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Dispersive Properties of Optical
Filters for WDM Systems

G. Lenz, B. J. Eggleton, C. R. Giles, C. K. Madsen, and R. E. Slusher

Abstract—Wavelength division multiplexing (WDM) commu- systems is an absorption filter for frequency standards and
nication systems invariably require good optical filters meeting frequency stabilization. These filters are usually materials with
stringent requirements on their amplitude response, the ideal a very narrow absorption line (see, e.g., [7] where an acetylene

being a perfectly rectangular filter. To achieve high bandwidth SR ) . . .
utilization, the phase response of these filters is of equal im- molecular line is used). We will not discuss absorption filters

portance, with the ideal filter having perfectly linear phase and further in this paper, since their dispersive properties are well
therefore constant time delay and no dispersion. This aspect of understood and obey the KramerséKig relations.

optical filters for WDM systems has not received much attention The amplitude response is usually constrained by system
until very recently. It is the objective of this paper to consider cqngjgerations in a number of ways: 1) insertion loss—total

the phase response and resulting dispersion of optical filters in - __ L
general and their impact on WDM system performance. To this loss in the passband of the filter; 2) crosstalk—rejection of

end we use general concepts from linear systems, in particular, OUt-of-band signals; 3) sharpness—*“steepness” of the filter
minimum and nonminimum phase response and the applicability edges; and 4) spectral structure both in the passband (e.g.,
of Hilbert transforms (also known as Kramers—Kronig relations).  ripple and flatness) and outside the passband (e.qg., side lobes).
We analyze three different classes of optical filters, which are Of equal importance is the phase response of a filter which

currently being used in WDM systems and compare their per- . . . . .
formance in terms of their phase response. Finally, we consider is responsible for total time delay through the filter (first

possible ways of linearizing the phase response without affecting derivative of the spectral phase) and dispersion-induced pulse
the amplitude response, in an attempt to approximate the ideal distortion (second and higher derivatives of the spectral phase

filter and achieve the highest bandwidth utilization. response). While the amplitude response of the above filters
Index Terms—Dispersive channels, gratings, waveguide filters, iS Well understood and has received much attention, the phase
wavelength division multiplexing. response has only recently been investigated in the context of

communication systems [8], [9].

While dispersion effects and dispersion compensation in
optical fiber systems has been an active area of research (see

AVELENGTH division multiplexing (WDM) is be- e g. [10]), the dispersion associated with the filtering elements
coming pervasive in optical communication systemsn the system have not been studied in detail. The purpose

Key optical components in these systems are those that pgfi-this paper is to clarify the consequences of the phase
form the function of combining (multiplexing) different wave-response of optical filters, compare their performance in terms
length channels and splitting (demultiplexing) them. Congf their dispersive properties, and consider the impact of their
bining different wavelengths is a relatively simple task angispersion on WDM systems. Many of these issues have been
can be achieved with a component such as a star coupigtplored and explained in the field of electrical engineering, in
Demultiplexing requires optical spectral filters and is a mug§articular in areas such as electrical circuit theory and digital
more challenging problem when real system constraints &jignal processing, and we shall make use of some of this body
applied. of knowledge and apply it to optical filters. Some work has

In recent years, a number of candidates for this filteringeen done in this area previously (see, e.g., [11]), however,
function have been proposed and implemented and can there has not been a systematic study and explanation of the
divided broadly into three categories: 1) Mach—Zehnder intedispersive properties of different optical filters.
ferometer (MZI) based devices which include the waveguide To understand the impact of these dispersive properties, we
grating router (WGR) [1] and the Fourier filters [2]; 2) thin-may think of a single channel carrying information at a given
film filters (TFF’s) which include multiple cavity transmissionpit rate passing through a dispersive filter. The dispersion
filters [3], Fabry—Perot filters, and ring resonator filters [4]; angduces broadening and distortion of the bits, which ultimately
3) fiber Bragg gratings (FBG's), including apodized [5] angkad to transmission errors (for a detailed discussion of these
chirped gratings [6]. We will designate these as class |, Il, argfects when the filter is an apodized fiber grating, see [8]).
Il filters, respectively. Another filter type that is used in WDMdeally, we would like a filter having a rectangular amplitude
response and zero dispersion (which corresponds to linear
Spectral phase over the filter's passband), i.e., a spectral

I. INTRODUCTION

Manuscript received January 9, 1998; revised April 16, 1998.
G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher are with B

Laboratories, Lucent Technologies, Murray Hill, NJ 07974 USA. response of the form
C. R. Giles is with Bell Laboratories, Lucent Technologies, Holmdel, NJ s
e T w|<w
07733 USA. H(w) — ) e (1)
Publisher Item Identifier S 0018-9197(98)05419-0. 0, otherwise

0018-9197/98$10.001 1998 IEEE



LENZ et al. DISPERSIVE PROPERTIES OF OPTICAL FILTERS FOR WDM SYSTEMS 1391

where H(w) is the complex frequency response (complex s plane zplane
transmission). is the cutoff frequency (the bandwidth of imaginary
the filter is2w,), andT is the group delay through the filter. s N gt unit circle
Note, also, that we treat here a low-pass filter rather than a x \/
bandpass filter centered at the optical frequency. This type

of filter would let us pack the different wavelength channels K
as close as possible without crosstalk or dispersion penalties o 1gif
leading to a spectral efficiency or bandwidth utilization of 1
b't/S/_HZ ("e'_' channel bit rate- channel spacing) W_'thOUt any_Fig. 1. Schematic of the complex plane (using rectangular coordinates)
special coding scheme. It can be shown (by direct Fouri@mmonly used analog filter design and the compieglane (using polar
transformation), however, that this type of filter is a noncausggordinates) commonly used in digital filter design. There is a conformal
fiter (which can have an outpikefore an input is applied). TaPRn9 beteen hese two planes, which i been used to st the
We would therefore like to approximate such an ideal filter as o).

closely as possible.

