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Abstract 

In light of the expansion of domestic photovoltaic (PV) systems in the UK, there are concerns of 

voltage rise within LV networks. Consequently, network operators are interested in the costs and 

benefits of different technologies to manage their assets. This paper examines the particular case 

for distributed energy storage. 

A heuristic planning tool is developed using a genetic algorithm with simulated annealing to 

investigate the problem of locating and sizing energy storage within LV networks. This is applied to 

investigate the configuration and topologies of storage to solve voltage rise problems as a result of 

increased penetration of PV. Under a threshold PV penetration, it is shown that distributed storage 

offers a financially viable alternative to reconductoring the LV network. Further, it is shown that a 

configuration of single phase storage located within the customer home can solve the voltage 

problem using less energy than a three phase system located on the street.  

 

Keywords 

Distributed storage and generation, power distribution planning, genetic algorithms, simulated 

annealing 

 

Nomenclature 

   Random number in the interval zero to one, applied in simulated annealing 

        Capital cost of storage unit   [£] 

     Installation cost of each storage unit [£] 

      Power cost of particular energy storage technology [£/kW] 

       Energy cost of particular energy storage technology [£/kWh] 

    Cost of reconductoring the network [V] 

    Permissible depth of discharge [%] 

     Capacity of energy storage unit   [kWh] 

  
   Roulette wheel fitness of solution   during algorithm round   

  
   Probability that solution   is selected during algorithm round   

     Rating of energy storage unit   [kW] 

    Length of time that storage operates at full power [h] 

   Temperature, applied in simulated annealing 

  
     Highest voltage in LV network when storage solution   is implemented [V] 

    Round trip efficiency of particular energy storage technology [%] 
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1. Introduction 

As of January 2014, more than 482,000 solar photovoltaic (PV) systems of capacity 1-4 kW have 

been registered under the UK feed-in-tariff scheme and the installation rate remains high despite the 

subsidy being reduced in 2012 [1], [2]. Installation of such distributed generation introduces 

fundamental changes to the electrical power network and within the low-voltage (LV) network, 

particular issues for distribution network operators (DNOs) are reverse power flow, thermal 

constraints and voltage rise [3].  

Reverse power flow and voltage rise are related events which are most extreme when generation is 

highest and demand is lowest [4]. These both become more problematic as the penetration of 

rooftop PV increases, and can limit the amount of distributed generation that should be installed in a 

network area [5]. Consumers connected to the LV network may have no direct problems as a 

consequence of reverse power flow, but this can affect voltage regulation on the medium voltage 

network including additional cycling of tap changing transformers  [4]. Reverse power flow is 

currently evident on the UK distribution network, as metered data from an LV transformer shows 

(Figure 1-1). In terms of voltage, the voltage must not exceed 10% above or 6% below 230 V under 

UK regulation [6] and failure to do so can have negative impacts on electrical equipment. 

 
Figure 1-1: Real power through an LV transformer located in Stockport, UK on 21st April 2012 

It is estimated £32 billion of investment is needed to mitigate the effects of distributed generation on 

the UK electrical network. To manage the network without directly interfering with generation or 

customer demand, network operators can either reduce network impedance (reconductor), add 

discretionary loads, demand side management or energy storage [4]. Indeed, under the new price 

control scheme (RIIO) there is a financial incentive for DNOs to invest in new technologies and 

techniques such as energy storage [7]. In a competitive industry, there is a need to assess the cost 

implications of these innovative technologies relative to traditional mitigation methods. Energy 

storage is widely considered to be a technically viable solution to the problems expected in the 

distribution network, for example in [8], however there are few industrial distributed storage projects, 

costs are high and DNOs do not necessarily have the experience to plan for new technologies. This 

paper examines the particular case of energy storage.  

Electrical energy storage technologies can generally be split into three broad categories. Utility or 

bulk scale energy storage, such as pumped hydro and compress air, are capable of delivering 

several megawatts of power over one to eight hours and due to cost and geological restrictions are 

suitable for transmission applications [9]. Distributed storage systems typically deliver smaller 

amounts of power for a similar period to utility storage but can be scaled in terms of rating, location 

and capacity [10]. Short term storage, typically capable of delivering large amounts of power for 
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short periods, includes flywheels and supercapacitors. The flexibility, capacity and rating of 

distributed storage makes it most relevant for this application. 

