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Theory and Applications of Cellular Automata 
in Cryptography 

S. Nandi, B. K. Kar, and P. Pal Chaudhuri 

Abstract-This paper deals with the theory and application 
of Cellular Automata (CAI for a class of block ciphers and 
stream ciphers. Based on CA state transitions certain funda- 
mental transformations are defined which are block ciphering 
functions of the proposed enciphering scheme. These fundamental 
transformations are found to generate the simple (alternating) 
group of even permutations which in turn is a subgroup of the 
permutation group. These functions are implemented with a class 
of programmable cellular automata (PCA) built around rules 
51, 153, and 195. Further, high quality pseudorandom pattern 
generators built around rule 90 and 150 programmable cellular 
automata with a rule selector (Le., combining function) has been 
proposed as running key generators in stream ciphers. Both the 
schemes provide better security against different types of attacks. 
With a simple, regular, modular and cascadable structure of CA, 
hardware implementation of such schemes idealy suit for VLSI 
implementation. 

Zndex Terms-Cryptography, block ciphers, cellular automata, 
simple group, even permutations, stream ciphers and key stream 
generator. 

I. INTRODUCTION 
HE DESIGN style of digital logic has been significantly T influenced by the VLSI technology. Designers always 

look for simple, regular, modular and cascadable logic circuit 
structure to realize a complex function. All these parameters 
are supported by the local neighborhood additive Cellular 
Automata (CA). Its applications in various fields have been 
proposed in [2]-[5], [15], [21], [22]. Recently, theory and 
application of CA as pseudo exhaustive pattern generators has 
been reported in [16]. Theory and applications for generation 
of error correcting code using CA is reported in [17]. Further, 
VLSI applications have been also proposed [23]-[25]. Appli- 
cation of CA in stream cipher cryptography was mentioned 
by Wolfram [26] with nonlinear CA rule. In the present paper, 
we establish the theory and application of additive CA as the 
basic data encryption hardware module. 

With the ever increasing growth of data communication, the 
need for security and privacy has become a basic necessity. 
Cryptography is an essential requirement for communication 
privacy or concealment of data in a data bank. Encryption 
may be achieved by constructing two different types of ci- 
phers-stream ciphers and block ciphers. A block cipher is 
the one in which a massage is broken into successive blocks 
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and they are encrypted using single key or multiple keys. On 
the other hand, in a stream cipher the message is broken into 
successive bits or characters and then the string of characters 
is encrypted using a key stream. In the present paper schemes 
for a class of block ciphers and stream ciphers have been 
developed around the rugular structure of CA. 

The block cipher operates on vectors of the N dimensional 
vector space VN over GF(2). Certain transformations, to 
be called fundamental transformations in this paper, have 
been constructed using CA state transitions. These funda- 
mental tranformations are the block ciphering functions of 
the proposed enciphering scheme. In the enciphering process, 
these transformations are applied on the clear text vectors 
resulting in encrypted vectors. Thus the block ciphering func- 
tion is a randomly chosen function of V ,  onto itself and 
it poses a difficult challenge to the intruders. The mathe- 
matical tool used in the present scheme is the permutation 
group Sv, on the vector space VN. It has been shown 
that the fundamental transformations form a well defined 
subgroup of Sv,. This subgroup is the alternating group 
or the simple group A 2 ~  where A ~ N  is the group of all 
even permutations on VN. The fundamental transformations 
are built around additive CA rules having group proper- 
ties, and are simple in nature. In this regard this scheme 
is applicable to encipherment of data stored in a computer, 
as well as to transmission of secret messages. One striking 
feature of this enciphering scheme lies in its good mea- 
sure of strength. While another important characteristic is 
that the fundamental transformations are self inverses, re- 
sulting in that decipherment is carried out exactly in the 
same way as encipherment. A class of block ciphers arising 
in computer privacy has been studied in [6], [8]-[lo], our 
present block cipher scheme being a particular case of this 
class. 

The stream ciphers play an important role in cryptographic 
practices-both diplomatic and military-that protect com- 
munications in very high frequency domain. The central 
problem in stream cipher cryptography, however, is the diffi- 
culty of generating a long unpredictable sequence of binary 
signals from a short and random key. Unpredictable se- 
quences are desirable in cryptography because it is impossible, 
given a reasonable segment of its signals and computer re- 
sources, to find out more about them. Pseudorandom bit 
generators have been widely used to construct these se- 
quences [6], [41, [8]-[l l l ,  [13], [ 141. Three basic requirements 
for cryptographically secure key stream generators are as 
follows. 
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1) The period of the key stream must be large enough to 
accommodate the length of the transmitted message. 

2) The output bits must be easy to generate. 
3) The output bits must be hard to predict. That is, given a 

portion of the output sequence, the cryptanalyst should 
not be able to generate other bits forward or backward. 

Application of CA in various fields has already been pro- 
posed in the literature [2], [15]. One of the applications 
project CA as pseudorandom pattem generators. Quality of 
randomness has been evaluated as per the criteria set by 
Knuth [18]. It has been established that the pattem gener- 
ated by maximal length CA’s meet all the criteria and the 
quality of randomness of the patterns generated by CA’s 
is significantly better than that of Linear Feedback Shift 
Register (LFSR) based structures. Further enhancement of 
the quality of randomness can be embedded with the help 
of a Programmable CA (PCA) with dynamically alterable 
rule vector. The proposed key stream generator based on 
a PCA satisfies all the three essential yardsticks of “secure 
pseudorandom bit generators” noted above. 

The proposed schemes for both block and stream ciphers 
can be found to be attractive in view of the following facts. 

1 )  As per the work reported in [12], [19], DES-like function 
can be realized with the alternating group. The structure 
of PCA can be employed to generate the alternating 
group. This results in considerable saving of hardware 
compared to the existing schemes. 

2) The programmability feature of PCA has enabled the 
realization of nonlinear enciphering function along with 
the generation of a large number of multiple keys rather 
than a fixed set key(s) usually employed. 

3) For higher speed of operation, hardwired implementation 
of enciphering and deciphering schemes is a necessity. 
The schemes reported in the present work employ the 
regular, modular and cascadable structure of the three 
neighborhood CA that idealy suits for VLSI implemen- 
tation. It can be operated at higher speed due to local 
interconnections. 

