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Ego networks models describe the social relationships of an individual (ego) with its social peers (alters). 

The structural properties of ego networks are known to determine many aspects of the human social 

behavior, such as willingness to cooperate and share resources. Due to their importance, we have inves- 

tigated if Online Social Networks fundamentally change the structures of human ego networks or not. In 

this paper we provide a comprehensive and concise compilation of the main results we have obtained 

through this analysis. Specifically, by analysing several datasets in Facebook and Twitter, we have found 

that OSN ego networks show the same qualitative and quantitative properties of human ego networks in 

general, and therefore that, somewhat counter-intuitively, OSNs are just “yet another” social communi- 

cation means which does not change the fundamental properties of personal social networks. Moreover, 

in this paper we also survey the main results we have obtained studying the impact of ego network 

structures on information diffusion in OSNs. We show that, by considering the structural properties of 

ego networks, it is possible to accurately model information diffusion both over individual social links, 

as well at the entire network level, i.e., it is possible to accurately model information “cascades”. More- 

over, we have analyzed how trusted information diffuses in OSNs, assuming that the tie strength between 

nodes (which, in turn, determines the structure of ego networks) is a good proxy to measure the recipro- 

cal trust. Interestingly, we have shown that not using social links over a certain level of trust drastically 

limits information spread, up to only 3% of the nodes when only very strong ties are used. However, in- 

serting even a single social relationship per ego, at a level of trust below the threshold, can drastically 

increase information diffusion. Finally, when information diffusion is driven by trust, the average length 

of shortest paths is more than twice the one obtained when all social links can be used for dissemina- 

tion. Other analyses in the latter case have highlighted that also in OSNs users are separated by about 6 

(or less) degrees of separation. Our results show that when we need trustworthy “paths” to communicate 

in OSNs, we are more than twice as far away from each other. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Online Social Networks (OSNs) such as Facebook and Twit-

ter have introduced radically novel means of interactions among

people, which quickly became extremely popular. Complementing

more traditional ‘offline’ means of communication (such as face-

to-face communication and phone calls), ‘Online’ Social Networks

are creating a complete virtual social environment, which supports

many actions involving social interaction, from extremely simple
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nes such as “liking” other users’ content, up to very complex

nes such as looking for a job, advertising products and organizing

vents. This is one of the most impressive cases of cyber-physical

onvergence , i.e., the process whereby the physical world around

s and the virtual world of the Internet are deeply interwoven,

onstantly interacting with, and dependent upon, each other [1] .

n this context, the analysis of the human social behavior in on-

ine environments is particularly exciting, as it allows us, on the

ne hand, to understand features of the human behavior based on

uge amounts of data and, on the other hand, to design services

nd applications exploiting this knowledge. This paper presents a

omprehensive overview of a body of work that we have carried

ut in this field, with the objective of highlighting key structural

roperties of human personal networks in OSNs, how they are
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elated to known structures of offline human social networks, and

ow they impact on the patterns of information diffusion that have

een observed in these environments. 

Undoubtedly, the advent of OSNs also led us to a significant ad-

ancement in the study of human online behavior. In fact, big data

oming from OSNs represent an invaluable source of information

o describe the dynamics of complex social phenomena (e.g., the

iffusion of information in the network, the formation of social re-

ationships and communities), which are very difficult to analyze

ith traditional research methods typically based on surveys and

nterviews. A lot of effort has been put in the last years to char-

cterize OSNs by studying their graphs, since this is the natural

ay to study structural properties of human social relationships in

SNs. Most of the literature has focused on macroscopic properties

f OSN graphs, i.e., the structural characteristics of the global net-

ork formed by all users and their connections. A comparatively

ess explored but equally important subject of investigation are the

icroscopic properties of OSNs, and primarily the structural charac-

eristics of our personal social networks, also called ego networks .

n the anthropology literature it is well known (e.g., [2] ) that the

haracteristics of ego networks are fundamental to determine key

acets of human behavior, such as trust, sharing of resources, and

ormation of communities. 

From reference works in psychology and anthropology (e.g.,

3–6] ), we know that the properties of offline ego networks are

onstrained by a series of cognitive and time limits, which bound

he amount of relationships that each individual can actively main-

ain due to their intrinsic cost in terms of ‘computational re-

ources’ for the brain. Specifically, cognitive constraints limit the

otal number of active relationships humans can maintain at a

on-negligible level of intimacy. This limit is on average around

50 relationships, which is known as the Dunbar’s number [3] . The

ame constraints also dictate specific structures according to which

ocial relationships are organized inside the ego network, as ex-

lained in detail in Section 2 . 

Recent analyses of the structural properties of popular OSNs

i.e., Facebook and Twitter) revealed that online ego networks have

he same properties of offline ego networks, with similar size

nd the same hierarchical structure [7–9] . This confirms that ego-

etwork properties depend primarily on cognitive constraints of

he human brain, and are not influenced by the use of specific

ommunication mechanisms, such as mobile phones [10] and also

nline Social Networks. In this regard, Facebook and Twitter do

ot seem to improve human social capacity, but they simply repre-

ent additional social channel we can use. Moreover, in addition to

onfirming that well-known features of human ego networks also

anifest in OSNs, these studies have revealed additional proper-

ies [7] , which had been hypothesized [11] , but never observed due

o lack of big data sources. This demonstrates that OSNs can be

sed also as a ‘social microscope’ to investigate novel key proper-

ies of our social behavior. 

Recent results presented, e.g., in [12–14] show that the patterns

f information diffusion we observe in OSNs strongly depend on

he structure of the users’ ego networks. Therefore, by understand-

ng the latter it is also possible to design OSN services where the

eatures of ego network structures (and the users’ behavior they

etermine) are exploited to optimize data management. For exam-

le, as demonstrated by Lerman [15] , models of information dis-

emination in OSNs that consider the constrained nature of hu-

an online social behavior overcome some intrinsic limitations of

revious state-of-the-art models [16] . Moreover, results presented

n [12] have shown that, under the assumption that the ego net-

ork structure also defines the level of trust between ego and

lters, the length of the shortest path along which trusted infor-

ation flows between two users in the network can be signifi-

antly longer than the few hops (compatible with the well-known
-degrees of separation concept) previously highlighted in the lit-

rature (e.g., in [17] ). 

In this paper, we first present the main results we have ob-

ained from the analysis of the effect of human cognitive limits

n the structural properties of ego networks in OSNs. Then, we

resent results showing the impact of these ego network struc-

ures on macroscopic phenomena, with particular attention to the

iffusion of information. In addition, we discuss promising di-

ections to the design of information-centric systems exploiting

go network structures, such as data replication strategies based

n ego-network concepts for Distributed Online Social Networks

DOSN), and information dissemination protocols for opportunistic

etworks based on ego-network cognitive heuristics. 

This paper starts from the analysis of human cognitive limits in

nline environments presented in the book by Arnaboldi et al. [18] .

owever, while the book focuses on the structural analysis of ego

etworks in OSNs, this paper focuses on the application of models

nd analyses based on human cognitive limits to user-centric ser-

ices and applications, in particular to the diffusion of information.