 

This paper presents a heuristic planning tool that can inform DNOs about the deployment of storage 

projects in their networks. Firstly energy storage for distribution networks is discussed in general 

terms including benefits to the network, a discussion of suitable technologies and relevant 

approaches taken by others in designing storage projects. Secondly, a review of relevant heuristic 

algorithms for locating distributed energy sources are discussed, followed by a discussion of the 

heuristic approach developed for this paper. This heuristic is subsequently applied to give relevant 

results for network operators which are discussed before conclusions are drawn. 

2. Electrical energy storage in distribution networks 

 
Figure 2-1: Locating energy storage in an LV network: 1- at the secondary transformer, 2- 

connected at the property beyond the meter and 3- on the street 

 

As shown in Figure 2-1, there are a number of configurations for installation of distributed energy 

storage in LV networks. Systems connected on the customer side of the meter, frequently called 

solar home systems, generate wide academic interest. In [11], such systems are described as 

offering benefits to the consumer though supporting local critical loads in the event of a system 

failure. Benefits to the utility include peak shaving, supporting other customers and the ability to load 

shed customers with autonomous power capabilities in the event of a power shortage [12], 

something which may be relevant given recent predictions of power problems in the UK [13]. 

Combining PV and storage is shown in [14] to be cheaper than alternatives for emergency backup 

and has greater value than PV alone. Storage can also enable a grid to operate as a micro-grid with 

islanding in the event of grid failure [15]. In [9], it is shown that as the penetration of PV increases, 

energy storage (and load shifting) may be required to avoid energy spilling. In this case, real time 

pricing signals are proposed to enable demand side response. In [16], a combination of demand 

side response and energy storage are used in a smart home to increase self-consumption of 

energy. Demand side response alone provides a 26% increase in self-consumption for the home, 

which the addition of storage further improves. In [17], the authors propose a technique for using a 

single battery and distributed generator to inject real power into an 11kV network to prevent voltage 

drop. By reducing customer demand from the grid, storage can be used to reduce thermal losses in 

the transmission and distribution network [16], [17]. In the UK distribution network it is difficult to 

measure the effect on loss reduction throughout the entire network and the value in loss reduction 
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for an small distributed unit is small [18]. However, the benefits from upgrade deferral are important 

and provide predictable revenues for network operators [17], [18]. 

 

As summarised in [8], storage can offer a number of benefits to DNOs including voltage support, 

power flow management, restoration, network management and compliance with regulatory 

requirements. Reverse power flow and voltage rise can be managed using storage to absorb power 

from the generators. Peak shaving requires discharge of stored energy into the network to reduce 

the loading on transformers and cables. To reduce reverse power flow or to peak shave requires a 

specific amount of energy to be supplied or absorbed. Assuming thermal limits are not exceeded, 

power/energy specifications of the storage are unaffected by its location in the network.  

 

However, the power required to manage a voltage problem is directly affected by the location of the 

storage unit [17], [19]. As such, to reduce the capacity and power required to solve a voltage 

problem, storage should be distributed at many nodes within the network. This paper proposes that 

locating the storage within the network (in properties or on the street) will allow the greatest ability to 

reduce the power needed to solve the voltage problem. In real networks however, there may be 

hundreds of nodes (busbars, customer connection points) where an energy storage unit could be 

connected. If multiple storage units are proposed, the number of feasible combinations of energy 

storage increases rapidly; for example, there are 2.25x1016 ways of locating ten storage units 

among two hundred feasible locations. Due to the complexity of this problem, this study applies a 

heuristic approach for locating distributed storage. 

 

2.1 Applications of heuristic algorithms in distribution networks 

There are a number of examples of the application of heuristic algorithms in network planning. Early 

applications include the “capacitor placement problem”, which attempts to determine the location, 

type, number and size of capacitors in a radial distribution network to minimize costs, voltage 

problems and/or losses. A number of established heuristics are used such as Tabu search [20] and 

genetic algorithm [21]. Evolutionary [22] and particle swarm [23] algorithms are also considered for  

the problem of determining the location and capacity of distributed generation. 