The paper is structured as follows. In Section II, we will 4 5 corresponding system functidfi(z) which is the z

discus_s_ the cancept O_f minimum phase filters _(MPF,S)_aQPansform ofh(n). There is a simple bilinear transformation
nonminimum phase filters. For MPF's there is a UNiqugyr conformal mapping) given by

relationship between the amplitude response and the phase

response. If the amplitude response is known or measured _1+(T/2)s )

<

for such a filter, the phase response can be derived using a 1 (T/2)s

linear transformation known as the Hilbert transform (whicthat maps thes plane onto the: plane: the right half of the

is related to the well-known Kramers-&frig relations in s plane maps onto the outside of the unit circle, the left half
optical physics). Section Il will compare the phase response@f the s plane maps onto the inside of the unit circle and the
the three different classes of optical filters introduced earlighaginary axis in thes plane maps onto the unit circle in the
and consider the consequences of the associated dispersigflane. To get the frequency respongé(z) is evaluated
for WDM systems. In Section IV, we will discuss ways ofon the unit circle, i.e., setting = ¢/“. To clarify these
designing low dispersion and dispersionless filters by usiggncepts, Fig. 1 shows a schematic of both shelane and
non-MPF’s (which is also a well-known technique used bihe » plane. In the following discussions it will be understood
electrical engineers in analog and digital filter design) anflat anything said aboui (s) and H(w) applies toH(z) and
the feasibility of such filters. Section V will offer our con- H(e#+) with the above mapping. Note also that we will adhere
clusions. Appendixes A-D contain a number of mathematicg the conventions of digital filters whete is the frequency

appendices relevant to the discussions in this paper. normalized to the unit delay".
For a linear system to be causal, there is an added constraint,
II. MINIMUM PHASE FILTERS namely h(t) = 0 for t <0, and for the system to be stable

In this section we will introduce the important concept que area” undenh(f)| must be finite (we will consider only

o : . “passive systems containing no gain). It is well known that
minimum phase systems where the phase response is uniqte oo ; ; . :
. : S cadsality implies dispersion [12], [13] and that there is a unique
determined by the amplitude response. We will discuss jn, .. . .
. . .~ relation between the real and imaginary parts of the frequency
some detail the properties of such systems and point qu . S d
: . ..~ response. This relation is known as a Hilbert transform and can
the important differences between them and nonminimu

phase systems. This formalism will then be applied to opticalSRe applied to the real part of the frequency response to get the

filters. In Section II-A we introduce the notation and term'smagmary partf the corresp_ondmgh(t) Is real, stable, aqd
) - : . causal. It would seem that if we take the natural logarithm
of linear systems (analog and digital). Section II-B is a .
; . . 4 - of H(w) = |H(w)|exp (j¢p(w)) we would be able to apply
more technical discussion of the properties of minimum phase | . X
. ; . . . . he Hilbert transform tdn |H(w)| to get$(w) and that this
systems. Finally, in Section 1I-C, we discuss optical filters in

L L =~ relation would also bainique However, for this to be true,
the context of minimum phase and nonminimum phase Imeg . .
systems (t), the inverse Fourier transform bf (H(w)), must be real,

stable, and causal. If this is the case the system is said to be
, o minimum phase (for reasons that will be explained later). Bode
A. Hilbert Transforms in Linear Systems was the first to point out the minimum phase condition. He also
Filters are linear systems which are completely charactashowed that systems meeting this condition are a subclass of
ized by their impulse response functidi(¢). The system all linear systems for which Hilbert transforms may be used
function is the Laplace transform df(t) and is a function [14]. X
of the complex variables also known as the complex fre- Note thath(t) may be causal whilé(t) is noncausal, in
quency. The frequency responiéw) = |H(w)|exp (¢(w)) which case the system is said to be nonminimum phase and the
is derived by evaluatingd(s) on the imaginary axis in Hilbert transform maynot be applied. In areas such as optical
the complexs plane, i.e., settings = jw in H(s). An physics where the Kramers-#ig relations (an equivalent
alternative representation used in digital filter theory h@s) form of the Hilbert transform) are used between absorption
as the discrete impulse response function defined at titfies (amplitude response}H (w)|) and refractive index (phase
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response—-#{w)), the frequency response is always of the min- The problem of filters with zerosnly on the imaginary
imum phase type. In fact, material dispersion is fundamentabixis is an important one, since many optical filters of interest
different than geometrically induced or structurally induceblave zeros in their frequency respor{sH (w)| = 0 for some
dispersion, which we are considering in this paper. Adjustahble. Strictly speaking, these are non-MPF’s as can be seen by
geometrically induced dispersion can be found in many optitoking at the inverse of these filters. However, it has been
applications such as waveguide dispersion in fibers [15] apdinted out that in some limited sense these should also be
the so-called zero dispersion compressor [16], commonly ussghsidered MPF’s (see discussion in [18]). It should also be
in the field of femtosecond optics. Material dispersion comemted that adding an infinitesimal amount of loss will shift
from absorption resonances (even irsiagle atom) and so these zeros to the left-half plane, making them MPF's to
terms like reflection, for example, are meaningless in thighich the Hilbert transform may now be applied. To avoid
context but are very important in the context of some of thtis problem altogether, we will just add a very small loss to
non-MPF’s that we will discuss. For an alternative discussidhese types of filters and treat them as MPF’s. Once a filter
of non-MP systems and Kramers-é€ig relations, see [17]. is identified as a MPF to which Hilbert transforms may be
applied, some very general statements may be made about the
relationship between the amplitude and phase response. This

B. Properties of MPE’s will help us in the comparison of different optical filters.

Having defined MPF's, we now look at some of thei Optical Filters
properties. .