The paper is organized as follows. In Section 2 , we provide the

ain definitions about Online Social Networks and ego networks,

nd we present an overview of the most important results of ego

etwork analysis in OSNs. In Section 3 , we present the background

ork in the field of information diffusion modeling, we introduce

he most important information diffusion models in OSNs and we

iscuss their limitations. Then, in Section 4 , we present analyses

nd models of information diffusion in OSNs based on the struc-

ural properties of ego networks. In Section 5 , we present some re-

earch directions where knowledge about social network structures

s used to design data-centric services both for OSNs and mobile

etworks, and we draw the main conclusions of the paper. 

. Ego network structural analysis in Online Social Networks 

A typical way of representing social networks is through a

raph G ( V, E ), where V is the set of vertices representing the users

nd E is the set of edges connecting pairs of users, with each edge

epresenting a dyadic social relationship between the vertices it

onnects. In OSN graphs, edges can represent, for example, the ‘fol-

owing’ relationships of Twitter or ‘friendships’ of Facebook. Edges

ay be directed to represent a possible directionality in the se-

antic of the social relationship (e.g., in Twitter the difference

etween a ‘follower’ and ‘followee’ relationship). Or, they can be

ndirected, if dyadic relationships between users are completely

ymmetric. 

The analysis of the OSN graph can be carried out on the un-

eighted graph, where each relationship is considered of the same

ype and quality. Typically, the unweighted OSN graph is called

he social graph. On the other hand, other analyses take into con-

ideration that social relationships are not all equal. To represent

his, a weight is associated to each link, and the resulting weighted

raph is called the interaction graph. For the purpose of the anal-

ses presented in this paper we consider interaction graphs, and

e consider that an edge exists between two nodes if the strength

f their relationship is greater than zero. To quantify tie strength,

e use the frequency of direct contact between users. Consider-

ng frequency of contact as a proxy for tie strength (which is a

omplex concept involving also qualitative aspects) is customary

n the literature, and is backed up by many works starting from

he classical definition of tie strength given by Granovetter [19] .

his relation has later been found in several works on OSNs. See

or example the work by Gilbert and Karahalios on the prediction

f tie strength by using variables from Facebook [20] and the tie

trength predictive models presented by Arnaboldi et al., in which

ontact frequency in OSNs is the most correlated variable with tie

trength [8] . We use tie strength in the interaction graph analysis,
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Fig. 1. Ego network model. 
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as mere ‘following’ or ‘friendship’ relationships are not sufficient

to define an edge between two users (as it would for the social

graph), and at least a minimum frequency of direct communica-

tion between them is needed. In the datasets used in the work, a

direct communication can be a post on the wall of another user or

a comment on a picture for Facebook, or a reply to a tweet created

by another user for Twitter. 

In the following we consider only the OSN interaction graph.

We omit the definitions and analysis of the typical indices used to

characterize the macroscopic properties of OSNs and we directly

discuss the main microscopic properties found on empirical analy-

ses of OSN graphs. For a discussion on the macroscopic properties

of OSNs, we refer the reader to [18] . 

2.1. Ego-network model 

Ego networks are one of the key concepts to study the micro-

scopic properties of personal social networks. Different definitions

of ego network exist in the literature, corresponding to different

approaches in analyzing them. In this paper, an ego network is

formed of a single individual ( ego ) and the other users directly

connected to it ( alters ) [6] . This model gives particular emphasis

to the impact of the ego cognitive constraints on the personal so-

cial networks and, in the rest of the text, we will refer to it as

the ‘Ego-Network Model’. Another possible definition of ego net-

work also considers the links between alters [21] , possibly even

excluding the links between them and the ego. This is typically

used to analyze the topological features of the local social context

in which the ego is immersed. Techniques that have been used to

this end are based on complex network indices, such as density,

connectivity (e.g., Burt’s ‘Structural Holes’ [21] ) or ego between-

ness [22] measures. 

Starting from the Ego-Network model, a fundamental cognitive

constraint in the personal social network is the Dunbar’s Num-

ber [23] . This is the number of relationships that an ego actively

maintains in its network over time. The Dunbar’s Number in of-

fline ego networks is known to be limited by the cognitive con-

straints of the human brain and by the limited time that people

can spend in socializing. In addition, it is known that cognitive

constraints lead people to unevenly distribute the emotional inten-

sity on their relationships. This results in a hierarchical structure

of inclusive ‘social circles’ of alters around the ego (as depicted in

Fig. 1 ), with characteristic size and level of tie strength. Specifically,

in the reference ego-network model [24] , there is an inner circle

(called support clique ) of 5 alters on average, which are considered

the best friends of the ego. These alters are contacted at least once

a week, and are the people from whom the ego seeks help in case

of emotional distress or financial disaster. Then, there is a second

layer of 15 alters called sympathy group (which includes the sup-

port clique) containing close friends of the ego, those contacted at

least once a month. After this layer, we find a group of 50 alters

called affinity group or band that contains an extended group of

friends. The last circle, called active network , contains on average

150 alters (the Dunbar’s number) contacted at least once a year.
hese people represent the social relationships that the ego main-

ains actively, spending a non-negligible amount of its time and re-

ources interacting with them so as to prevent the corresponding

ocial relationships decaying over time. The sizes of ego network

ircles form a typical pattern of 5–15–50–150 alters, with a scaling

atio between adjacent circles around 3. This pattern is considered

ne of the distinctive features of human social networks. 

While the focus of this paper is on ego networks in OSNs, we

hould briefly mention the vast body of work on characterizing ego

etworks in offline environments. Evidence to support the exis-

ence of Dunbar’s number and the described ego-network structure

as come from a number of ethnographic and sociological sources,

.g. [23–29] . The existence of the circles described in the ego-

etwork model has been also explained as an evolutionary strat-

gy that humans adopted to maintain stability in their increasingly

arge social groups [30] . More recently, results have been presented

n the presence of Dunbar’s number [31] and the ego network

tructure [30] also in phone-call networks. With respect to Dun-

ar’s number, it has been shown that people with a large phone-

all ego network spend more time on the phone than people with

maller networks. For phone-call ego network with sizes around

00–150 connections, the total time devoted to phone calls by the

gos reaches its maximum. This indicates that beyond this point

 very large number of contacts does not imply a proportional in-

rease in the amount of time invested in communication, and this

s a clear evidence of time and cognitive constraints in phone-call

etworks resulting in structures compatible with the general Ego

etwork Model. 

.2. Ego-network structure in OSNs 

.2.1. Dunbar’s number in online interactions 

A series of analyses conducted on different OSNs have shown

hat online ego networks have the same structural properties

ound in offline social environments. Specifically, the work by

onçalves et al. found the first evidence of the Dunbar’s number

n Twitter [32] . The authors studied how the average tie strength

or the ego networks of Twitter users (calculated as the average

umber of replies directly sent by a user to its neighbors) changes

ith the size of the ego networks (the total number of accounts di-

ectly contacted with replies by the user). The results have shown

hat the average tie strength increases with ego network size up

o a peak around 10 0–20 0, which is compatible with the Dunbar’s

umber, and then decreases substantially. Similarly to the results

ound in phone-call networks [10] , this means that there is a limit

n the total amount of social activity also in Online Social Net-

orks, and this has been interpreted as evidence of human cogni-

ive limits that shape Twitter ego networks. 