 

A number of papers consider heuristic approaches in the location, sizing or operation of energy 

storage in power networks. In [24] a Tabu search approach is used for sizing energy storage by 

considering unit commitment. In [25], the authors use a genetic algorithm to locate superconducting 

magnetic energy storage to maximise the voltage stability index. In [19], three cost based heuristics 

are shown for managing voltage rise in LV networks and shows that deterministic approaches are 

not as good as stochastic methods because they are unable to search the entire problem space. In 

[26] a genetic algorithm is used to locate and size a single energy storage unit to achieve benefits in 

reducing loss, voltage deviation and costs. In [27] a genetic algorithm is combined with a sequential 

quadratic programming approach to locate capacitors and energy storage in an MV smart grid. In 

[10], a multi-objective algorithm is used to locate and size storage units in a 34 bus, 24 kV network. 

Objectives include reduction of storage power and capacity, minimising the probability of voltage 

deviations, maximisation of arbitrage revenue and minimisation of lost ancillary service 

opportunities. The heuristic used in [10] builds on work in [28] where wind, PV and CHP units are 
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located in a network in a distribution network using a genetic algorithm. The authors in [10] use the 

multi-objective SPEA2 algorithm [29] to locate multiple storage units in a distribution network to 

provide voltage support, arbitrage and ancillary services. Genetic algorithms are also used to 

determine control strategies such as in [30] where the heuristic is used to determine controlled gain 

factors for a hybrid generation system. Further, in [31], a genetic algorithm is used to size and 

determine the operation of energy storage to participate in electricity price arbitrage, defer 

investment and reduce transmission access costs. In [32], a simulated annealing is used for locating 

energy storage in micro-grids and power networks for emergency backup. As discussed in [33], the 

simulated annealing approach allows non-improving moves to be selected and therefore allows the 

algorithm to escape from local optima. In [34], the genetic algorithm and simulated annealing 

approaches are combined to locate distributed generation for loss reduction. The combination of 

these approaches is shown to produce more effective results than the genetic algorithm on its own.  

 

Although global and local search methods have been applied to distribution networks in literature, 

further consideration is needed into how their application can provide relevant results to DNOs in 

relation to distributed energy storage. This particularly applies in the area of planning given 

uncertainty and a lack of control of the location of distributed generation. Therefore, this paper firstly 

presents a suitable cost based method for finding the optimal location of energy storage in LV 

networks. Secondly, this algorithm is used to compare different storage configurations in economic 

terms as the penetration of distributed generation increases. 

 

3. Heuristic 

3.1 Heuristic design and implementation 

As discussed, a variety of global and local search heuristics are applied in network planning studies. 

Two particular approaches (genetic algorithm and simulated annealing) are combined in this paper 

in contrast to other work. 

 

A genetic algorithm is an iterative heuristic optimisation method which is inspired by the theory of 

evolution. A population of candidate solutions to a problem are initially generated across the entire 

problem space with chromosomes which represent the characteristics of the solution. For example, 

a chromosome of a particular population member could describe the location of energy storage 

units within a LV network. The fitness of each population member is then evaluated against an 

objective function. Population members are subsequently combined to produce a new generation of 

solutions. The selection of population members to carry to the next generation is stochastic, but 

typically weighted towards solutions with a higher fitness. The process is repeated for either a fixed 

number of generations, or until a convergence criteria is met. Through successive rounds, the 

genetic algorithm will converge to a population of fitter solutions. The genetic algorithm allows a 

wide exploration of the search space. 

 

Simulated annealing is inspired by the heating and cooling of metals to change their properties. 

Random changes are applied to a population member for a fixed number of rounds. These changes 

are accepted if they improve the fitness of the solution. However, crucially, if these do not improve 
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the fitness, they are accepted with a probability which decreases every round. As such, non-

improving moves can be accepted which take the current solution away from a local maxima. This 

could be, for example, the moving of an energy storage unit to a node with a higher impact on the 

solution. The addition of the simulated annealing to the genetic algorithm is designed to allow local 

search to improve each solution. 

 

Both heuristics are implemented in a customised Matlab script which interfaces with a detailed, 4-

wire Open-DSS [35] model of the network. The LV network is constructed along with a higher 

voltage network. A fixed load is applied on the 11 kV feeder to represent other LV networks as 

shown in Figure 3-1. The networks contain only domestic properties, with a selection of these 

having rooftop PV systems. A single load flow is performed under a worst case scenario to evaluate 

solutions. Storage is added at feasible nodes by the heuristic at a charging power determined by the 

heuristic. 