1) MPF'’s are filters for whichH (s) # 0 for all s >0, i.e.,
which have nazerosin the right-half plane. Filters that

For the case obpticalfilters, a few more comments have to
be made about the finite bandwidth and the material dispersion.

have zeros only on the imaginary axis (i.e., real zerd e will assume that thematerial dispersion is negligible,

in the frequency response) are a special case and v\t\fY | 'Ch I?I etquwalent to thle statg mznt.(tﬂﬁt mgtgr|al abslclnrpt-
be discussed later. ion is flat over a very large bandwidth (this is usually true

2) It can be shown that any MPF can be followed by 4R the transparent regions far from any absorption peaks). In

arbitrary number of different all-pass filters, which OIOother words, we will be mainly interested in the dispersion

not affect the amplitude response but do modify th
phase response. This is common practice in electroﬁ
filter design, when phase linearization is required. A
all-pass filter is defined as one having zeros in t
right-half plane and corresponding poles symmetrical
around the imaginary axis in the left-half plane. It i

easily shown that such filters have a pure phase respon S .
y pure p b esponse of the material is essentially constant.

This can be shown with the help of equation (DZS All of the optical filters we will consider may be modeled

in the appendix dealing with all-pass filters: by takin o ,
the magnitude of that expression we get a frequen%\z digital flltlers and the exact frequency requpse of_the filters
can be derived fromH(z) evaluated at: = ¢“. In linear

independent amplituder with a frequency dependent ¢ th . . led . f
phase (the issue of finite bandwidth in real optical filterdySteMs theory, In some caségn) is a sampied version o
will be addressed later). a continuous:(t) (evaluated at = nT")—this is not the case

3) The infinite number of non-MPF’s derived from a MPI’—here' Therefore, we d_o npt need to worry about going back to
(by following it with any combination of all-pass filters)the continuousg:(t), satisfying the sampling theorem, etc. [20].

have greater phase lag than the original MPF ahy In the following discussions on optical filter we will restrict

point in frequency as well agreatertime delay (defined ou1r_selr\7/1e|s( tcihciilsgzete S)?S:’]errnns'r ncrete we show ol
ast = —dp/dw). In other words, MPF’s are not only .0 Make IS dISCUSSIon more concrete we Show a simple

.- L optical filter, which is a non-MPF. The filter consists of a
minimum phase but also minimum delay. %in dielectric film of refractive index:> and thicknessd,

4) For MPF's the difference between the phase at ze ) S . .
frequency and infinite frequency is smaller than that f?dW'Ched betwee_n two semi-infinite m‘?d'a of refractive
indicesn; and nz with ns >n3 >n;. We will look at the

any non-MPF derived from it. This, in conjunction with

the previous remark, means that the phase of a MPFclgmpIex reflection coefficient when reflecting off one side as
constrained to the n’arrowest range in phase compared to reflecting off the opposite side. As will be shown,

: . . the amplitude response is identical, yet the phase response is
5) The inverse of a MPF (i.el/H(s)) is also a MPF very different. When the incident light is coming from the

(non-MPF’s, having zeros in the right-half plane, will ide. th | flecti b it foll )
give right-half plane poles when inverted and lead to apjoe: (he compiex reflection may be wiitten as 1ollows.

unstable system). (q—p)cosé —i(1— gp)siné
The great advantage of non-MPF’s is that the phase response "= (q+ p) cos 6 +i(1+ qp)sin 6 (3)
may be adjusted without changing the amplitude characteris-
tics, in particular, the phase may be linearized to give constamtereq = n; /na, p = ng/n2, andé = (2w /A)nad. When the

delay and therefore no dispersion. light is incident from thens side, ¢ andp are interchanged.

nd amplitude response associated with the filter itself (i.e.,
e structurally induced dispersion defined earlier) and ignore
e small corrections arising from the spectral response of the
aterial. Note also that in WDM systems the required filters
ave a typical bandwidth of the order of 1 nm. Even over the
hole system bandwidth, constrained currently by the 80-nm
%ndwidth of erbium-doped fiber amplifiers [19], the spectral
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p q response. This result may be written as follows [14]:

M nz ns LdA ol
P— — B@C)—;/_m@ meoth 557 du @

min. phase max. phase
wherew = In(w/w,) is a normalized frequency and and
Log of reflectivity B are a Hilbert transform pair—real and imaginary part or
>8-i(5) logarithm of magnitude and phase. This may be understood
2 o5 as follows: the phase at frequengy depends on the slope of
8030 the amplitude response at all points of the spectrum weighted
& 0.25 by the factorlu coth |w«/2| = In [(w + w.)/(w — w.)|. This
0.20 Y, . , ; . . - weighting factor is strongly peaked at= 0 (w = w.) and
6 4 Normalizeq frequency 4 6 is equal to2(w./w) and 2(w/w,) for frequencies far above
N and beloww,., respectively. A number of conclusions may be
04 Minimum phase drawn from this relation: 1) features in the amplitude response
S o2 which are “far away” fromw. do not contribute much to
% 0.0 the phase response at this frequency; 2) the above relation
§_02 also implies that a constant amplitude response implies linear
e - phase; and 3) since corresponds to a logarithmic frequency
04 A W 5 M M 1 5 scale, we can plot the amplitude response on such a scale
Normalized frequency and examine its derivative in the vicinity of the frequency
Non-minimum phase where we want tq evaluate the phase. Over a narrow §pectral
25 range the weighting factor can be taken to be approximately
T 20 constant so that the weighting function may be taken out of
S the integral. The phase is then directly related to ¢hange
§1g in the amplitude response.
= . : : . . . The last point is of great importance since it relates the slope
-6 -4 4 6 of the amplitude response to the phase response. When the

-2 [4] 2
Normalized . .
ormalized frequency amplitude response changes radically (e.g., near the passband