4) Encipherment and decipherment proceed with the same 
protocols. 

5) Measure of strength against intrusion can be found to be 
comparable, if not better, than the existing schemes. 

11. PRELIMINARIES 

A. CA Preliminaries 

CA is an array of sites (cells) where each site is in any 
one of the permissible states. At each discrete time step 
(clock cycle) the evolution of a site value depends on some 
rule (the combinational logic) which is a function of the 
present state of k of its neighbors for a k-neighborhood CA. 
Wolfram [ 1 ] has investigated cellular automata using empirical 
observations and simulations. For 2-state 3-neighborhood CA, 
the evolution of the ith cell can be represented as a function 
of the present states of (i - l)th, (i)th, and (i + 1)th cells 
as: zi(t+ 1) = f { 3 : ; - l ( t ) , ~ i ( t ) , ~ ~ + ~ ( t ) } ,  where f represents 
the combinational logic. 

Clock 

Rule 150 Rule 90 Rule 102 Rule 150 
Fig. 1. A hybrid CA. 

For a 2-state 3-neighborhood cellular aut:maton there are 23 
distinct neighborhood configurations and 22 distinct mappings 
from all these neighborhood configurations to the next state, 
each mapping representing a CA rule. The CA, characterized 
by a rule known as rule 90, specifies an evolution from 
neighborhood configuration to the next state as: 

111 110 101 100 011 010 001 000 
0 1 0 1 1 0 1 0 Decimal 90 

The corresponding combinational logic of rule 90 is 

zi(t + 1) = Zi+l(t)zi-l(t) +zi+l(t)zi-l(t) 
= zi-l(t) 63 zi+l(t), 

that is, the next state of ith cell depends on the present 
states of its left and right neighbors (Fig. 1). Similarly, the 
combinational logic for rule 150 is given by 

zi(t + 1) = ai-l(t) @ G ( t )  @ G+l(t) ,  

that is, the next state of ith cell depends on the present states 
of its left and right neighbors and on its own present state 
(Fig. 1). 

A CA characterized by EXOR and/or EXNOR dependence 
is called an additive CA. If in a CA the neighborhood 
dependence is EXOR, then it is called a noncomplemented 
CA and the corresponding rule is referred to as a noncom- 
plemented rule. For neighborhood dependence of EXNOR 
(where there is an inversion of the modulo-2 logic), the CA is 
called a complemented CA. The corresponding rule involving 
the EXNOR function is called a complemented rule. In a 
complemented CA, single or multiple cells may employ a 
complemented rule with EXNOR function. There exist 16 
additive rules which are: 

Rule 0, 15, 51, 60, 85, 90, 102, 105, 150, 
153, 165, 170, 195, 204, 240 & 255. 
If in a CA the same rule applies to all cells, then the CA is 

called a uniform CA; otherwise the CA is called a hybrid CA 
(Fig. 1). There can be various boundary conditions; namely, 
null (where extreme cells are connected to logic ‘O’), periodic 
(extreme cells are adjacent), etc. 

The following three complemented rules are employed for 
our block cipher scheme; the logic function for the correspond- 
ing noncomplement rules are also noted in Table I. 
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TABLE I 
RULES USED IN BLOCK CHIPER SCHEME 

noncomplement 

Fig. 3. A more general PCA cell with three control lines. 

Control 
Signal 

Fig. 2. A 3-cell Programmable CA structure and a PCA cell. 

Complete characterization of additive CA based on matrix 
algebraic tools has been reported in [ 3 ] ,  [2], [16]. The charac- 
teristic matrix T of a CA and the Characteristic polynomial are 
illustrated with the following example. The next state ft+l(x) 
of an additive CA is given by ft+l(x) = T x f t ( z ) ,  where 
ft(x) is the current state, t is the time step. 

Example I :  A four cell null boundary hybrid CA (Fig. l), 
with the rule vector ( 102, 150, 90, 150 ) applied from left 
to right, may be characterized by the following characteristic 
matrix 

The characteristic polynomial is X4 + X3 + 1; TI5 = I .  
If the characteristic polynomial of a CA is primitive, then 

it is referred to as a maximal length CA. Such an L cell CA 
generates all the 2L - 1 states in successive cycles, excluding 
the all zero state. If all the states of the CA form a single 
or multiple cycles, then it is referred to as a group CA. 
The following Lemmas are required for the mathematical 
foundation of our schemes, 

Lemma I 121: A CA is a group CA iff T P  = I ,  I being 
the identity matrix and p is positive integer. 

Lemma 2 [2]: Let T p  denoting application of the comple- 
mented rule T for p successive cycles, then 
- 
TPf(rC) = [ I  + T + T 2  + ‘ ‘ ’ + T q [ F ( x ) ]  + [ T P ] [ f ( Z ) ]  

where T is the characteristic matrix of the corresponding 
noncomplemented rule vector and [ F ( z ) ]  is an L-dimensional 
vector ( L  = number of cells) responsible for inversion after 
EXORing. F ( z )  has ‘1’ entries (i.e., nonzero entries) for CA 
cell positions where EXNOR function is employed. 

Control 
Signals -1 

Fig. 4. A PCA cell with EXNOR, rule. 

From I right 

Lemma 3 [2]: The complement of a group CA is also group 
CA. 

Lemma 4 [#I: CA rules 60, 102 and 204 form groups for 
all lengths (1 )  with a group order O(G) = n = 2 a ; a  = 
O,1,2,.. .;n 2 1 > n/2. 

Programmable CA (PCA): Positional representations of 
rule 90 and rule 150 show that their neighborhood dependence 
differ in only one position, viz., on the cell itself. Therefore, 
by allowing a single control line per cell (Fig. 21, one can 
apply both rule 90 and rule 150 on the same cell at different 
time steps. Thereby, an L cell CA structure can be used 
for implementing 2 L  CA configurations. Realizing different 
CA configurations on the same structure can be achieved 
using a control logic to control the appropriate switches and 
a control program, stored in a ROM, can be employed to 
activate the control. The l(0) state of the ith bit of a ROM 
word closes (opens) the switch that controls the zth cell. Such 
a structure is referred to as a Progrummablr CA. Fig. 2 shows 
a programmable CA with simple control structure-allowing 
one control input per cell that configures the rule, applied to 
that cell, either to rule 90 or rule 150. The L bit control word 
for an L cell PCA has l(0) on ith cell if the rule 150(90) 
is applied to the ith cell. For example, the control word 
(0110) for a four cell PCA leads to the 1st and 4th cells to 
be configured with rule 90, while the 2nd and 3rd cells are 
configured with rule 150. Such a structure has been used in 
our stream ciphering scheme. 