Arnaboldi et al. [33] further refined these results by dividing

witter users into two classes, the first one containing socially rel-

vant users (i.e., people who use Twitter to communicate with

ther people and maintain their social relationships) and the sec-

nd one formed of accounts not directly aimed at the management

f personal social relationships (e.g., spammers, bots, companies,

ublic figures). The classification was performed using a supervised

earning classifier based on Support Vector Machines (SVM) trained

n a set of manually labeled Twitter accounts. The results on the

wo classes, depicted in Fig. 2 , highlight, also in this case, a peak

t a number of relationships around 100, and show that this peak

s a characteristic of socially relevant users only, and is not visible

or the other types of accounts. 

The peak in the curve in Fig. 2 (and in similar curves shown

n [32] ) highlights the existence of a cognitive constraint limiting

witter users activity. However, the peak should not necessarily

ppear at a number of relationships equal to the Dunbar’s number,

s the latter is defined as the number of relationships that each
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Fig. 2. Tie strength as a function of ego network size in Twitter. Points represent 

the average number of replies made by accounts with different number of friends; 

thick lines are their running averages. 
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Fig. 3. Optimal number of circles for Twitter and Facebook ego networks found 

through k −means and AIC. 
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go maintains actively in its network, with a contact frequency

f at least one message per year (a single message per year in

SNs like Facebook often represents a birthday greeting message,

hich is the minimum level of interaction to define a meaningful

elationship). A series of analyses performed on Twitter and Face-

ook [7–9,34] indicate that the Dunbar’s number in OSNs (Face-

ook and Twitter) is of the same order of magnitude of the val-

es found offline, although being somewhat smaller in some cases

e.g., 90 in Twitter [7] ). Finding an OSN Dunbar’s number similar

o the one in offline human networks results questions the conven-

ional wisdom that OSNs are increasing our capacity to socialize

nd allow us to maintain an increasing and virtually unbounded

umber of relationships [35] . The maximum number of active so-

ial relationships in online ego networks seems, again, related only

o human cognitive constraints, and largely invariant with the spe-

ific means we use to maintain our social relationships. 

There are several reasons behind the presence of somewhat

maller-than-expected ego networks which have been observed

n OSNs, both in Facebook and Twitter. As far as the Facebook

atasets are concerned, early users (the datasets used for these

nalyses were collected in 2009, when Facebook was still new)

ay well only have had a small fraction of their offline friends that

ere present on the platform and typically only sought out people

hey knew well [7] . In addition, the way datasets were collected

both in Facebook and Twitter) could result in underestimating the

umber of weak relationships, and this might explain the presence

f ego networks smaller than what one might expect from offline

nalyses [7] . 

.2.2. Hierarchical structure of ego networks in OSNs – number of 

ircles 

To further characterize the structural properties of ego net-

orks in OSNs, a series of studies analyzed the distribution of tie

trength within the active networks of Facebook and Twitter users

i.e., considering the people that these users contacted at least

nce in a year), looking at whether the same hierarchical struc-

ure found in offline environments could also be found online. The

esults have shown that tie strength of online ego networks is un-

venly distributed, and relationships can be clustered into circles

ith level of contact frequency and sizes similar to those found of-

ine. Specifically, Arnaboldi et al. [7] analyzed a large-scale Twitter

ataset with approximately 30 0,0 0 0 accounts containing the in-

ormation about the direct tweets (replies) that each user sent to

ther social contacts. The analysis of the distribution of the contact

requency of the ego networks has shown that contact frequen-

ies follow a long-tailed distribution within each network, with

ew strong relationships and many weak ties. This is compatible

ith the results found offline, and with those found in phone-
all communication traces [31] . In addition, to further characterize

he distribution of contact frequency for the ego networks, the au-

hors applied a cluster analysis to the frequencies in each ego net-

ork, using the k −means and DBSCAN algorithms. The rationale

f this approach was to seek if clusters of alters could be identi-

ed in ego networks, such that contact frequency within any given

luster is significantly different from contact frequency within the

ther clusters. If that was the case, clusters would represent the

quivalent of layers in the ego network model. To find the optimal

umber of clusters for each ego network, authors applied k −means

ith increasing values for k and DBSCAN with different possible

alues for its parameters, and then selected the configuration that

ielded the highest value of Akaike Information Criterion (AIC). The

oodness of fit obtained for the best configuration has also been

easured using the silhouette index. This analysis has been repli-

ated also on two reference Facebook datasets, as explained in [7] .

he distribution of the optimal number of clusters in the ego net-

orks of Twitter and the two Facebook datasets, depicted in Fig. 3 ,

ndicates that social relationships in online ego networks are nat-

rally grouped, on average, into 4–5 circles. This result is compat-

ble with the number of circles found in offline ego networks. It

s worth noting that the optimal configurations yield, on average,

alues of the silhouette index around 0.7, which are high for the

ype of data analyzed. This indicates that the presence of the cir-

les is not an artifact of the clustering algorithms but rather a real

eature of the analyzed data. 

.2.3. Hierarchical structure of ego networks in OSNs – sizes and 

requencies of the circles 

Following the results obtained for the optimal number of cir-

les, Arnaboldi et al. [7] applied k -means forcing the number of

ircles to 4 in Facebook and 5 in Twitter for all the ego networks

n the datasets, to be able to compare the results in terms of the

verage size of the circles and their minimum contact frequencies

i.e., the frequencies that define the edges of the circles, in num-

er of messages per year) with those obtained in offline environ-

ents. The sizes of the circles, obtained by nesting the clusters

ound by k -means (remember that each circle is inclusive of all

heir sub-circles and are thus cumulative sets of clusters obtained

y k -means) and the minimum frequencies of contact of the cir-

les are reported in Table 1 . For comparison, the table also gives

he characteristic size and frequencies of the circles found in of-

ine ego networks, as determined by face-to-face contacts [27] . 

Note that, as explained in the following, the clustering analy-

is on OSN datasets has consistently highlighted the presence of

n additional internal layer inside the support clique, which we

enote as layer 0 in Table 1 . The contact frequencies of the cir-

les suggest that, in Facebook, alters are contacted approximately
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Table 1 

Size and minimum contact frequency for ego-network circles found through k-means on the contact frequency 

of Twitter and Facebook users. 

Circle 0 1 2 3 4 

Offline networks 

Size ? 5 15 50 150 

Contact freq. ? ≥ 48 ≥ 12 ≥ 2 ≥ 1 

Twitter 

Size 1.55 ± 0.02 4.52 ± 0.06 11.17 ± 0.15 28.28 ± 0.32 88.31 ± 0.87 

Contact freq ≥ 276.63 ± 4.06 ≥ 113.12 ± 1.49 ≥ 49.63 ± 0.66 ≥ 16.89 ± 0.21 ≥ 2.54 ± 0.02 

Facebook dataset 1 

Size 1.68 ± 0.01 5.28 ± 0.02 14.92 ± 0.06 40.93 ± 0.20 –

Contact freq ≥ 77.36 ± 0.77 ≥ 30.28 ± 0.24 ≥ 11.15 ± 0.07 ≥ 2.53 ± 0.01 –

Facebook dataset 2 

Size 1.53 ± 0.03 4.34 ± 0.09 10.72 ± 0.23 26.99 ± 0.61 –

Contact freq ≥ 58.54 ± 2.62 ≥ 22.19 ± 0.74 ≥ 7.93 ± 0.23 ≥ 1.37 ± 0.04 –

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Number of new relationships activated over time in Twitter, on a daily basis 

and cumulatively. 