Fig. 2. Example of a nonminimum phase optical filter. The filter consists &dges), the phase will change correspondingly going from the

a thin film with refractive index:» surrounded by two semi-infinite media approximately linear phase to one containing higher order
with refractive indexnz andn; such thaty = 0.5 andp = 0.75 in (3). The

amplitude response is the same regardless of the input direction, however,tﬁ’]'gn? leading to di_sper_sion. The result is .that E?S the ideal

phase of the reflection depends on the input side—from the low index sigenplitude characteristic is approached, the dispersion increases

the phase response corresponds to th_e minim‘um phase response,‘but fropé®r the band edges. This is illustrated in Fig. 3 for the

high index side the phase response is nonminimum phase (and is shown fo . . .. .

be the maximum phase response). ideal rectangular filter showing a phase characteristic, which
is highly nonlinear as the passband edges are approached,

ultimately diverging at the band edges. Again, since this result

will change upon an interchange g@fandp. Fig. 2 shows the pehavior.

amplitude response (which is the same from both sides) and
the phase response of the reflection from the two different
sides. It can be shown by applying the Hilbert transform to . ) ) N
In |r(w)| that the resulting phase response is identical to theln the |_ntroduct|on we have identified thre_e broad classes
one derived from (3) when incident from the lower index sig®f WDM filters currently in use or under consideration. Class

ns. This means that from the lower index side we get thIefilters are transmission filters in which inherently there is

minimum phase response and from the higher index side na light lost to reflection. Class | filters are also very similar

get a nonminimum phase reflection response (which will Iattor.electromc digital finite impulse response (FIR) filters [20];

. is statement and its implications will be discussed in greater
be shown to be the so-called maximum phase response). Of I .
detail later. Note also that these are parallel devices—to

examples of nonminimum phase response of optical filters ‘Hgmultiplex many wavelengths doest require many devices
given in [11], notably the Gires—Tournois interferometer, f% series

which the system function contains zeros in the right-Balf  cja55 | filters are in general transmission filters and are
plane (since it is a purely reflective filter by design [21], it igyso known as interference filters. To create Archannel
a special case of class Ill rather than class Il filters). In tRgpm component, many of these individual filters have to
following section, we will discuss why non-MPF response cafe cascaded serially and in this case the wavelength that is
be foundonly in reflection responses of class Il and Il filterstransmitted through the last filter in the series has undergone
but not in their transmission response. N — 1 reflections off the previous filters. These multiple
A final very useful result that applies exclusively to MPF'seflections will be significant when the neighboring channel
relates the derivative of the amplitude response to the phaligpersion is considered.

I1l. WDM FILTER COMPARISON
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Fig. 3. Phase response (dotted line) of the ideal rectangular filter (solid line) assuming the filter is a MPF, so that this phase response magde calculat
by applying the Hilbert transform to the logarithm of the magnitude of the amplitude response. As the edges of the passband are approached, the phase
becomes nonlinear and diverges at the edges.

Class lll filters are in some sense similar to class Il filters o+
in that their operation is based on interference effects from
multiple “layers.” Class lll filters are typically reflective filters -5+
and the achievable refractive index contrast ratio of a grating is
much smaller than the one possible with dielectric stacks use@l
in class Il filters. Here, as in class Il filters, the dispersives
effects of the filter on neighboring channels are significantg '15_;
especially when many individual devices are cascaded in :&
serial manner.

-10 4 e

(peJ) eseyq

20 —

-25

A. Class | Filters (WGR- and MZI-Based Filters)
-30 T

We now turn to a more detailed analysis of these filter w4 —u8 0 w8 w4
classes specifically looking at the dispersion effects on the Normalized Frequency (rad)
filtered channel as well as the effects on the neighborimgy 4. The effects of adding loss to the simple WGR. The dotted line
channels. We first consider class | filters and in particular logkmpares the amplitude response with and without loss and the solid line the

at the WGR as a representative of this class. Essentially, §3gPares the phase response. Equation (5) was usedwithi G, h(n) = 1.

. . . . . and w was replaced byw — j0.01 to illustrate the effects of loss. This
response of this device is a sum of a finite number of weightg@ghiies a relative transmission loss between the WGR arms 8% which is
fixed delays and may be written as unrealistically large. Typically the phase response departs from linearity when

the transmission is down 20 dB or more.

N-1
H(w) =Y h(n)e /" (®) 0<n< N — 1. Using (5), the response is given by
n=0
I _ 1—exp(—jwN)
whereh(n) is the discrete impulse respongé,is the number (w) = 1 — exp (—jw)
of WGR arms, and is the normalized frequency. This type of . sin (Nw/2)
response is well known in digital filters and the corresponding = exp (—jw(N - 1)/ )W- (6)

filter is called a finite impulse response (FIR) filter. From this

expression we can also immediately see that the responséssexpected for reals, the phase is linear. The loss was
periodic since replacing by w + 27k (k integer) will not introduced by adding a small constant imaginary part to the
change the response. For this type of filter it can be shovdrequencyw. It is interesting to note that aN-stage cascaded
(see Appendix A) that ifi(n) = h(N — 1 — n) then the filter MZI with delays doubling in successive stages has exactly
hasexactlylinear phase. In this case the filter is non-MPF sindbie same response af¥-arm WGR (see [21], which treats
H(z) has zeros which are not inside the unit circle. When th@refringent Lyot—-Ohman filters that are equivalent to cascaded
only zeros ar@nthe unit circle, as in standard WGR'’s, a smalMZI's). For this WGR example, we have used a square
realistic loss may be introduced with the effect of shifting theveighting function or window, i.e., all the arms are illuminated
zeros inside the unit circle, thereby making the filter a MPRuith the same intensity. A more realistic window function is a
This results in only very small dispersion (i.e., departure fro@aussian distribution since it is the natural result of the light
phase linearity) at the very edges of the filter passband. Thiiffracting in the first free-space coupler region of the router
is demonstrated in Fig. 4 for the case whéie) = 1 for before entering the fixed delay waveguides. For lakgethe
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Fig. 5. The measured transmission spectrum and group delay of a WGR 5
with flattened passband. As can be seen, the group delay is constant (zero 0
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dispersion) over most of the passband. Dispersion sets in at the points where 600 -400 200 O 200 400 600
the transmission is about 20 dB down from the peak. This dispersion is Frequency (GH
attributed to various loss mechanisms, which constitute a departure from the quency (GHz)
ideal dispersionless behavior of these devices. (b)