 
Figure 3-1: Network model used in heuristic 

 

3.2 Heuristic structure 

The heuristic structure is outlined in Figure 3-2. At the start of the algorithm an initial population is 

generated and evaluated. Simulated annealing is performed on the best population members and 

the fitness of the new population is evaluated. Genetic algorithm mating and crossover routines are 

then completed to generate a new population. At the end of each round, the most expensive 

population members are replaced with a new population. Under an elitist approach, the solution with 

the highest fitness is carried through the algorithm, and is only replaced when a fitter solution is 

found. The algorithm is repeated over a fixed number of rounds/generations. 

It is important to add diversity to each population generation to allow the genetic algorithm to escape 

local minima. This is commonly achieved through mutation, which is a random change to population 

members. However, in this algorithm, diversity is achieved through both the inclusion of new, 

stochastically determined population members to each generation and also through local search 

within the simulated annealing. This was found to generate sufficient diversity in the population. 

3.2.1 Fitness function 

The objective of the heuristic is to minimise the capital cost of the storage, which is evaluated for a 

single system as the sum of installation (  ) and system costs. According to [36], the cost of storage 

is the sum of power and capacity costs. The power costs is the product of the cost per kW (   ) and 

the storage rating (  ) and the capacity cost is the product of the cost per kWh (    ) and the 

storage capacity (  ). The total capital cost of each storage unit is calculated according to (1). 

                       (1) 
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Figure 3-2: Heuristic structure 

 

This equation has been adapted for this study (2). The capacity is calculated as the time   over 

which the storage delivers full power. The maximum depth of discharge   of the storage is included 

to reflect realistic battery parameters. The charging efficiency (which reduces the amount of energy 

that is stored [37]) is estimated as the root of the round trip efficiency. 

                
       √ 

 
 

(2) 

The optimisation problem can therefore be reduced to a single cost-based objective function (3). 
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If the voltage problem cannot be solved a penalty function of the cost of reconductoring (  ) is 

applied. Costs and performance parameters applied in this paper are discussed in section 3.4. 

3.2.2 Initial population generation 

The original population is generated through application of the voltage sensitivity factor algorithm 

used in [19]. Storage is incrementally added at nodes with the highest voltage sensitivity factor until 

voltage is brought within limits. This produces a population of identical solutions to which simulated 

annealing is applied, without a probability acceptance function, to produce a varied population. 

3.2.3 Simulated annealing 

As discussed in [38], simulated annealing should understand and make use of properties of the 

problem to be effective. Accordingly, the following simulated annealing moves are defined, with an 

equal probability of being applied during each annealing round: 

1. Turn off a randomly selected system; 

2. Turn off a randomly selected system and divide the power between the remaining systems; 

3. Turn on a randomly selected system with a randomly assigned power; 

4. Select a random active storage unit and decrease its power by a random amount; 

5. Select a random active storage unit and increase its power by a random amount. 

 

This resulting solution is selected either if it has a lower cost (evaluated using the fitness function) 

than the previous best solution, or randomly according to the probability acceptance function (4). 

Here, the temperature   increments for each annealing round.  

           
 

 
  

(4) 

3.2.4 Mating and crossover 

Mating and crossover probabilistically combines the properties of two different parent solutions to 

generate a new population. Roulette wheel selection is used to determine which two parents are 

combined for child as opposed to the tournament based selection used in [10]. As discussed in [39], 

tournament selection can become susceptible to premature convergence as the problem size 

increases. This can be mitigated through adjusting the tournament size, but the authors wished to 

avoid additional parameter selection 

 

A cost based proportional based roulette wheel would give unnecessary bias to outstanding 

individuals in this heuristic due to the penalty (reconductoring cost) used in fitness function. 

Accordingly, a voltage based proportional based fitness evaluation is applied, using the deviation 

from the voltage limit (  
 ). This more evenly distributes the probability that an individual is selected 

and is found to be a good compromise between rank and proportional selection. Under the 

crossover routine, for each valid storage location, the new child takes the storage assignment from 

either parent with probability relative to the parents’ fitness according to (5). The probability (  
 ) that 

any individual solution ( ) is selected to be a parent can therefore be calculated (6): 

  
  

 

|      
   |

 
(5) 

  
  

  
 

∑   
  

   

 
(6) 
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3.3 Heuristic Performance 

The performance of the genetic algorithm with simulated annealing heuristic is shown in Figure 3-3 

(left) in comparison to heuristics employing just simulated annealing or a genetic algorithm. 