Fig. 5. Size of ego network layers over time for Twitter ego networks. 
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at least every five days for layer 0, at least every twelve days for

layer 1, at least once a month for layer 2, and at least once ev-

ery six months for layer 3. These values are compatible with those

obtained offline. In the Twitter dataset, the contact frequencies

are higher – i.e., at least once every one/two days in layer 0, at

least every three days in layer 1, at least once a week in layer 2,

at least once a month in layer 3, and at least two/three times a

year in layer 4. This can be attributed to the specificity of Twit-

ter, which is explicitly designed for the exchange of short and fre-

quent messages between users. Bearing in mind this difference be-

tween Facebook and Twitter, Arnaboldi et al. [7] matched (as re-

ported in Table 1 ) the layers found in online ego networks with

those in face-to-face networks. This allowed them to conclude that

the hierarchical structure of ego networks in OSNs is similar to the

structure found in offline ego networks. In addition, the new in-

ner circle (Circle 0), with an average size of 1.5 inside the support

clique (thus named “super support clique”) fits perfectly in the hi-

erarchy of ego network circles, presenting a scaling ratio for the

size of around 3 with respect to the next circle (i.e., the support

clique). The existence of this structural element of ego networks

was hypothesized since long in the anthropology community [11] .

However, before [7] , no large enough dataset was available to iden-

tify, with sufficient statistical confidence, a layer composed of such

a small number of social relationships. To the best of the authors

knowledge, therefore, results presented in [7] are the first empiri-

cal evidence confirming this hypothesis. 

2.2.4. Evolution of online ego-network structural properties over time 

The analyses presented so far evinced that the structural prop-

erties of online ego networks are the product of a series of time

and cognitive constraints on the social capacity of the users, and

that these properties are similar to those found in offline environ-

ments. However, these analyses built ego networks from a ‘static

view’ of the communication activity of the users, and do not ac-

count for possible variations over time of the analyzed structures.

In this section, we present a series of studies on how the structural

properties of ego networks evolve over time. These analyses fur-

ther describe the strategies adopted by people to cope with their

limited resources for the management of social relationships over

time. 

Number of new relationships activated over time. As far as com-

plete ego networks and their evolution over time are concerned,

several analyses showed that users add new social relationships

in their ego networks at a higher rate when they join the plat-

form, and then they tend to maintain a constant growth rate over

time. This has been found in phone-call networks [36] , as well as

in OSNs [37–39] , and can be seen in Fig. 4 , which depicts the av-
rage number of new alters added by egos in Twitter over time,

oth on a daily basis and cumulatively [18,38] . This means that

gos constantly add new relationships in their ego networks, and

hus the composition of ego networks constantly changes over

ime. 

ctivation and deactivation of relationships – turnover process.

erhaps even more interestingly than the fact that ego networks

how a constant rate of activation of new relationships over time,

everal analyses showed that the total number of active relation-

hips in the ego networks remains constant over time, thus high-

ighting a balance between the number of relationships that are

ctivated/deactivated [36,38] . This balance creates a ‘turnover’ pro-

ess – a strategy adopted by the egos to cope with their limited

ocial resources. It is worth noting that also the size of each ego
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Table 2 

Average Jaccard coefficient of different network layers. 

Layer Occasional Regular Aficionados 

Active net 0.191 0.190 0.193 

Sympathy gr. 0.287 0.309 0.362 

Support cl. 0.346 0.395 0.488 
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etwork circle remains quite constant over time (as can be seen in

ig. 5 , and further described in [18,38] ). 1 

As a measure of the turnover in the Twitter ego networks an-

lyzed in [38] , the authors calculated the Jaccard coefficient be-

ween snapshots of the ego networks (divided into the different

ayers) of one year each. To analyze turnover at each layer, ego

etworks that always maintain a non-empty support clique in all

he one-year windows were analyzed. The results are reported in

able 2 . 

We note that the turnover is in general quite high, always

igher than 51.2%. It is about 81% (Jaccard coefficient ∼ 0.19) for

he entire ego network. The sympathy group shows a percentage

f turnover between 71.3% and 63.8%, whereas the support clique

s between 65.4% and 51.2%. These results denote a behavior sim-

lar to ego networks in offline social networks, where the inner

ayers contain stronger relationships that should be intuitively less

ffected by the turnover in the network. 

From the results presented so far, it is clear that the analysis of

nline ego networks reveal the presence of human cognitive limits

hat shape in a similar way the structure of personal social net-

orks across many social interaction means, from online platforms

o face-to-face interactions. In the next sections we survey several

esults showing that these cognitive limits have a strong effect on

lobal social processes, and specifically on the diffusion of informa-

ion in online networks. With respect to this aspect, before delving

nto the details of information diffusion analyses, we give a brief

ut exhaustive introduction to the most widely adopted informa-

ion diffusion models in OSN analysis. 

. Information diffusion models in OSNs 

The study of the process underpinning the diffusion of infor-

ation in OSNs is one of the most important research aspects in

he field of social network analysis. Following the categorization

iven in [40] , there are three main research tasks related to in-

ormation diffusion in OSNs: (i) detecting popular contents, which

ave a high probability of spreading to a large number of users;

ii) modeling the diffusion of information by identifying the paths

hat it is likely to follow in the network (i.e., tree-shaped paths

alled ‘cascades’ of adoptions); (iii) identifying influential spread-

rs, which are nodes from which large cascades can be generated.

n this paper, we focus on the second and third aspects of informa-

ion diffusion in OSNs, as they are directly influenced by the pres-

nce of human cognitive limits, whereas the first aspect is more

elated to the type of contents circulating in the network, and it

hould not be influenced by these constraints, at least not directly.

Information diffusion models are generally divided into explana-

ory models and predictive models. The former models start from

he observation of real information cascade traces collected from

SNs and they aim to find a set of parameters that maximize

he likelihood of the observed data. On the other hand, predic-

ive models try to reproduce human behavior in the diffusion pro-
1 Note that the particularly small sizes for the inner layers in Fig. 5 (between 0 

nd 1 for the support clique) are due to the presence of some ego networks without 

nner layers. This is a by-product of the methodology used in [38] for the identi- 

cation of ego-network circles, which, for computational reasons, is based on pre- 

efined levels of contact frequency and not on cluster analysis. 

d  

t  

a  

p  

i  

a  
ess by defining a set of ‘rules’ that each single node should fol-

ow when exposed to information, to decide whether to diffuse it

r not. Clearly, the design of predictive models generally requires

 more detailed knowledge of the properties of human social be-

avior and it is more directly exposed to the presence of cognitive

onstraints than explanatory models. For this reason, in this paper

e will focus on predictive models. The interested readers can re-

er to [40] for an exhaustive discussion of explanatory models. 