By allowing more complex control one can introduce im- 
mense flexibility to this programmable structure. A more 
general 3-neighborhood programmable CA cell is shown in 
Fig. 3 .  Using such a cell structure for all the cells, all possible 
additive noncomplemented rule combinations can be achieved 
to realize any hybrid additive CA. Such an L cell PCA can 
implement 23L number of different CA configurations. A 
3-neighborhood programmable CA cell with complemented 
additive rule is shown in Fig. 4. While Fig. 5(a) shows a 
programmable CA with lesser number of control switches, in 
which rule 51, 153 or 195 can be realized. Such a structure 
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left right 

Cell#i 

Control 
Signal 
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From 
right 

From 

le[ ryj Cell#i 

Control 

i 

Fig. 5. A PCA cell with EXNOR rule and modified control lines. 

is employed for block ciphers. The value of control switches 
( cl , Q) corresponds to 

c1c2 rule applied 
00 or 01 51 

10 195 
11  153. 

Fig. 5(b) shows a circuit with reduced control logic where 
either rule 153 or 195 can be employed in a cell. 

B. Permutation Groups 

A permutation T of a finite set S = {XI , 2 2 , .  . . , x,} is 
defined to be an injection T : S - S. It can be noted that all 
possible permutations on S form a noncommutative group G, 
of order TL! under the operation of permutation multiplication. 

An important feature of a permutation is its cyclic structure. 
By a cycle (y1, y ~ ,  . . . . yy,) of length r ', we mean permutation 
T in S such that 7r(yJ) = y3+1. j = 1,  2 , . . . , r -  1. and 
7r(yT) = y1, while leaving all other elements of S fixed. 

It is easy to see that every permutation may be uniquely 
expressed as a product of disjoint cycles. By a transposition 
we shall mean a cycle of length two. An even permutation is 
the one that is expressible as a product of an even number of 
transpositions; otherwise a permutation is called an odd per- 
mutation. It is a well known result that all even permutations 
on S form a normal subgroup of G,, which is the alternating 
group A ,  of degree n and order (n!)/2. In fact A, is the only 
normal subgroup of index two of G,-such a group is called 
a simple group. 

111. PERMUTATION REPRESENTATION OF CA STATES 

Let us consider a nonmaximal length CA in which there 
are r cycles with ci number of states on the ith cycle. Such 
a CA has a cyclic group representation of the form,G = 
{R ,  R2, R". . . . , El"};  where R" = I ,  the identity. 

3 6 11 2 5 13 9 

0 0  
Fig. 6.  The state transition diagram of a maximal length group CA 

In this representation R is the generator of G. and x = 
lcm(c,, i = l , Z , . " , r ) ;  where Icm means lowest common 
multiple. Such a group may be called a rule group. This is 
equivalent to the fact that, a CA gives rise to a cyclic group if 
and only if the mapping corresponding IO the state transition 
graph is a permutation. The reason behind this is the fact 
that, in case of a CA forming a rule group, each state in its 
transition graph has exactly one predecessor i.e., the transition 
mapping is a bijection which obviously has a permutation 
representation. 

Example 2: Consider the 4 bit hybrid CA (90, 150,90. 150) 
under the null boundary condition. It's state transition graph 
is shown in Fig. 6. 

It is easy to see that the above CA forms the cyclic group 

G =  {R,R2,R3,...,R15 = I }  

While its state transition graph may be represented by the 
permutation found at the bottom of the page. It may also be 
stated that in case of a CA forming a rule group of order x 
and having the permutation representation T ,  one can have: 
7rx = (0)( 1)(2) . . . (2" - 1) = I; n being the length of the CA. 

A. Permutation Representation of CA Having 
Equal Cycles of Even Length 

Lemma 4 (introduced in section 2) provides the CA rules 
that generate cycles of length 2a ,a  = 0, 1. 2:.-. The 
following L,emma establishes the corresponding results for 
uniform and hybrid CA's with complemented rules 51, 153, 
and 195. The corresponding noncomplemented rules are 204, 
102 and 60. 

Lemma 5. Complemented CA rules 195, 153 and 51 form 
groups for all lengths with group order O(G) = rn = 2"; 

Pro@ Consider a CA with rule R and characteristic 
matrix T ,  where R is a combination of the rules 60, 102, and 
204. Then, as per Lemma 2, the corresponding complemented 
CA, with characteristic matrix T,  may be expressed as: 

( u  = 1 , 2 . 3 . ' .  .). 

-m 
T f(.) = [I+T+T2+. '.+Tm-l][F(x:)]+(I.m][f(:~)]. (1) 

The fact that R is a group CA rule implies that T" = I for 
n as some integral power of 2 (Lemma 4). As per Lemma 3, 
complement of a group CA is also a group CA. So, 

I 0 1 2 3  4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5  
0 3 5 6 1 4 1 3 1 1 8 4 7  1 2 1 0  9 1 5 1 2  

7 r =  [ 
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Rule generated cycles 
vector number length 

51,51,51,51 8 2 
153,153,153,153 2 8 
195, 195,195,195 2 8 
51,51,51,...,51 128 2 

153,153,153,. . .,153 16 16 
195,195,195,. . .,195 16 16 

where m is the cycle length of the complemented CA. From 
(1) and (2), 

[Tm + I ] [ f ( z ) ]  = [I + T + T2  + . . . + Tm-'][F(z)]  
+ [ T + I ] [ I + T + T 2  +. . .+  T " - ' ] [ f ( ~ ) l  
= [ I  + T + T2  + . . . + T"-l][F(z)]. 

Assume [I + T + T2  + . . . + Tm-'] # 0 ,  consequently 

[T + Il[f(41 = [F(z)l* (3) 

If the CA under consideration consists of L number of cells, 
then (3) is a system of L linear equations, and the condition 
for its solution to exist is 

rank[T + I ]  = rank[T + IF(%)].  