Performance is measured relative to the fitness of the initial population, which is kept constant. It 

can be seen that all heuristics produce a similarly large initial improvement after round one. The 

genetic algorithm quickly stabilises to a solution because, without simulated annealing, it is unable 

to cause significant changes to the population. The simulated annealing approach is generally 

slower to converge, and the nature of the algorithm means that the fittest solution may not be the 

one at the end of the final algorithm round. The genetic algorithm with simulated annealing generally 

produces the lowest cost solutions with greater stability as shown in Figure 3-3. 

 

Figure 3-3: Average performance of different heuristics where heuristics are performed ten 

times. (left) and standard deviation of solutions for different heuristics (right). GA denotes 

genetic algorithm and SA denotes simulated annealing 

3.4 Problem formulation 

To demonstrate the heuristic, it is used to investigate which storage installation strategies that a 

DNO should support to prevent voltage problems in LV networks. The feasibility of two storage 

topologies are investigated: single phase storage located within the customer property and larger 

three phase storage units at customer connection points, the transformer or junctions in the radial 

network. Storage cost and technical parameters are summarised in Table 3-1, which taken from [36] 

or from discussion with the sponsoring DNO (costs are converted with exchange rate of $1.6 to £1). 

 

The parameters used in the heuristic (Table 3-2) were selected based upon experience using the 

heuristic to produce relevant results within a reasonable computation time. For example, the number 

of rounds was selected based upon the number of rounds to produce a near optimal solution (Figure 

3-3). The algorithm is performed over a 10 rounds with a population size of 500. The fittest 400 

population members have a simulated annealing routine applied with a maximum temperature of 5 

and mating and crossover replaces all population members 250 to 450 when ranked in order of 

fitness. 50 new population members are added each round using the method described in section 

3.2.2. The fittest population member is always carried forward through each generation under an 

elitist approach. 
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Table 3-1: Simulation parameters 

Parameter and symbol Single phase storage Three phase storage 

Install cost,    £400 £8,000 

Maximum unit power,        1.5 kW 15 kW 

Power cost,     £206/kW 

Capacity cost,      £250/kWh 

Storage time,   5 hours 

Round trip efficiency,   75% 

Depth of discharge,   80% 

Cost of reconductoring,    £70,000 (calculated at £80/m [19]) 

 

Table 3-2: Genetic algorithm parameters 

Parameter Value 

Population size 500 

Number of generations 10 

Crossover probability 0.4 

Number of elite population members 1 

New population members added per round 50 

Simulated annealing maximum temperature 5 

 

3.5 Network model 

In order to compare these two topologies, the genetic algorithm with simulated annealing heuristic is 

applied to a real UK LV network. This network, which was used in [18], has 406 loads applied to 281 

buses and 53 PV systems installed. There is a potential for a total of 247 domestic PV systems. 

Within the heuristic, PV systems in the network have fixed outputs of 2.25 kW and each domestic 

property draws 290 W. This represents a realistic high PV penetration scenario according to known 

specifications of the panels and measured network power flows on the LV side of the secondary 

transformer taken from a low carbon network fund project [40]. 

 

To understand the effect of these potential PV systems on the voltage, a Monte Carlo method is 

used to randomly site PV systems at full power at feasible locations and the highest LV network 

voltage recorded (Figure 3-4). A load flow is used to obtain the highest voltage in the network and it 

can be seen that the magnitude of the voltage is sensitive to the exact locations of the PV systems. 

Voltage rise (magnitude greater than 1.1 p.u.) can occur with as little as 98 systems installed, and 

certainly occurs with more than 155 systems. Due to voltage drop under high demand, it is not 

possible to change the tap position on the transformer to alleviate this. 

3.6 Results of heuristic application 

The Monte Carlo method used in 3.4 is used to randomly locate PV at storage within the network. 

Then, the heuristic is applied to determine the storage needed to solve the associated voltage 

problem. The costs of the optimal solutions are shown in Figure 3-5 and Figure 3-6 and are labelled 

according to the following regions: 

A) If there is a voltage problem then storage provides an alternative to reconductoring; 

B) Depending on the PV configuration, storage may provide an alternative to reconductoring; 

C) Reconductoring is always more financially viable than using energy storage.  
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Figure 3-4: Highest voltage in network given 50,000 randomly selected PV configurations  

 

As can be seen by comparing Figure 3-5 to Figure 3-6, the single phase storage is cheaper than the 

three phase storage under this model and, importantly for DNOs, as single phase storage it is 

feasible for accommodating a higher PV penetration before reinforcement. When the data is further 

analysed, single phase storage also has the advantage of using less power to solve the voltage 

problem (Figure 3-7). The single phase storage is more effective for each unit of power due to the 

fact it is naturally located by the heuristic on phases relative to the severity of the voltage problem. 