Predictive models can be further categorized into two groups:

i) non graph-based approaches [41–43] , and (ii) graph-based ap-

roaches [44–46] . The first type of model does not assume the ex-

stence of a specific graph structure and borrows its main concepts

rom epidemiology. Non graph-based models split nodes into dif-

erent classes (i.e., different states in which the nodes can be dur-

ng the diffusion process). For example, a node that has obtained

he information and is going to share it further is placed in the

lass of ‘infected’ nodes, whereas the other nodes can be ‘suscep-

ible’ if they are not infected but can be infected in the future, or

recovered’ if they were infected in the past, but they “recovered”

rom the infection and they cannot be infected anymore. The dif-

erent models define a set of rates of transition between the states

or the nodes. For example, SIS and SIR define the possible tran-

ition for the nodes from ‘susceptible’ to ‘infected’ and again to

susceptible’ (for SIS) or to ‘recovered’ (SIR). There exist more re-

ned versions of these models specifically designed for OSNs, but

e will not delve into their properties in this paper, because they

re known to suffer from severe limitations, as they fail to consider

he influence that social relationships existing between nodes has

n the diffusion. In fact, in OSNs, differently from epidemiologi-

al processes, the diffusion is highly influenced by the existence

f relationships between people [47,48] , and indeed the interplay

f human cognitive limits and network structure differentiates the

pread of information from other social contagions [15] . 

Graph-based models specifically start from the assumption that

 node is willing to fetch and further share a content (i.e., it is

nfected) if it is exposed to it from one (or more) of its social con-

acts, and the probability that the node will be infected is pro-

ortional to the importance of the relationships with the infected

eighbors. The simpler models in this class are the Independent

ascades (IC) and the Linear Threshold (LT) models. Both IC and LT

roceed at discrete time steps. In IC, at each step n , the nodes that

ave been infected at the previous time step (or the initial spread-

rs – called seeds – if the time step is the first one) infect each

f their neighbors with a probability that is proportional to the

eight of their links. In LT, each node is infected at a given time

tep if the sum of the weights of its incident edges connected to

lready infected neighbors is above a given threshold. IC and LT

iffusion processes stop when no new nodes are infected during a

ertain time step. These models, despite being simple, have been

argely used to model information diffusion in OSNs. The weights

n the edges of the network graph, which define the probability

hat the diffusion will pass through the links, are generally fixed

equal for all edges), or, in other cases, they are derived with max-

mum likelihood estimation from the observations of real diffusion

ascades [49] . 

As recently discussed by Lerman [15] , the diffusion cascades

enerated by IC and LT models are far from being realistic, as they

ften largely differ from real cascades originated within OSNs. In

articular, modeled cascades often reach all the nodes in the net-

ork, whereas large diffusions are extremely rare in reality. As

emonstrated in [15] , including parameters based on human cogni-

ive limits in the diffusion models is sufficient for achieving higher

ccuracy, and to better reproduce human social behavior. This pa-

er, for example, shows that models which include features regard-

ng the position of a post received by a user in its Twitter timeline

nd the popularity of the post increase the accuracy of the predic-
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tion, as people have limited cognitive resources to spend for the

diffusion process and they generally focus on fresh and popular

contents. 

Despite this first attempt to improve information diffusion

models using concepts related to human cognitive limits, there is

still large room for improvement. Since the structural properties of

ego networks, as we have seen in Section 2 , are directly related to

the presence of human cognitive limits and they can be directly

measured from OSN data, their analysis can help to identify addi-

tional features to improve the existing information diffusion mod-

els. 

4. Combining ego-network structural properties and 

information diffusion models 

In this section, we present the work we have done to improve

the accuracy of OSN information diffusion models through infor-

mation on the structure of ego networks. Firstly, we present an

analysis of single-hop information diffusion in Twitter and its rela-

tion with tie strength between users. Then, we focus on individual

nodes, and analyze how ego-network features of a node are cor-

related with the information cascades originating from it. Finally,

we consider information diffusion at the entire network level: As-

suming that the tie strength is correlated with the level of trust

between egos and alters, we analyze how trust between users im-

pact information diffusion at the level of the entire OSN. 

4.1. Analysis of information diffusion at the ego network level –

single hop diffusion 

One fundamental reference to understand information diffu-

sion in human social networks, and how it is correlated with tie

strength, is the seminal work by Granovetter [19] . Granovetter hy-

pothesised that weak ties, although being less frequently activated

than strong ties, provide access to diverse information in the net-

work, speeding up the diffusion process. In addition, the larger

number of weak ties with respect to strong ones in ego networks

makes the cumulative quantity of information that passes through

them exceed that circulating through strong ties. It is also worth

noting that the presence of too many strong ties might ‘trap’ infor-

mation in cliques of users and could slow down the diffusion. From

these observations Granovetter argued, and proved experimentally,

that weak ties are fundamental for information diffusion, coining

the well-known expression “the strength of weak ties”. 

Starting from the hypotheses of Granovetter, several research

studies confirmed the importance of weak ties, but also high-

lighted that strong ties typically “carry” a very significant flow

of information between egos and alters. Specifically, it has been

shown that there is a positive correlation between the tie strength

of a OSN social relationship and the amount of information dif-

fused over that relationship. This has been observed, for exam-

ple, in the diffusion of posts containing URLs in Facebook [47] ,

where tie strength has been measured as the frequency of direct

Facebook posts between users. In Twitter, the work recently pre-

sented in [13] , based on the same dataset of the work presented in

Section 2 , showed that there is a significant positive correlation be-

tween the volume of retweets on Twitter social relationships (i.e.,

the volume of information diffused through the link) and the fre-

quency of direct contact (i.e., the frequency of Twitter replies ex-

changed between the involved users – a measure of tie strength).

Specifically, the authors considered the tie strength as the contact

frequency between users normalized by the total contact frequency

of each user. This ensures a homogeneous analysis, eliminating dif-

ferences between ego networks due to their different duration or

the different frequency of Twitter use of the users. As a measure

of information diffusion, the authors used the volume of retweets
assing through a social link. Therefore, the tie strength between

n ego e and one of its alters a has been calculated as the per-

entage of frequency of replies sent by e to a with respect to the

otal frequency of replies of e . This measure is expressed by the

ollowing equation: 

s e,a = 

reply frequency from e to a 

total reply frequency of e 
. (1)

Similarly, given a link between the ego e and alter a , the fre-

uency of retweets done by e of a ’s tweets has been normalized

y the total retweet frequency of e , as follows: 

i f f e,a = 

link retweet frequency 

ego total retweet frequency 
. (2)

The results of the analysis, reported in Table 3 , indicate that

he correlation between ts e,a and di f f e,a has medium/high values,

nd it increases from the outer to the inner parts of ego networks

from weak to strong ties), with values greater than 0.6 for the

nnermost layer. This confirms the significant level of positive cor-

elation between tie strength and information diffusion at the level

f individual social relationships. Very interestingly, when alters in

ach ego network are divided into human and non-human users

according to the same classification explained in Section 2 ), corre-

ations are significantly higher (close to 0.8 for human alters in the

nnermost layer and always higher than 0.6 for the other layers).

his indicates a significantly different diffusion process for human

nd non-human alters. 