Fig. 6. (a) The transmission spectrum and (b) group delay of a TFF with
h(n) may be taken as a binomial distribution to approximatéree cavities (thin line) and five cavities (thick line). Each cavity contains two
. S . . . guarter-wave stacks spaced by one half-wave layer, and each stack contains
a Gaussian distribution for which the response is seven periods with refractive indices = 1.445 andno = 2.4. Increasing
the number of cavities gives a squarer transmission but comes at a price of
ripple in the passband and higher dispersion near the passband edges.

N—-1

n=0
 oN—1 . _ high index ratio is a very large stopband (fractional bandwidth
=2 e;\i?l( Jw(N =1)/2) Aw/w of about 1/3), however, the transmission peak width
" COS (w/2). (7) is on the order of 1 nm, which means we can analyze

) o the transmission peak alone, ignoring the small dispersion
Here again the phase is linear because of the symmetryghriputions from the distant stopband edges. It has been

the binomial distribution. This demonstrates that even for th@,own that for a general thin film filter with arbitrary layer
more realistic models of the WGR the phase is still inherentlyrcture thetransmissionresponse is an all pole response,
linear and the device is practically dispersionless. The small it hasno zeros and therefore is by definition minimum
dlspersm_n that_ls typically fom_md in the measurement of tr_‘eﬁﬁase [22] (see Appendix C). The simplest example is a
devices is attributed to residual losses in the waveguidegmmetric Fabry—Perot filter, which has a complex amplitude
coupling efficiencies into the output wavggmdes_, etc. Fig. pansmissiont = Texp (—i¢)/(1— Rexp(—2i$)) [20], where
shows the results of such a measurement in a device which Wa$ing 7 are the reflectance and transmittance, respectively,
also designed to achieve flatter passbands, however, this %d) is the frequency-dependent phase accumulated in one
not change the inherent linear phase characteristic as is eVid(ﬁBtthrough the filter. Obviously, there i® frequency (real or
from the very constant delay over most of the passband. complex) forR # 1 that will result in a pole irt. Using matrix

_ F_mall;_/, since Class_l filters are esse_nnally FIR digital f”?erstechniques as in [22] to get the exact transmission response, it
digital signal processing (DSP) techniques may be applied i, pe easily verified that the multiple cavity filters in general
these filters to improve their amplitude characteristics Withoybye no zeros in their transmission response and are indeed

affecting the linear phase property. This will be discussqfprs. As explained earlier, this means that steepening the

further in the next section. filter's edge by increasing the number of cavities will not only
add ripple in the passband but also increase the dispersion
near the edges [see (4)]. Fig. 6 shows the amplitude and phase
We now turn to class Il filters and in particular we willresponse of a three- and five-cavity filter.
consider the multiple cavity TFF's [3]. These filters are made Although the transmission response of these filters is very
of dielectric layers with a very high refractive index contradgtmportant, we cannot ignore the reflection response, since
(typically An ~ 1). A quarter-wave stack with a quarterfor a demultiplexer one needs to cascade a number of these
wave shift in its center creates a resonant transmission in fiiers in series. This means that the phase response of the
stopband of the stack and because of the high index ratio théflection may introduce dispersion in a neighboring channel.
may be accomplished with a relatively small number of layer§his may cause distortion in that channel and ultimately lead
By growing a number of such cavities (typically 3-5) on top afo errors. An analogous situation happens with FBG’s where
each other, this transmission peak may be “squared” but at the neighboringransmittedchannel may suffer a dispersion-
expense of added ripple in the passband, which gets worse viitluced penalty [8]. We will discuss this in more detail in the
increasing number of cavities. Another consequence of tbentext of class Ill filters.

B. Class Il Filters (Interference Type Filters)
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Finally, we make some general remarks about class Il filteiisal semi-infinite media. Using (8) we see that the response
some of which will also apply to class Il filters. As was showifiunction contains a single zero and a single pole. Since the
in [22], any optical multilayer structure’s reflection responssingle zero is atz = 1 the filter is a MPF in reflection.
may be written as a digital filter response of the form When the filter is asymmetric, i.e., a thin film sandwiched

between twdifferentmedia, the location of the zero depends
on the input side. When reflecting off the low index side the

Zbkz * zero is inside the unit circle at somg and the response is
H(z) = (8) minimum phase. When reflecting off the high index side the
1_ Zaz/—"‘ zero is outside the unit circle af =7 (here the asterisk denotes
complex conjugation) and the response is nonminimum phase