In the case of R, being any combination of rules 60, 102 and 
204, it can be directly shown that rank [T + I ]  < L, owing to 
fact that one row of matrix T + I is null in such a case. 
Also, since each entry of F ( z )  is 1 (as in the case of all 
complemented rules), it follows that 

rank[T + I ]  # rank[T + I F ( z ) ] .  

This is a contradiction and, hence, it follows that 

1 + T + T 2 + - . . + T m - l  = O  (4) 
=+ Tm[f(41 = Tm[ f ( z ) l  = f(.) ( 5 )  

+ Tm = I .  

Let m = bn, where b is nonzero positive integer. For b = 2, 

I + T + T2  + . . . + Tm-l (as m = 2n) 
= I + T + T2  + ... + T"-' + T" 

+ Tn+l + Tn+2 + . . . + T2"-l 

[I  + T +  T 2  + ...  + T"-'] 
+ [I + T + T 2  + . s .  + Tn-l] 

= 
(as T" = I )  

= 0 (since modulo-2 summation is involved). 

So, the relation (4) always satisfies for b = 2. For particular 
values of T ,  relation (4) may hold for b = 1. Hence, the value 
of m is either n or 2n. 

LLy 
Fig. 7. The state transition diagram of a nonmaximal length group CA. 

Now we need to show that m is a nonzero positive integral 
power of 2. As per Lemma 4 in Section 2, n is of the form 
2a, (a = 0 , 1 , 2 ,  . . .). We consider the following two cases. 

Case I :  for n = 2' = 1 I 

* T = I  

+ I + T = O  (6) 

Considering equations (4) and (6) we arrive at the conclu- 
sion that m = 2 for n = 1. 
Case 2: for n = 2a, (a = 1 , 2 , 3 , .  . .); 
we know that m is either n or 2n. 
So m is also a nonzero positive integral power of 2. 0 
Theorem 1:  If a null boundary uniform or hybrid CA 

configured with rules 51, 153 and 195 is a group CA, then 
its state tIansition diagram consists of equal cycles of even 
length. 

Proof: From Lemma 5, it can be seen that group CA, 
under different configurations of rules 51, 153, and 195, 
generate cycles of even length m (positive integral power of 
2).  Now we have to prove that factors of rn can not be a 
cycle lengths. Assume that the group CA has a cycle of length 
mi [where mi is a factor of ml. Then it must satisfy the 
following equations: 

I+T+T2 + .  . . + T".-l = 0 

and T"'[[f(z)] = T m a [ f ( ~ ) ]  = f(z). 

This implies that mi is the group order of all cycle lengths 
of the group CA, suggesting that m; is equal to m, i.e., all 
cycles are equal in length. 

Hence, the theorem. 0 
For the sake of illustration, cycle structures of a few null 

boundary CAS with rules 51, 153, and 195 are tabulated in 
Table 11. 

In case of periodic boundary conditions, the only rule 
available forming equal cycles of even length is rule 5 1. This 
phenomenon is true for CA of any length. 

Now considering the CA (153, 153, 153, 153), under null 
boundary conditions, we obtain cycles as shown in Fig. 7. 

This CA has the permutation representation found at the 
bottom of the page, where 7r4, being a product of even number 
of transpositions, is an even permutation. 

0 1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5  
. = [ 1 5  12 9 10 3 0 5 6 7 4 1 2 11 8 13 141 

0 1 2 3  4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5  
1 4 1 1 4 1 1 0 1 5 0 5 6 3 1 2  9 2 7 8 1 3  1 3 7r2 = 

* n4 = (0,8)(1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15) 



1351 NAND1 et 01.: THEORY AND APPLICATIONS OF CELLULAR AUTOMATA IN CRYPTOGRAPHY 

51, 153 (or 195) 
153, 195 

TABLE ID 
EVEN NUMBER OF EVEN LENGTH CYCLES OF CA FOR L = 8 AND 16 

I Rule applied I Number of CA configurations generating 

184 47190 
7 523 

even number of even length cycles I to I 8 cell CA having I 16 cell CA having - - 
[ 8 length cycles 1 16 length cycles 

51, 153, 195 I 691 I 493521 

In general, CA’s having equal cycles of even length each, 
may be expressed as some even power of an even permutation. 
This phenomenon has been extensively used in our present 
encryption scheme. Table 111 shows a number of L cell CA 
configurations, each generating cycles of length 8 or 16. 

Iv. DEFINITION OF FUNDAMENTAL TRANSFORMATIONS 

To encipher blocks of binary data we shall define certain 
transformation functions and call them fundamental trans- 
formations. These are fundamental in the sense that any 
enciphering function will be constructed using them. The 
fundamental transformations are built up using the following 
combinational logic representing CA rules 195, 153, and 51: 

Q ( t )  = z;-l(t - 1) CB zz(t - 1) (7) 
xz(t) = z;(t - 1) 69 z2+1(t - 1) (8) 
sz(t) = zz(t - 1). (9) 

In the enciphering process, each bit of a block of message is 
input to a CA cell. Each cell is updated according to some 
transformations which are depicted in (7)-(9). 

Each of these rules is a group rule and thus the correspond- 
ing CA exhibit rule group properties. It can also be observed 
that such a CA forms equal cycles of even length each-a 
phenomenon which is a basic requirement of our enciphering 
scheme. The cycle length distribution of this class of CA’s 
has been discussed in Section 111. 

If 2r is the cycle length of uniform or hybrid CA with a rule 
R (i.e., a combination of 51, 153, and 195), then a fundamental 
transformation using the R rule CA is defined by 
s = rT ,  where 7~ is a permutation representation of the R rule 
CA. 

It is easy to see that K~~ = I (the identity permutation). 
So, s is an involution (i.e., self inverse transformation). It is 
also a transposition. 

For example, the fundamental transformations s, y, z built 
up on 4-bit uniform null boundary CA using the aforemen- 
tioned rules can be represented as follows: 

s = 7r;‘ 

Y = 4 
z = 7T3 

where the permutation representations of T I ,  7r2, and ~3 are 
in (13)-(15), found at the bottom of the page. In these cases 
7~: = ~ 2 ”  = 7 ~ ;  = I (the identity permutation); resulting in 
involutions s, y, z which are also transpositions. 