To better investigate the possibility of predicting the rate of in-

ormation diffusion on social relationships from tie strength, the

uthors also performed a regression analysis on the two measures,

y studying the relation between tie strength and information dif-

usion variables, expressed by the following equation. 

i f f = α + β ∗ ts (3)

The estimated parameters found through linear regression for

he equation are reported in Table 3 . It is worth noting that the

alues of β , when human and non-human alters are analyzed sep-

rately, increase from inner to outer layers. This means that, al-

hough tie strength decreases when moving from inner to outer

ayers, the diffusion rate does not decrease at the same pace. This

onfirms the importance of weak ties for information diffusion: all

n all, a strong tie carries a higher flow of information than a weak

ie (this is shown by the positive correlation and by the high values

f β also in inner layers). However, the rate of diffusion “per unit

f tie strength”, i.e., β (since α is always close to 0), is higher for

eak ties. This is a strong indication that information over weak

ies is very precious for the ego, and diffuses less dependently on

he level of tie strength. Moreover, this also explains the lower val-

es of correlation between tie strength and the diffusion rate in

uter layers. Note that, when human and non-human alters are

ixed together, this process is less visible. 

.2. Diffusion models based on ego network structure – multi-hop 

iffusion 

To extend the results previously presented to complete infor-

ation diffusion models, Arnaboldi et al. [50] introduced a novel

nformation diffusion model based on the basic mechanism of the

C model, but with features specifically defined to consider human

ognitive limits on the behavior of single nodes . The model is built

tarting from an OSN graph extracted from a large-scale Facebook

ommunication dataset (Facebook dataset 1), and the probability

f diffusion on each relationship is calculated as the frequency of

ontact between the involved users, normalized with respect to

he maximum value in the network, multiplied by an aging fac-

or equal to (1 − α) n −1 , where n is the time step of the diffusion



V. Arnaboldi et al. / Online Social Networks and Media 1 (2017) 44–55 51 

Table 3 

Information diffusion properties of ego network rings in Twitter, where x and y are ts and 

di f f . r xy is the Pearson’s correlation between x and y and ˆ β and ˆ α are, respectively, the es- 

timated intercept and angular coefficient of a linear model that relates tie strength and the 

diffusion, fitted through linear regression. Each ring is the exclusive part of each ego network 

circle that is not included in any internal circle. 

Ring All alters Human alters Other alters 

r xy 
ˆ β ˆ α r xy 

ˆ β ˆ α r xy 
ˆ β ˆ α

R 1 0.61 0.49 0.03 0.80 0.74 0.03 0.74 0.58 -0.01 

R 2 0.52 0.62 0.01 0.76 0.76 0.02 0.71 0.59 0.02 

R 3 0.44 0.74 0.00 0.72 0.80 0.03 0.67 0.64 0.02 

R 4 0.34 0.97 0.00 0.66 0.85 0.06 0.65 0.72 0.02 

R 5 0.22 1.58 0.00 0.61 0.99 0.09 0.65 0.93 0.03 

Whole net (C5) 0.46 0.57 0.02 0.68 0.83 0.09 0.65 0.78 0.03 

Table 4 

Correlation analysis between nodes and cascades’ properties. 

Node coverage Cascade depth 

α = 0 . 1 α = 0 . 2 α = 0 . 3 α = 0 . 4 α = 0 . 5 α = 0 . 1 α = 0 . 2 α = 0 . 3 α = 0 . 4 α = 0 . 5 

Unweighted social graph 

Degree 0.15 0.14 0.17 0.20 0.23 0.26 0.25 0.27 0.28 0.29 

Clust. coef. 0.05 0.03 0.01 −0 . 02 −0 . 05 −0 . 05 −0 . 05 −0 . 07 −0 . 08 −0 . 11 

PageRank −0 . 09 −0 . 08 −0 . 06 −0 . 05 −0 . 03 −0 . 13 −0 . 11 −0 . 10 −0 . 08 −0 . 07 

Eigenv. cent. 0.32 0.27 0.29 0.30 0.29 0.35 0.34 0.34 0.34 0.33 

Weighted social graph 

Activity 0.68 0.71 0.77 0.83 0.87 0.72 0.75 0.77 0.78 0.79 

Clust. coef. 0.16 0.14 0.11 0.09 0.06 0.09 0.10 0.08 0.06 0.04 

PageRank 0.27 0.31 0.37 0.43 0.49 0.32 0.34 0.36 0.39 0.41 

Eigenv. cent. 0.48 0.57 0.55 0.54 0.51 0.20 0.28 0.29 0.30 0.30 

Burt constr. −0 . 20 −0 . 18 −0 . 21 −0 . 22 −0 . 25 −0 . 35 −0 . 34 −0 . 36 −0 . 37 −0 . 38 
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rocess (as in the original IC model – see Section 3 ), and α con-

rols the speed of aging of information. The model considers, on

he one hand, that the diffusion rate is proportional to tie strength

n the edges between users, which is directly derived from the

ommunication traces in the dataset. In this way, the probability

f diffusion for the relationships of each ego network follows the

ame distribution of the tie strength in the ego network, which, as

e have seen in the previous section, is shaped by cognitive con-

traints. On the other hand, the model considers higher probabili-

ies of diffusion for fresh information, and all the probabilities are

ecreased exponentially as time passes and information gets old.

his behavior is in line with the idea that the cognitive constraints

f the human brain make users prefer to diffuse fresh information

nd discard older messages [15] . Information cascades generated

y the proposed model are more similar to real cascades (i.e., they

how a similar distribution of depth, with long-tailed shape and

 very low probability to produce extremely large cascades) than

hose generated without considering the aging factor (i.e., setting

= 0 , and thus using the standard IC model) [50] . 

Since the diffusion cascades generated by the model presented

n [50] are generally short, in particular for values of α greater

han 0.1, the authors performed also a detailed correlation analysis

etween several centrality indices of the nodes from which these

imited diffusion starts and the size and depth of the resulting dif-

usion cascade trees. As cascades are short, intuitively the length of

he cascades might significantly depend on the local structure of

he ego networks of their seeds. The results, reported in Table 4 ,

how that classical centrality indices of the unweighted network

raph (e.g., node’s degree, local clustering coefficient, PageRank –

onsidering only the existence of social relationships in the net-

ork and not their weight) have very low values of correlation

ith the size and depth of cascades, but when these indices are

alculated on the weighted network graph, thus taking tie strength

nto account, the correlation values are much higher and sufficient

o identify influential spreaders (at least for the short diffusions
nalyzed in the aforementioned work) only using the properties of

heir ego networks. It is worth noting that the network index with

he highest correlation values is the total activity of the user with

espect to its ego network, i.e., the total contact frequency of the

go, calculated as the sum of the frequencies on its links. 