and in fact is known as maximum phase (minimum phase has

where thea,’'s and by's are constants derived from thedll the zeros inside the unit circle; similarly maximum phase
reflection coefficients between the different layers ahi the has all its zeros outside the unit circle). As mentioned in the
total number of layers. The transmission response as discusgeayious section, the amplitude response is the same regardless
above will have only poles (at the same places as the reflect@fninput side and the Hilbert transform would yield the right
response) and no zeros, making it a minimum phase resporatswer only for one side (the minimum phase side).
The response as written above assumes that all the layers haJ@ general, spatially asymmetric structures in reflection will
the same optical thickness, but can easily be generalizedbgsnonminimum phase at least from one side. If the response
shown in [22]. The frequency response [(8) with= ¢/*] is from one side has zeros both in and outside the unit circle,
periodic for the same reason that class | filters are periodicit Will have the “mirror image” zeros when reflecting off
To see the effects of a given system function on the phaée opposite side. The zeros that were inside will now be
response and the dispersion, we can look at how the struct@késide the unit circle and vice versa accordingte- 1/z;.
of the system function affects the group delay of the filter (sé@llowing [22] we find that going from the reflection off one
Appendix B for a detailed discussion). The total group deldjde to the reflection off the other side involves changing the
can be shown to be the sum of the delays due to the functiofiign of all the reflection coefficients and reversing the order
poles minus the function’s zeros. It can also be shown that B matrix multiplication. Since these matrices generally do
major contributions to this delay come from poles and zer®®t commute, it is easy to see why the reflection response
located close to the unit circle and that the delay is peakediata spatially asymmetric structure would be different when
frequencies close to the locations of those poles and zerogi€flecting off the two sides. Spatial symmetry, however, does
The response in (8) is known as an infinite impulse respondet imply minimum phase as can be verified, e.g., in a
(IIR) and inherently involves feedback [20], as one woul@ymmetric three-layer filter where the central layer has higher
expect, since multiple reflections are involved in these filteiddex than the two identical neighboring layers and the whole
and reflection is inherently a feedback mechanism. This fier is surrounded by air. The reflection response, which is
where class Il and IlI filters are markedly different than claggoviously identical from both sides, is nonminimum phase,
| filters which were shown to be FIR filters. Note also thasince one of its three zeros is outside the unit circle. However,
even though a class Il or Il filter may have all its zeros o@s is shown in Appendix C for the case of a general symmetric
the unit circle in the z plane (e.g., the case for uniform FBG'§fructure, if a constant group delay corresponding to the optical
as standard WGR'’s do, the p0|eg, which are not present in {ﬁ@gth of the structure is subtracted from the total delay, the
WGR, will “destroy” the phase linearity. It is because FIRemainder is MP. In other words, given a spatially symmetric
filters haveonly zeros that they are naturally good candidategructure, thedispersioncan be computed from the amplitude
for linear phase filters. response, using the Hilbert transform and differentiating twice
Another way of looking at IIR filters is that because ofsince the constant delay contributes zero dispersion).
their inherent feedback mechanism they can store energy; at
some frequencies the photon lifetime becomes very large and . .
consequently the group delay becomes very long as théseClass Ill Filters (FBG Type Filters)
frequencies are approached. Class lll filters are very similar to class Il filters in their
As can be seen, the function in (8) becomes very complexoperties and differ only in two ways: 1) class Il filters
with an increasing number of layerg, and this is especially operate in transmission and class Ill operate in reflection
true for FBG’s which may contain hundreds of thousandmd 2) class Il filters typically have a very high refractive
of effective layers and a corresponding number of zeros aimdlex contrast between the different layers, whereas class Il
poles. Correcting their phase response by designing a filterfilters involve relatively small index modulatiofiAn /n < 1)
cascade such that it would correct or linearize the phase nmayd can therefore be modeled very well by the approximate
prove difficult. coupled-mode theory. This also means that type Il filters
Finally, we make some comments about the reflectiorquire only a small number of layers, but type Il filters
response of Fabry—Perot filters and explain the results of tileolve many “layers” and thus are longer devices. In spite
example in the previous section, which was asymmetric of these differences, the formalism applied to class Il filters
Fabry—Perot filter. The simplest TFF is a Fabry—Perot filtés appropriate for class Il filters and we expect some of the
consisting of a single thin film sandwiched between tden- same conclusions to apply.
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There has recently been growing interest in the phase re- o- ~ 120
sponse of FBG’s mainly in the context of phase reconstruction A
from reflection data [23]-[25]. It was realized in these papers -10-
that the reflection response has to be minimum phase in ordgr
to be able touniquely infer the phase from the amplitude < .20
response by means of a Hilbert transform. Using coupled mod_fe
theory, it was pointed out in [24] that asymmetric structuress -so-
are inherently nonminimum phase, at least from one side, ang
that indeed the phase response will always be between the-o-i
minimum and maximum phase response. This is especially
important to realize when dealing with structures such as -so- : , - : . ,
Chirped gratings' 1555.6 1555.7 1555.8 1555.9 1656.0 1556.1 1656.2

Using some of the results of the last section, we make some Wavelength (nm)

general comments about class Il filters. Fig. 7. Reflection spectrum (dotted line) and corresponding group delay (thin
olid line) of an apodized FBG. The thick solid line is a quadratic fit to the

1) Since class Il filters work in tran?.’miSSiQn, the filtereéroup delay, indicating a dispersion linear in detuning in agreement with (11).
signal always sees a MPF. The dispersion of the trans-

mitted signal may therefore be directly calculated from ) . o ) )

the transmission amplitude response using the HilbdRNYe OVer which the dispersion is small is therefore given by
transform. This is not the case for class Il filters, Aw < & (12)
however, the dispersion of the neighboritignsmitted n

channel may be determined uniquely.

- 100

- 80

- 60

(sd) Aejag

L 40

- 20

-0

- , so the region for low dispersion is given by a bandwidth which
2) When the response is minimum phase (e.g., in the €45%maller than about the stopband, as we would expect.