One can easily observe that: 

Each being a product of even number of transpositions. 
The fundamental transformations may be regarded as even 
permutations. 

A. Fundamental Transformations Generate a Group 

This subsection establishes the promising result that the 
fundamental transformations, constructed earlier, generate the 
simple group or altemating group A 2 ~  of even permutations, 
which in tum is a subgroup of the permutation group S2N.  To 
achieve this we have the following results. 

Theorem 2: A2.- cannot be generated by a single basic 
transformation. 

Proofi It is quite easy to observe that if A 2 ~  is gener- 
ated by a single basic transformation g (say), then A 2 ~  = 
{ g ,  g2 = l }  which is in contradiction to the fact that A 2 ~  

0 
This obviously leads to the following corollary. 
Corollary 1: If n is the number of basic transformations 

required to generate A2N, then 2 5 n < P -- 1. 
Theorem 3: A2.- is generated by 3-cycles. 
Theorem 4: If a normal subgroup of contains a 3-cycle 

then it must be the whole of A 2 ~ .  
Theorem 3 and 4 are well established results, the proofs of 

which may be found in any standard text of abstract algebra, 
such as [7].  

We illustrate our enciphering scheme for 8 bit block with 
five fundamental transformations. These transformations are 

contains as many as (zN)!/2 elements. 

0 1 2  3 4 5  6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5  
T 1 =  [15 14 12 13 9 8 10 11 3 2 0 1 5 4 6 71 

0 1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5  
1 5 1 2 9 1 0 3 0 5 6 7 4  1 2 1 1  8 1 3 1 4  7T2= [ 
0 1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5  

7T3= [15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 03 



1352 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43. NO. 12, DECEMBER 1994 

constructed using the following 8 bit null boundary CA with 
rules 153, 195, and 51. Each CA configuration generates cycles 
of length 8: 

(153.153,153.153.51.51.51.51) 
(195,195,195.195.51.51.51.51) 

(51,51,153,153,153,153.51.51) 
(51,31,195,195,195,195,51,51) 
(51, L53,153,153,153,153,153,51). 

In order to reduce circuit complexity, only five such config- 
urations with either rule 153 (or rule 195) along with rule 
51 are chosen out of 184 available combinations. Each of 
these 184 hybrid CA's of 8 bit each generate equal cycles 
of even length. One is free to take any number of such 
fundamental transformations to enhance invulnerability of the 
scheme. Complexity analysis of this scheme against different 
types of attacks is noted in Section VII. 

V. PCA BASED BLOCK CIPHER SCHEME 

Let us recall that the N dimensional vector space VN 
consists of all of our messages, each N bit long. In our present 
enciphering strategy, whole message is divided into a number 
of sub-blocks. Each sub-block will contain N bits if total 
message length is a multiple of N ,  else the leftmost block 
will be filled with zeros. Let us assume N = 8. 

The space of our enciphering functions is S28 with cardi- 
nality 28! which is a considerably large number. Let E E S2s 
be an enciphering function and M E V, be a message to 
be encrypted. Then our scheme yields the encrypted mes- 
sage C = E M .  The enciphering function consists of q 
fundamental transformations. Each of the fundamental trans- 
formations is derived from different rules. By permutation of 
q fundamental transformations we can generate q! enciphering 
functions. 

As a specific example, let E = syzuw, with q = 5. Thus 
C = E M .  In the decryption process, one obtains: 

M = E-lC 
= (syzuv)-1C 
- (w-1u-12-1 -1 -1 
- Y 3 )C 
= (vuzys)C. 

Hence, to decrypt a message, the fundamental transformations 
are applied on the encrypted message in reverse order. 

The fundamental transformations constructed taking into 
account the aforesaid considerations are: 

Here, T: = I ;  i = 1, 2, 3, 4, 5; implying that s, y, z ,  u, v are 
involutions. 

The above scheme may be implemented through a circuit 
whose block diagram is presented in Fig. 8. 

I I I .$ [ p q y 7 " ? ]  
CONTROLBUS ROM 

DATA BUS 
I I) 

I jO  UNIT 

Block diagram of the circuit for block cipher scheme. Fig. 8. 

A. Number of Enciphering Functions 

In our block cipher scheme one message block is enciphered 
by one enciphering function. The deciphering, as noted ear- 
lier, is achieved by applying the same enciphering functions, 
with the fundamental transformations for each function being 
applied in the reverse order. Let p be the number of enci- 
phering functions used in the proposed scheme, which are 
noted as {Eo, E l ,  E2 ~ . . . , Ep-l }, while for deciphering it is 
{E;', El'. E;'. . . . , In the block cipher process, the 
first block of message is enciphered with Eo, the second block 
with El, the third block with Ea, and so on. This process 
repeats until enciphering of all the message blocks is complete. 
The enciphering function changes in every message block 
i.e., if ith block is enciphered with E,, then the next block 
enciphering function is E(z+l)mod,. After every enciphering 
operation, the output of PCA is taken as the encrypted mes- 
sage block. At the receiving end, the deciphering process is 
analogously applied with {E;' , E,', ET1 , . . . , Ep-?l }. These 
p enciphering functions are constructed using permutation, of 
q fundamental transformations (Le., each enciphering function 
consists of q fundamental transformations). The definition of 
fundamental transformation is given in the Section IV. 

The fundamental transformations can be realized by PCA 
as follows. Load PCA with a state ft(x). Configure PCA 
with complemented rules 51, 153 and 195 as discussed in 
Section 111-A. Then run the PCA for T cycles, Le., 7" f t (z )  = 
f t+Jx)  [where T2'ft(x) = ft(x)I. 

The equivalent permutation representation (Le., the funda- 
mental transformation) of this is 7rr [where 7rar = I ,  the 
identity permutation]. 

A fundamental transformation is realized with a CA configu- 
ration. The control signals corresponding to a CA configuration 
are stored in a ROM word. For an N-bit PCA having u 
control signals per CA cell, there are Nw-bits in a ROM 
word. An enciphering function is realized with q fundamental 
transformations. Therefore, q consecutive ROM address spaces 
are required to store one enciphering function. Hence, p x q 
ROM address spaces are sufficient to store p enciphering 
functions. 

