
Cryprology-Cppto ‘85 (Springer-Verlag Lecture Notes in Computer
Science 218), 1986, pp. 429432.

Reading, MA: Addison-Wesley, 198 I .

NAND1 et ai.: THEOKY AND APPLICATIONS OF CELLULAR AUTOMATA IN CRYPTOGRAPHY 1357

S. Nandi was born in West Bengal, India in 1962.
He received the BSc. (Honours) degree in physics
in 1984, B.Tech in instrumentation in 1987 and
MTech in computer science and engineering in
1989, all are from Calcutta University, India Cur-
rently he is a Ph.D. candidate in the Department of
Computer Science and Engineering, Indian I n ~ t u t e
ot Technology, Kharagpur, India.

During 1989-1990, he war a faculty at the Com-
puter Engineering Department, Birla Institute of
Technology, Mesra, India. Since January 1991, he

has been associated with the VLSI CAD research project activities, sponsored
by the Department of Electronics, Govemment of India. His research interests
include design for testability, BIST, error correcting code, and data encryption

B. K. Kar received the Ph.D. degree in applied
mathematics from the Indian Institute of Technol-
ogy, Kharagpur, India in 1989.

Subsequently, he joined the project staff in the
VLSI CAD research project (sponsored by the De-
partment of Electronics, Govemment of India) in
the Computer Science and Engineering Department
of IIT, Kharagpur. His major research interests are
in the areas of cellular automata, data encryption,

Q neural computing and fuzzy rystems.

P. Pal Chaudhuri received the B.E. degree in elec-
trical engineering from Bengal Engineering College,
West Bengal, India in 1963 and the Ph.D. degree
from the Indian Institute of Technology, Kharagpur,
India in 1979.

From 1963 to 1975. he was associated with
IBM World Trade Corporation, India in various
capacities. Subsequently, he switched over to an
academic profession, starting his career as Assistant
Professor at the Indian Instilute of Technolow. , , , 1 , ". ,
Kharagpur, India. He took the leading role in estab-

lishing the department and the undergraduate program in Computer Science
and Engineering. Since 1980, he has held the position 01' Professor. During the
period 1984-1985, he was on leave from the Institute to take up the post of
Director at the Regional Computer Center, Calcutta, an autonomous scientific
society. From 1986 to 1989, he was the head of the Department of Computer
Science and Engineering, II?, Kharagpur. He was closely associated with the
growth of computer science and engineering education in various institutes in
India. Since 1987, he has headed the VLSl CAD research activities, sponsored
by the Department of Electronics, Government of India. During the period
1991-1992, he undertook two outside assignments-Visiting Professor at the
University of Illinios, Urbana-Champaign, and Technical Advisor to Cadence
Design Systems (India).

His major research interests include several aspects of VLSI design (mainly
high level synthesis, synthesis for testablity, VLSI testing) and study of the
theory and application of homogeneous structures like cellular automata in
various fields-BIST, VLSI design, error-correcting codes. data encryption.
data compression, etc.