of a uniform grating), “squaring” the filter function by From the above equations we can see that for stronger
making a stronger grating will result in larger dispersio%53

| he ed b fthe | derivati h atings (largei, but still L > 3/x) the dispersion slope will
close to the edges because of the large derivative Challge ,me smaller and the region of low dispersion will become

in the amplitude response (as explained earlier). 3401 This is expected for MPF's since increasingnakes
3) When there is spatial asymmetry in the device, whethgy,"» jitde response wider, squarer, and flatter on top and
by de_S|gn, processing |mperfect|on_, OF Processing errqyy regions in amplitude correspond to linear phase regions
the dispersion will depend on the input side. (as can be verified using (4); see also [14]). To get an idea
To get a more quantitative view of FBG's, we will examingy the effects of this kind of dispersion, we will evaluate the
the dispersion of the reflected channel from a uniform gratiflﬁspersion close to the band edgje- 0.9x, using (11) we get
using coupled mode theory. The reflection is given by [21] 3 dispersion 0~2100/x2 in ps* wherer is in cnt. If we
—irsinh (ol take s = 10 cnt! (and L >3 mm), the resulting dispersion
"7 cosh (aL) +igsin)h (aL)’ a=vVr2=6 (9 s 21 pg, which means that a Gaussian pulse of full width
at half-maximum (FWHM) intensity of~7.5 ps will broaden
wherer: is the coupling constant given by= mAnn/Ap, An  py g factor of+/2 upon reflection off this grating [26]. This
is the refractive index modulatior; is the fraction of the means that the usable fraction of the FBG's passband may
energy in the fiber core, andp is the Bragg wavelength. pe |imjted by the phase response (dispersion) rather than the
The detuning parameter i = (n/c)(w — wp) Wheren is  amplitude response (flatness of the passband). Fig. 7 shows
the average effective index,is the speed of lightw is the the measured reflection spectrum and corresponding group
frequency andp = 2rc/Ap is the Bragg frequency, anflis  gelay in reflection of an apodized grating. As can be seen,
the grating length. The stopband of the FBG is in the detunifge delay in the center of the stopband can be fit very well
range—r < é <r. The phase of the reflection is given by  \ith a quadratic, indicating that the dispersion is indeed linear
a 1 over most of the passband in agreement with (11). A similar
¢ = tan™" {g m}’ a =k =6 (10) analysis was carried out for the dispersion experienced by the

) _ ~_ transmittedneighboring channel in [8] and will not be repeated
To get the dispersion, we take the second derivative Qe

the phase with respect to the frequency(using d/dw =
(n/c)d/db). We note that to make a strong gratir@ must
be much larger than 1 (typicallgl. ~ 10), in which case
sech (kL) ~ 0 andtanh (xL) = 1. The resulting dispersion
may be expanded in a Taylor series aroune: wp (§ = 0) The ideal filter of (1) is not a causal filter so it may only be
and keeping only the linear term in we get approximated. The ideal filter is desirable since it would let us
P20 N2 2 a2 s N3 (W — wp) achieve the hig_hest bandwidth utilization without coding; the
g (_) LAY (_) o= (_) —33_ (11) channel bandwidth would be equal to the channel spacing and
dw ¢/ dé ¢/ R ¢ k the spectral efficiency would be 1 bit/s/Hz. As we have pointed
The region of low dispersion is whetd?¢/dw?)(Aw)? < out, a MPF is not a good choice for approximating this ideal
1 and Aw = 2(w — wp) is the full bandwidth. The frequency characteristic, since squaring the amplitude response comes at

IV. APPROXIMATING THE IDEAL
RECTANGULAR LINEAR PHASE FILTER
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0- may not be manufacturable as a FBG if the required index
modulation function is an aperiodic function. On the other
hand, if the design requires many thin-film layers it may not
20 be a practical class Il filter. We have recently shown that
an all-pass ring resonator filter may be designed for phase
correction and yielding a corresponding increase in usable
40 filter bandwidth [29]. Ultimately there will always be a tradeoff
between amplitude response and phase response to get the
highest possible bandwidth utilization with a reasonable filter
60 itk s, complexity.

T T T
-n -2 0 /2 L

Normalized Frequency (rad})

-104

-30 -

Transmission (dB)

-504

Fig. 8. Transmission spectrum of a digital filter with 101 delays using a V. CONCLUSIONS

Hamming window to achieve a very “square” response without affecting the - .
linear phase properties of the filter. Even though this filter has extremely ln this p_aper. we have ansldered the phase responsg of
“sharp corners,” it is dispersionless over the whole passband. various optical filters and their impact on WDM systems. This

dispersion arises from structural or geometrical properties in

the price of nonlinear phase response. We would therefore |k@ntrast to material characteristics. The filters considered here
to adjust the phase response independently of the amplitfig all baseq on interference .of some sgrt, whether from d|ﬁ(_ar-
response and this is only possible with a non-MPF. In th?é_‘t wayegwdgs or from multlple.reflectmns, whereas materllal
case, we may take an existing “good” amplitude response gf{gPersion arises from absorption peaks. These absorption
try to linearize the phase response over most of the passha?fKs are always well-behaved functions and Krameiair
Two possible approaches are detailed below. relations always apply for the calculation of material dis-
persion. Structural dispersion may be zero because optical
A. Using Class | Filters (WGR and Mz Based Filters) f|Itgrs may be con_structed such that they are non—MPE’s in
. . . which case the Hilbert transform may not be used to infer
~As was shown, these filters are inherently suitable f@e phase from the amplitude. This leads to the somewhat
linear phase filters. Using digital processing techniques sughninqitive result that the phase response may be adjusted
as windowing, the amplitude response may be made V&g, affecting the amplitude result. In this way we gain

rectangular without affecting the linear phase (by ensuring, 5qqed degree of freedom toward the approximation of the
thath(n) is symmetric). An example of this is given in Fig. 8 deal filter given by (1).

where a very sharp filter was designed such that) is the 1o gptical filters considered in this paper are the most

product of a truncatedin (x)/ function and a Hamming c,mmon ones considered in connection with WDM systems.
window [20]. Such a design may be hard to achieve practicali,qse filters have response functions, which are identical to

since it requires a large number of delays (101 in this ,nqe of digital filters [(5) and (8)]. There is a fundamental
example) and also a specifically tailored distribution of weightfierence between class | filters and class Il and Il filters.
h(n), some of which are negative and so would require a c|a5s | filters are FIR filters that have only zeros and contain

phase shift. This indicates that a better approximation of the iherent feedback mechanism, such as reflection, associated

ideal filter comes at the price of added complexity. Note th@fy them. Class 11 and Il filters are IIR filters and have both

the filter shown in this figure contains many zeros well outsiques and zeros and rely on a feedback mechanism namely

the unit circle and is therefore non-MPF even when a little IO?@erction Because FIR filters have no poles they are ideal

is added. There have recently been other practical approacfigsidates for linear phase filters. IR filters, on the other hand,

for flattening the passband [27], [28] which can be shown {6 noles that tend to distort the phase response.
still maintain their linear phase characteristics. Linear phase FIR filters may be designed which are arbitrar-
. ) ily close to the ideal filter in terms of the rectangular amplitude