Now, for a given value of IC (the ROM address space) and 
q (the number of fundamental transformations), the number of 
enciphering functions used in the block cipher scheme can be 
computed as follows. 



NAND1 et al.: THEORY AND APPLICATIONS OF CELLULAR AUTOMATA IN CRYPTOGRAPHY I353 

- The number of enciphering functions that can be formed 

- The number of enciphering functions possible to store 

- So the number of enciphering functions ( p )  used by the 

The sequential steps for encryption/decryption are noted in 
the Algorithm 1. 

with q fundamental transformations is q! .  

in ROM is r k / q ] .  

scheme is min{ [ k / q l ,  q ! } .  

Description of the Circuit 
PCA (Programmable Cellular Automata): It is an N-bit 

null boundary, uniform or hybrid CA loaded with the rules 
51, 195, and 153. The rules 153 and 195 do not appear 
simultaneously in the same CA configuration. The control 
structure of such a PCA cell is shown in Fig. 5(a). Selection of 
this type of rule configuration reduces the circuit complexity. 
The control signals for a CA configuration are stored in the 
ROM and loaded into the PCA via the DATA BUS. One bit 
signal RMODE is 0(1), indicating that the data bus contains 
rule 195(153) and 51. RMODE represents the c2 input for all 
cells in the PCA. The control input c1 for each of the cells 
is derived from the corresponding bit position of the ROM 
word. Thus for an N bit CA, the ROM word size is N + 1 bit. 

Control Unit: It consists of several counters to generate 
different types of control signals for PCA and ROM. These 
counters are as follow$. 

C, : counts the number of clock cycles ‘r’ the PCA will run 
to realize a fundamental transformations. 
C,: counts the number of fundamental transformation ‘q’ in 
an enciphering function. 
Program Counter (PC) is of [log, IC1 -bit length modulo q x p 
counter and is used to store address of the ROM where next 
PCA rule configuration control word is located. 
The control sequences of the circuit are described in the 
Algorithm 1 noted below. 
ROM (Read Only Memory): It is of size k x (N + I), which 

can store rule configuration control word of PCA, with the 
1)th-bit being used to control the RMODE control signal 

line. 
I/O UNIT: It is an input I output unit for data transfer 

between PCA and outside world. 
Only two extemal signals are required to operate the whole 

circuit, i.e., CLOCK for running the circuit and START for 
reset and start the circuit. 

Algorithm I :  
Input: For encryption (decryption) the input is plaintext 
( ciphertext). 
Step 1: Reset (111 counters in control unit. 
Step 2: While (not end of plaintext (ciphertext)) execute 
steps 3 to 6. 
Step 3: Load PCA with one byte plaintex (ciphertext) from 
I10 UNIT and set C, = 0. 
Step 4: Load rule configuration control word from the ROM 
into the PCA and set C, = 0. 
Step 5: Run PCA for r-cycles. 
Step 6: Increment C, and PC by 1. If (C, = q )  then send 
one byte ciphertext (plaintext) to I/O UNIT; otherwise go to 
step 4. 

VI. STREAM CIPHER STRATEGY 
In stream ciphers pseudorandom pattem generators are 

widely used to generate the key stream. 

A. Key Stream Generators 

Many key stream generators are based on combining two 
or more generators (i.e., LFSR’s) by using nonlinear func- 
tions [ I  I], [13], [14]. It is already established that maximum 
length CA’s generate patterns having high quality of pseudo- 
randomness [20]. Using CA properties we have proposed two 
types of key stream generators-(I) PCA with ROM, and (2) 
Two stage PCA. Fig. 2 shows a 90 / 150 I T A  cell used in 
the key stream generators. 

PCA With ROM us a Key Stream Generator: Let L be the 
number of cells in the PCA and ‘ti’ be the number of maximal 
length CA’s with rule 90 and rule 150. Assume that 1 maximal 
length CA’s are chosen out of w maximal length CA’s. 
These rules are noted as {Ro,R,, Rz,...,R~-~}. The rule 
configuration control word corresponding to a rule K ,  is stored 
in a ROM word. Initially the PCA is confgured with rule 
Ro and loaded with a non zero seed. With this configuration 
the PCA runs one clock cycle. Then it is reconfigured with 
the next rule (Le., R,) and runs another cycle. This process 
repeats until CLOCK signal to PCA is made inactive. The 
rule configuration of PCA changes after every run, i.e., if in 
the ith run rule configuration is R,, then in the next run, rule 
is R(z+l)modl. After each clock cycle, the output of PCA is 
taken as a pseudorandom pattem. 

Now our objective is to show that this output sequence is 
a pseudorandom pattem sequence. The following Theorem 
provides the background. 

Theorem 5 [2/, [20]: If the characteristic polynomial of a 
CA is primitive then it generates pseudorandom pattem. 

Corollary 2: A PCA built with maximal length CA config- 
urations generate pseudorandom patterns. 

Proof All the maximal length CA’s generate pseudo- 
random sequences, individually. The sequence generated by 
the PCA can be taken as a set of subsequences generated 
by a particular maximal length CA. As the subsequences 
are pseudorandom in nature so the overall sequence is also 

The above key stream generator scheme may be imple- 
mented through a circuit whose block diagram is presented 
in the Fig. 9. 

pseudorandom in nature. 0 

Description of the Circuit: 
PCA (Programmable CA): It is an L-bit null boundary, 

uniform or hybrid CA configured with the rule 90 and 150. The 
control signals corresponding to a CA configuration are stored 
in the ROM and loaded into the PCA via the DATA BUS. 

ROM (Read Only Memory): It is of size 1! x L (1  words, 
each of L bits), and it stores the control signals for the PCA. 

Control Unit: It consists of several counters to generate 
different types of control signals for PCA and ROM. The 
control sequences of the circuit are described in the Algorithm 
2 below. Program Counter (PC) is (log, @bit (i.e., 1 is power 
of 2 )  up counter and is used to store address of the ROM 
where next PCA rule is present. 
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CLOCK START 

I I 

If 0 CONNECTIO 

Fig. 9. PCA based pseudorandom pattern generator. 