.3. Impact of trusted relationships and ego network layers on 

nformation diffusion in complete OSNs 

.3.1. Network coverage 

Another important aspect we have analyzed on the interplay

etween ego networks and information diffusion is the impact of

ach single layer of the ego network on the diffusion of infor-

ation over the entire OSN. In this case, the basic assumption is

hat tie strength is positively correlated with trust between the

sers having a social relationship. Therefore, layers in an ego net-

ork can be seen as a way to group alters with a similar trust

evel for the ego. Exploiting this concept, the authors of [12] per-

ormed a study on a large-scale Facebook graph (Facebook dataset

), where they incrementally removed edges from the network ac-

ording to their membership with respect to the circles of the ego

etwork of each user. For example, as a first step of the analysis,

hey removed all the relationships outside the active network of

ach user, keeping in the graph only the relationships with a con-

act frequency higher than one contact per year. Then, the authors

tudied the structural properties of the resulting global network

raph to see whether this had the same properties of the orig-

nal graph in terms of its information diffusion capacity. Specifi-

ally, they considered the percentage of nodes that remain in the

iant component of the network, and are thus reachable by infor-

ation propagating in such component, with respect to the total

umber of nodes in the original graph. Note that this analysis is

quivalent to hypothesizing that relationships above a certain level

f trust (identified by the tie strength of the selected ego network

ircle) diffuse information with probability 1, and those below this
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Table 5 

Percentage of nodes of the original graph covered by the largest component for the different graphs created by considering only the specified circles of the 

ego networks of the users. 

Ego network circle remaining in 

the network 

Percentage of nodes (and links) in the original graph present in the reduced graphs 

No reinsertion Highest frequency Lowest frequency Probabilistic Inverse probabilistic Random 

Active network 0.966 (0.219) 0.994 (0.222) 0.994 (0.222) 0.994 (0.222) 0.994 (0.222) 0.994 (0.222) 

Affinity group 0.297 (0.046) 0.714 (0.094) 0.705 (0.093) 0.726 (0.095) 0.722 (0.095) 0.725 (0.095) 

Sympathy group 0.191 (0.028) 0.642 (0.081) 0.634 (0.079) 0.661 (0.082) 0.657 (0.081) 0.661 (0.082) 

Support clique 0.028 (0.004) 0.386 (0.065) 0.385 (0.063) 0.453 (0.066) 0.4 4 4 (0.065) 0.456 (0.065) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 

Average shortest path length of graphs created by considering only the 

specified circles of the ego networks of the users with respect to the orig- 

inal Facebook graph. 

Re-insertion strategy Ego network circle remaining in the network 

Active Affinity Sympathy Support 

network group group clique 

No reinsertion 11.67 10.81 10.51 11.07 

Highest frequency 11.72 11.75 11.95 13.74 

Lowest frequency 11.68 11.93 12.19 16.11 

Probabilistic 11.71 11.95 12.21 16.16 

Inverseprobabilistic 11.71 11.97 12.30 17.42 

Random 11.74 11.95 12.28 17.15 
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threshold never diffuse information. If, after filtering out relation-

ships that are below the selected threshold, a large number of

nodes with respect to the original graph remain inside the giant

component of the network, they will eventually be reached by in-

formation. On the other hand, nodes which end up disconnected

from the giant component are not reachable by information. The

results, reported in Table 5 under the column “No reinsertion”,

show that the graph obtained by removing edges outside the active

networks of the users has a very high percentage of nodes inside

its giant component with respect to the number of nodes in the

original graph (approximately 97% of the original network - against

a deletion of about 78% of the links in the original network). How-

ever, when the next layer of the ego networks is removed, the size

of the giant component in the resulting graph drops to a value un-

der 30% of the size of the original graph. Note that this is obtained

after removing only an additional 15% of links. This means that

limiting the diffusion to the active network of the users does not

excessively restrict the diffusion, even though a lot of links are not

used anymore. But a comparatively much milder reduction of weak

ties inside the active networks of the users significantly limits the

diffusion capacity of the network. This indicates that, while very

weak ties are not too important for supporting information diffu-

sion, those within the active circle of the users are fundamental

for making all nodes reachable from each other. Finally, removing

additional layers further limits information diffusion, reaching less

than 3% of the network when only alters in the support clique are

used. 

Arnaboldi et al. also proposed a strategy for improving network

connectivity for the graphs obtained by using only relationships at

a certain level of trust (i.e., inside a given ego network circle). The

rationale of the study was as follows. Limiting diffusion at a cer-

tain layer means that information propagation can occur only over

links with a certain level of trust. However, based on the results in

Table 5 , this may result in very limited diffusion. Therefore, it is in-

teresting to understand whether a higher diffusion can be achieved

only by including all relationships with lower levels of trust, or it

is sufficient to include only a few of them and, in this case, us-

ing which criterion. The results suggest that even re-inserting in

the network graph a single relationship for each ego network is

sufficient for obtaining significantly larger connected components,

even when only the innermost circles are kept from the origi-

nal graph. They tested several possible strategies to choose the

relationship to re-insert in each ego network, from a completely

random choice (“Random” in Table 5 ) to taking the relationship

with higher (or lower) contact frequency (“Highest Frequency” and

“Lowest Frequency”), or according to a probability proportional (or

inversely proportional) to the contact frequency of the relationship

(“Probabilistic” and “Inverse Probabilistic”). The strategies that pro-

vided the greatest increase of information diffusion, as reported in

Table 5 , are the “Probabilistic” and the “Random” ones. Consider-

ing the cost for the users, i.e., the risk it takes by including less

trustworthy alters in the diffusion process, “Probabilistic” is better

than “Random” since it guarantees that, on average, the re-inserted

nodes have higher trust level than randomly selected nodes. 
w  
.3.2. Average path length 

The analysis presented in [12] considered also a different pos-

ible aspect of the network graphs (obtained by deleting relation-

hips outside a specific ego-network circle) to quantify their capac-

ty of diffusing information. Specifically, the authors took into ac-

ount the average weighted path length of the giant components

f the resulting graphs as a measure of how easily information

an circulate inside them. To this end, the inverse of tie strength is

onsidered as the cost associated to each link, or, in other words,

he cost for a user to share a message over that link. The cost of a

ath is therefore a measure of the “lack of trust” or of the amount

f resources to be spent to guarantee trusted communications be-

ween users, considering the type of social relationship between

hem. For each pair of nodes in the network, the best path be-

ween the nodes is selected as the path with lowest total cost with

espect to all the other possible paths. The average path lengths

thus the number of relationships in the least cost paths) for the

ifferent graphs are reported in Table 6 . For comparison, the av-

rage path length of the original unweighted graph is around 5,

s reported, e.g., in [17,51] . Moreover, the average path length on

he entire weighted graph (i.e., including weak ties outside of the

ctive networks) is about 10. When removing parts of the active

etwork, the average path length only slightly increases with re-

pect to the entire weighted networks. Specifically, it is always ap-

roximately equal to the one over the unweighted graph. Interest-

ngly, the length of the shortest path does not depend much on

he set of layers excluded from the diffusion process, or on the re-

nsertion policy. Note, however, that when only more internal lay-

rs are used, the coverage is significantly lower (see Table 5 ). Thus,

lthough information “travels” approximately the same number of

ops, it remains “trapped” close to where it originated. 