Accordingly, the power requirement for the three-phase storage may be reduced if it is allowed to 

act in an unbalanced mode. However, as shown in Figure 3-7 approximately 60% more single 

phase storage units are required due to the lower rating. This has the benefit of adding more 

redundancy in the network if a single unit fails but has the disadvantage of requiring more 

customers to allow the DNO to situate the storage within their home. 

 
Figure 3-5: Cost of three-phase energy storage compared to traditional re-conductoring 
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Figure 3-6: Cost of single-phase energy storage compared to traditional re-conductoring 

 

 
Figure 3-7: Average number of storage units installed for different PV penetrations (left) and 

average total storage power installed for different PV penetrations (right) 

 

4. Discussion 

The new heuristic presented in this paper uses a combination of a genetic algorithm and simulated 

annealing. This is more stable and produces solutions that require less storage capacity than 

genetic or simulated annealing algorithms applied on their own. The chosen heuristic is feasible 

within reasonable computation time because the fitness evaluation has been reduced in complexity 

to a single time step. This is opposed to other approaches reported in the literature which use time 

series analysis to assess the storage benefits and specifications. Such detailed time series analysis 

could subsequently be applied to investigate whether storage configurations found in this paper can 

be reduced, particularly if the worst case scenario is not a common occurrence in a given network. 

 

Reducing the computational time allows for a number of solutions to be easily calculated. Because 

of this, it has been possible to evaluate the different storage solutions as the penetration of PV 

changes in a given network. Such an approach is particularly beneficial in network planning 

because it allows DNOs to assess the amount of PV that they can allow in a network and when 

storage is a financially viable alternative to reconductoring. For example, within this paper PV 

penetrations are found where either storage or reconductoring are financially viable alternatives. 
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Application of this new heuristic and planning approach shows that single phase storage is 

potentially more viable than three phase storage for DNOs. This is because it can solve the voltage 

problem for lower power and energy ratings and lower assumed install costs (primarily because of 

lower civil costs). However, locating storage in customer property is in practice unattractive for 

DNOs for a number of reasons, including the possibility of public concerns around battery safety 

and space requirements. Furthermore, since DNOs do not currently install or manage equipment 

beyond the cut-out fuse, there are issues surrounding ownership, control, maintenance and access.  

 

This work does not include revenue from thermal protection of network assets under load growth, 

reducing reverse power or providing backup power which have benefits to DNOs and could improve 

the business case. Ownership structures need to be considered if the storage is to participate in 

electricity price arbitrage. This is not permissible by DNOs in the UK regulatory system. Alternative 

selection methods may also be applied in the heuristic such as tournament or stochastic uniform 

selection. However, the roulette wheel approach was found to be suitable in this paper for the 

reasons given in 3.2.4 

 

The heuristic has applications beyond energy storage as it can be adapted to measure the benefits 

of demand side response or network reconfiguration. Future studies may want to consider the cost 

of energy storage against other technologies to provide better decision making tools for DNOs as 

they look for innovative ways to plan and operate their networks. The method could also be applied 

to inform control algorithms for distributed energy storage or demand side response systems by 

determining which units to use as the generation and demand changes. 

5. Conclusions 

This paper presents a heuristic planning tool for locating distributed electrical energy storage in LV 

networks. Below a particular penetration of PV, distributed storage is shown to offer a lower capital 

cost method of resolving a voltage rise problem when compared with network reconductoring. 

Single phase storage at customer premises provides solutions that require overall lower power and 

energy ratings than three phase storage located on the street. Locating storage in homes can offer 

benefits to customers by storing self-generated energy and reducing the consumer bill, owing to the 

structure of the Feed-in-Tariff. This provides additional revenue to offset the cost storage.  

 

The work aligns with the UK Government’s Electricity Market Reform process/ by looking at the 

extent to which energy storage can contribute to addressing problems in the electricity network [41]. 

To take such a configuration for storage forward would require regulatory support and incentives to 

instigate demonstration projects in customer homes. Further work is also needed to evaluate 

operational/maintenance requirements and alternative revenue streams to fully understand the long 

term costs and benefits to storage owners. 
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