I/O Connection: It is an input/output unit for data transfer 
between PCA and outside world. 

Only two extemal signals are required to operate the whole 
circuit, Le., CLOCK for running the circuit and START for 
reset and start the circuit. 

Details of the Experimental PCA Chip: The PCA is the 
major block in the designs. In view of this, for building the 
prototype system, we have designed, fabricated and tested 16 
bit and 32 bit PCA chips. The chips have been fabricated 
with a 3 micron gate array library at ITI (Indian Telephone 
Industries). Details of the 32 bit PCA chip with 90 and 150 
rules are : 1 )  64 pin DIP, 2) area equivalent 1284 two input 
NAND gates, 3) power -316 mW, (iv) current -57 mA, and 
( V I  operating clock speed of 10 Mz. 

Algorithm 2: 
Step 1: Reset all counters in the control unit. 
Step 2: Load PCA with L-bit initial seed from I/O connec- 
tion. 
Step 3: Read the ROM control word and configure the PCA. 
Step 4: Run PCA for one cycle. 
Step 5: Read pseudorandom pattem from I/O connections 
and increment PC by 1. 
Step 6: If (CLOCK active) then go to step 3. 
Step 7 :  Stop. 

In the above scheme, the PCA configured by a rule (stored 
in the ROM) is assumed to run one cycle only. By using 
some extra ROM bits & additional control, we can specify the 
number of cycles the PCA should run for each configuration. 
Such modification can substantially enhance the quality of 
encipher. 

Two Stage PCA as a Key Stream Generator: In the ROM 
based key stream generator, the main disadvantage is the 
increased area overhead with lower speed of operation due 
to use of ROM for storage of control signals. This can be 
avoided by replacing the ROM with another maximal length 
90/150 rule PCA (i.e., PCA2) as shown in the Fig. 10. A single 
chip can be fabricated with PCA1, PCA2 and the CONTROL 
UNIT. The control signals (R)  to configure PCA2 and the 
input seed (1,) for PCAz can be concatenated to the input 
seed (11) of PCAl to form the key (Le., ( R ,  1 2 , I l ) )  for the 

DATA BUS v 1/0 CONNECTIO 

Fig. 10. Two stage PCA based pseudorandompattern generator. 

key stream generator. The PCA2 generates the control signals 
to configure PCA1. 

Description of the Circuit: 
PCAl(Programmab1e CAI) It is an L-bit null boundary, 

uniform or hybrid CA loaded with the rule 90 and 150. The 
control signals to configure PCAl are loaded from the output 
of PCAz via the DATA BUS. 

PCAz(Programmab1e CA2) It is an L-bit null boundary, 
uniform or hybrid CA configured with the rule 90 and 150. 
Rule (R) is part of the key and it is loaded into the PCA2 via 
the DATA BUS. 

Control Unit: It consists of several counters to generate 
different control signals for PCAl and PCA2. The control 
sequences of the circuit are described in the Algorithm 3 
below. 

I/O Connection: It is an input I output unit for data transfer 
between PCA1, PCA2 and outside world. 

Algorithm 3: 
Step 1: Reset all counters in the control unit. 
Step 2: Conjigure PCA2 with the control signals (R)  from 
the I/O connections. 
Step 3: Load PCAl and PCA2 with initial seed I1 and 1 2 .  
Step 4: Run PCAz for one cycle. 
Step 5: Configure PCAl with the control signals from the 

Step 6: Run PCAl for one cycle. 
Step 7 :  Output pseudorandom pattern from I /  0 connections 
(i.e. output of PCA1). 
Step 8: If (CLOCK active) then go to step 4. 
Step 9: Stop. 
The enciphering process using this type of generator fails 

if PCAl goes to all zero graveyard state [2]. Analogous to 
modified LFSR design, with some extra logic it is possible to 
design the PCAl to have a transition out of all-zero state. On 
the other hand, it is necessary to avoid a situation where PCA2 
enters in a graveyard state resulting in PCAl being configured 
with the same rule all through out. So, the user of the scheme 
must avoid such a key combination from the simulation study. 

output of PCA2. 

B. PCA Based Stream Cipher Scheme 

Fig. 11 depicts the class of proposed stream ciphers (where 
L = 16). The output of the message source is regarded as 
a stationary random sequence. Each component takes values 
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- _ _  - 

random pattern 

Select 
MUX lines( sl) lines(s1) 

Message 1 , Cipher I 

Encryption Decryption 

Fig. 1 I .  Proposed stream cipher scheme. 

from a finite set S M .  In this encipher the incoming message 
sequence is divided into message words of 4 bit in length. 

The key source output is regarded as a random variable 
K taking equiprobable values in a set SK with ZL elements, 
where L is the length of PCA as described in the previous 
section. From the L bit key the proposed method takes any 
consecutive 4-bits for encryption. The key stream output and 
the message source output are statistically independent. 

An encipher produces the ith bit (i = 1 , 2 , 3 , 4 )  of cryp- 
togram word C from the ith bit of the message word A4 and 
the ith bit of the key word K by using EXOR function. 

c; = Mi e3 Ki. 

This is a mapping from SM x SK to SC, where SC is the set 
of cryptogram word. 

The deciphering strategy follows the same scheme where 
the EXOR gates produce message text taking cryptogram and 
key stream as inputs. This is a mapping from SC x SK to SM. 

The overall block diagram of the proposed stream cipher 
scheme is presented in Fig. 11. Where PCA based pseudoran- 
dom pattern generator is of type shown in Fig. 9 or Fig. 10. 
Selector of [log2(sl)l-bit length (sl  denotes the number of 
select lines to MUX (Fig. 11)) used to select any one of first, 
second, third and last 4-bit of the PCA. These 4-bit EXORed 
with plaintext (ciphertext) produce ciphertext (plaintext). The 
sequential steps of encryption (decryption) are noted in the 
Algorithm 4. 

Algorithm 4: 
Step 1: Initialize and configure PCA based pseudograndom 
pattern generator with key. 
Step 2: While (not end of plaintext (ciphertext)) do Step 3 
through step 4. 
Step 3: Generate key streams by running the generator once. 
Step 4: EXOR 4-bit key stream with next 4-bit plaintext 
(ciphertext) and produce output 4-bit ciphertext (plaintext). 
Step 5: Terminate (Le., deactivate CLOCK) PCA based 
pseudorandom pattern generator and stop. 