One of the most interesting results from Table 6 is that the

ath length is much higher than what one would expect on the

nweighted graph, showing that, when considering trusted paths,

sers are significantly farther away from each other than the well-

nown anecdotal six degrees of separation, a conclusion that has

een confirmed by recent analyses of the Facebook unweighted

raph [17] . This is because, when one considers a cost associated

ith information propagation, which is determined by the strength
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f social ties, weak ties become much less used than strong ties.

herefore, instead of using weak ties to bridge across distant ar-

as of the social network, information is diffused through a higher

umber of stronger relationships (through which there is a higher

robability of diffusion), which however are not able to propagate

nformation across the network as quickly as weak ties would do. 

. Conclusion and future research directions 

In this paper we have presented our most recent work on the

haracterization of the structural properties of social relationships

n OSNs, and how they depend on human cognitive and time con-

traints. From our analyses, we have seen that the properties of

go networks in OSNs are compatible with those found in offline

nvironments. This indicates that the hierarchical structure of con-

entric layers of alters around the ego is consistent among different

ocial environments, and is not influenced by the use of a particu-

ar communication medium. This is a clear indication that human

ognitive and time constraints shape social relationships not only

n offline environments, but also in OSNs, in contrast to the con-

entional wisdom that OSNs are able to improve our social capac-

ty and allow us to maintain a much larger number of relationships

han is possible “offline”. 

In addition, we have shown that the structural properties of on-

ine ego networks can be used to understand in detail the process

f information diffusion in OSNs, and to create more accurate pre-

ictive diffusion models. Tie strength is highly correlated with the

mount of information that flows through each link, even though

he correlation is higher for inner layers. This is consistent with the

ell-known Granovetter’s results, that showed that strong ties can

arry a significant amount of information, although weak ties are

lso important for acquiring diversity of information (confirmed in

ur findings by the comparatively lower correlation between tie

trength and amount of information). Moreover, properties of ego

etworks are highly correlated with the depth and size of infor-

ation cascades originated from the ego. Finally, we have assessed

he impact of tie strength on the diffusion of trusted information,

howing that the well-known result about six (or fewer) degrees

f separation does not hold when information can flow only over

ocial relationships above a certain level of trust. 

The relevance of ego-network structure in the study of OSN

roperties opens several research directions. An aspect that has not

een discussed in this paper, but that can be important for further

mproving information diffusion models, is the creation of genera-

ive models of social networks (i.e., models able to generate syn-

hetic social network graphs) with properties similar to those of

eal social networks. Adding features related to the structural prop-

rties of ego networks in the models can lead to social network

raphs with structures that reproduce those found in real (online)

ocial networks in a more accurate way. For example, [52,53] pro-

ose a new generative model of social network graphs able to cre-

te a synthetic weighted network with a set of microscopic (ego

etwork) and macroscopic (complete network) properties given as

nput. According to the model, an ego network for each user is

uilt iteratively following a set of distributions for the sizes of the

go networks and of their circles, and for tie strength. While they

re being generated, ego networks are also combined together,

orming a complete social network graph. To do so, each ego is

ssociated with an agent, that, at discrete steps, adds a new al-

er into its ego network, placing it in one of its circles according

o the defined distributions. Each agent stops when its ego net-

ork reaches the size that has been assigned to it. At each step,

he agents that have not yet completed their ego network select a

ew node to connect to. As reported in [52,53] , this model is able

o reproduce both macroscopic and microscopic properties of ref-

rence networks on which it has been validated. In particular, as
emonstrated through a detailed validation performed on a large-

cale Facebook dataset (Facebook dataset 1), the model preserves

he nodes’ degree distribution, the average shortest path length,

nd the clustering coefficient of the reference networks. The graph

enerated by the model also preserves the fundamental properties

f the ego network model and the size and tie strength distribution

f the layers compatible with those of the reference network. The

ynthetic social network graphs generated by this method are very

ersatile tools to analyze in silico the information diffusion process

n social network graphs with different possible structures, and to

nd a possible relation between these structures and the intrinsic

apacity of the network to diffuse contents. 

The dependence of information diffusion on the trust of so-

ial relationships discussed in Section 4 can have also a signifi-

ant impact on the design of novel social networking platforms

uch as Distributed Online Social Networks (DOSN), as discussed

n [12] . Examples of DOSN include Diaspora [54] , Peerson [55] and

afebook [56] . DOSN implement the functionalities of OSN plat-

orms, but in a completely decentralized way. In fact, personal data

f the users and the content they exchange is stored directly on

heir devices, without the need of any third party server to op-

rate the social networking platform. This provides much more

ontrol to the user over their personal information, but requires

aching and replication techniques to guarantee data availability.

n fact, nodes can suffer disconnections from the network or may

e switched off for long periods. A typical solution to achieve data

vailability in DOSN is to replicate data on ‘trusted’ peers – i.e.,

ach user gives a copy of its data to one or more nodes in the

etwork with which it has a level of trust higher than a certain

hreshold, so as to avoid sending personal information to untrust-

orthy and potentially fraudulent nodes. The results of the analysis

reviously presented indicate that, with an appropriate design, by

hoosing these nodes within the active network of each user, and

ven by using only some of the ego network layers (plus a few ad-

itional selected relationships outside them), does not significantly

revent information from being reachable from any other parts of

he network. This is the concept at the basis of the work presented

n [57] , where the authors implemented a DOSN with a replication

trategy based on the structural properties of the ego networks of

he users. Nodes chosen for hosting data replicas can change dy-

amically according to users’ churn, but are always picked among

he active network of each user. The results of the work showed

hat with a maximum of 2 replicas for each user with at least 40

ocial relationships, data availability is always higher than 90%. 

As another promising future research direction, the structural

go network indices presented in this paper can be used to im-

rove data availability also in other types of social-oriented net-

orking systems, such as Mobile Social Networks (MSN). In MSN,

sers directly generate and share contents with nearby users in

eal time by exploiting the physical interactions of their personal

obile devices such as smartphones by exploiting opportunistic

etworking techniques [58] . Knowledge about the structural prop-

rties of ego networks could both improve the accuracy of data

issemination in MSN, and can make it more easily adaptable to

ifferent social contexts. For example, the exchange of information

etween users in proximity through opportunistic networks can be

ptimized by relying on social circle cognitive heuristics applied to

nformation diffusion policies [59] . Social circle heuristics are mod-

ls of human cognitive functions developed in the cognitive psy-

hology research community, to describe the mental mechanisms

hat induce an individual to acquire information as an effect of

he availability of the same information on its social neighbors.

elationships in the ‘social circles’ of each individual have differ-

nt influence on its information acquisition actions. In [59] , the

uthors implement a completely decentralized and self-organizing

lgorithm whereby nodes, upon encountering with each other,
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decide which information to exchange based on a decision process

determined by the social circle cognitive heuristics. Performance

results show that this approach, compared to algorithms that do

not exploit knowledge about the social structures of users rela-

tionships, is able to obtain a similar level of efficiency in terms

of information diffusion, but with a drastic reduction in terms of

nodes’ and network resources, i.e., generated traffic and storage

space used at each node. 
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