VII. INVULNERABILITY OF THE SCHEME 

Security of the schemes against possible attacks are now 
discussed. 

A. Block Ciphers 

I )  Ciphertext Only Attack: As per the proposed scheme, 
same ciphertext may be generated from different plaintext, 
as well as any ciphertext may give rise to different plaintext 
under different CA rule configurations. Thus, the scheme is 
guarded against cryptanalyst's ciphertext only attack. 

2)  Known and Chosen Plaintext Attack: In the case of 
known plaintext attack, the intruder is assumed to possess a 
considerable length of plaintext and corresponding ciphertext. 
While, in case of chosen plaintext attack, the intruder is able 
to acquire an arbitrary number of corresponding message and 
cipher pairs ( M ,  C) of his own choosing. Naturally, immunity 
against these attacks will directly depend on the available 
key space. The following theorem establishes the relationship 
between security and key space. 

Theorem 6 [a]: A necessary condition that a cryptosystem 
has perfect secrecy is that it has at least as many keys as 
messages. 

In this context, we evaluate the available key space in the 
proposed scheme as follows. Assume that size of the message 
block is N .  So the number of elements in the altemating group 
A p  is ( 2 x ) ! / 2 .  Let 2 number of these elements be realized 
by CA with fundamental transformations and q fundamental 
transformation be used for one enciphering function. The 
number of choice of q fundamental transformations is 'C,. 
Again these q transformations can be arranged in g! different 
ways. Let there be p enciphering functions stored in the ROM. 
So, the enciphering functions can be stored in n:zi(q! - i) 
ways. In our case, the key is nothing but the rule sequence 
stored in ROM. Hence, the key space is "Cq nrzi(q! - i). 

Thus the key space can be made to be comparable with 
message size by proper choice of N .  q, and ROM space. 

For example, if N = 8 , Z  = 184 (as per Table III), q = 5 
and ROM address space of 1024, then the key space of the 
scheme is 1s4C5 x ((5!)!)-an extremely large value. 

B. Stream Ciphers 

I )  Ciphertext Only Attack: A common type of running key 
generators employed in stream-cipher systems consists of L 
(mostly maximum-length) binary LFSRs whose output se- 
quence (Xl ,  X 2 ,  X 3 ,  . + .  , X m )  are combined by a nonlinear 
boolean function @[13 ,14 ,11 ] .  This is defined as 

K = @ ( X l 1 X 2 , X 3 : . . . , X ~ t . )  

The inputs for the function is generated by independent 
and identically distributed random variables. It is desirable 
that the combining functions should not leak information 
about the individual LFSR-sequences into the key stream. In 
this context, the concept of correlation immunity has been 
introduced in [13] in order to prevent divide and conquer 
correlations attacks. For nonlinear combiners there is a trade 
off between the nonlinear order of the boolean function and its 
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order of correlation immunity. The trade off can be avoided if 
the function is allowed to have memory [ l l ] .  

In the proposed CA based stream cipher scheme, the key 
stream has been derived with the PCA based nonlinear enci- 
phering function @* as, K,+1 = @*(R,. Sz), where R, is the 
7th rule configuration stored in ROM and S, is the ith state 
of the CA. The successive states of PCA are not independent, 
rather they evolve from the rule R, and S,, which in tum 
depends on all previous states and rules. Also the PCA realizes 
different rule configurations in the same block with L memory 
cells. This ensures desired immunity against the schemes 
analogous to conventional correlation attack. However, all 
possible ciphertext only attacks against the proposed scheme 
are being evaluated. 

-3) Known Plaintext Attack: Cracking key stream genera- 
tors amounts to the same thing as conducting known-plaintext 
attacks on stream ciphers. The complexity to crack key stream 
generators can be evaluated as follows. 

a) PCA with ROM: The 1 maximal length CA can be 
taken from w maximal length CA in ”Ct ways. The 
next state of a CA fully depends on its current state 
and the rule configuration. Again for maximal length 
CA, portion of next state does not purely depend on 
rule configuration. So, the complexity to get the rule 
sequence for a particular seed can be evaluated as, 

wcl x ( 1  + (1 - 1) + (1 - 2) + . . ‘ + 3 + 2 }  
= “C, x { 1 ( 1 +  1)/2 - l}. 

The PCA can be loaded with the initial nonzero seed in 
ZL - 1 ways. Hence, complexity to get the rule sequence 
and initial seed for the proposed key stream generator 
is (ZL - 1) x “’(7, x {1(1 + 1)/2 - l}. For example, 
for L = 8, = 32 (as per simulation) and 1 = 16, the 
cracking complexity is ( Z 8  - 1) x 32C16 x (32 x 31/2- 1) 
Le.. O(10)l3. For 71 = 16, ‘uf = 4096 (as per simulation 
results) and 1 = 2048 then the cracking complexity is 

b) Two Stage PCA: The number of different configurations 
of PCAp is Z L .  Initial seed of both PCAl and PCA2 
can be loaded in ( Z L  - 1) ways. Hence the worst case 
complexity to get the key is 2L(2L - l ) ( Z L  - 1). For 
example, in case of L = 16 the complexity of the order 

(21G - 1) x “Oy6C~o~8 x (2048 x 2047/2 - 1). 

of o(1014). 

VIII. CONCLUSION 

In this work we have proved analytically that CA with 
EXNOR rules (i.e., 51, 153, and 195) can generate an al- 
ternating group. It is found that alternating groups form a 
set of fundamental transformations. Using these fundamental 
transformations a block cipher scheme is proposed in this 
paper. A scheme for stream ciphers is also proposed employing 
PCA. Keystream generators of the stream ciphers consist 
of PCA and rule selector. The complexity of the proposed 
schemes compare with the available schemes reported so far. 
The complexity can be further increased with an increase in 
block size for block cipher and in number of CA cells in the 
stream ciphers. Enciphering and deciphering process of the 

proposed schemes follow the same protocol. One of the main 
advantages of proposed schemes is the use of simple, regular, 
modular and cascadable structure of CA as the basic building 
block that ideally suits for VLSI implementation. 
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