B. Using Class Il or Ill Filters (Interference response. Even when there is some small loss introduced
and FBG Type Filters) into these filters, the phase departs from linearity only very

As was pointed out earlier, these filters inherently contaalose to the passband edge where the attenuation is high. This
poles, which destroy the linear phase characteristic. A standaetformance comes at a price of increased filter complexity. In
technique in the design of electronic filters involves cascadigntrast, IIR filters inherently have a nonlinear phase response,
an all-pass filter in series with the original filter. An all-which may be corrected over some bandwidth by cascading
pass filter does not modify the amplitude response but can all-pass filter in series (which may also come at a price
correct the phase response (see Appendix D). An exampleobfincreased complexity). Class Il and ansmissiorfilters
an optical all-pass filter is the Gires—Tournois interferometare always MPF's, so that once the amplitude response in
mentioned earlier. Note that since by definition an all-pagsansmission is known or measured the phase response may
filter is a non-MPF it would have to be a reflective filter. Usindgpe calculated by means of a Hilbert transform. In this case,
numerical optimization routines and commercial software foéhe phase response may be inferred almost by inspection
TFF design may yield the desirable all-pass filter design td the amplitude response. This is due to the fact that for
correct the phase of a class Il or class Il filter. This desigWPF’s, broadly speaking, the phase follows the derivative of
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the amplitude response with the result that the “squaring” éfn) = h(N — 1 — »n) must hold and this is the linear phase
the response leads to an increase in dispersion. Non-minimaomdition. As an example, we assumeeven

phase all-pass filters, therefore, may only be achieved by
utilizing a class Il or Il filter inreflection The design and L L il L
production of an all-pass filter that corrects the phase of a H(¢’“) = Z hn)e™" + Z h{n)e™"
given class Il or llI filter may not be a trivial matter. n=0 n=N/2

N/2—1

Once the dispersion is given, we can determine the effective N/2—-1 ' N/2—-1
bandwidth where the dispersion-induced pulse broadening = Z h(n)e™“™ + Z h(N —1—mn)
does not lead to penalties and degradation in system per- n=0 n=0
formance. This effective bandwidth may be narrower than e IwN=Lm)
the bandwidth over which the amplitude response is flat. N/2—-1 ' .
Similarly, when considering dispersion effects on neighboring = Z h(n)(e779m 4 ¢V =1mm)y
channels, dispersion may dictate minimum channel spacing n=0
rather than crosstalk. Both effects lead to a waste in bandwidth o N/2-1
and degradation in spectral efficiency. Thus the design of = ¢ /N0 Z 2h(n)
linear phase filters may become very important in future high n=0
aggregate bit rate systems. cos {w <n 3 N2— 1)} (A3)
APPENDIXES

This analysis is easily extended to odd(and to antisymmet-

In the following sections, we deal with some of the moreéic 4(n) with N even). Another consequence of the symmetry
technical and mathematical details of optical filter dispersiogf h(n) is the location of the zeros of the system function
We use standard digital signal terminology, which can bg(z), in the complexz plane. It can be shown [20] that the
found in basic textbooks on digital signal processing [see e.garos may be on the unit circle at= £1 or in conjugate pairs

20]. (e.g., 71 andzj). Zeros that are not on the unit circle come
in groups of four £, 27, 1/2;, and1/27). In all of the above
APPENDIX A cases there are never zeinsidethe unit circle and therefore

LINEAR PHASE FIR RLTERS linear phase filters are inherently non-MP. In Appendix B we

In this appendix we discuss FIR filters and specifically FII\-Q'iII show that the_ ab_ove arra_\ngement of zeros _yields_a cons'Fant
filters which have the property of having linear phase at foup delay confirming the linear phase behavior of filters with

frequencies. FIR filters have a system function and frequen%‘ffq%s Iocattetd. ‘”?‘Sl above.l fali h filter i h
response of the form e most trivial example of a linear phase filter is one where

h(n) is constant. The corresponding optical filter is a multiple-

N1 . arm MZI where the relative phase shift between neighboring
H(z) = Z h(n)z arms is constant. This optical filter is an idealized WGR and
]’\’;=01 has linear phase everywhere and therefore no dispersion.
H(I%) = Z h(n)e=d<r (A1)
n=0 APPENDIX B

. : . ' GRoOUP DELAY OF H(x
and sinceH(z) has no denominator polynomial, these filters (2)

have no poles and have only zeros. This reflects the fact thath this appendix we discuss the general form of the group

they are derived from a difference equation which can ielay associated with a given frequency response. In all cases
written as considered in this paper, the system functié(x) is a rational

N1 function and may be written as the ratio of two polynomials
y(n) = Z bra(n — k). (A2) N~#
k=0

N

We now examine the conditions under which the FIR filters H(z = %)
are also linear phase filters. We first note that the second H(z) = 7417 (B1)
equation (Al) is the Fourier transform éf(n) (since h(n) H(z — %)
is zero forn< 0 andn > N — 1 the limits in (Al) may be
extended tet-o0). If h(n) is even (symmetrich(n) = h(—n),
and real, then its Fourier transform is a real and even functiomhere thez; and thez; are the zeros and poles, respectively,
In our case,h(n) must be causal, but if it is even aboutaind may be written in polar form ag = as.c?®*. To simplify,
its center (i.e., abouh = N/2) it is a shifted symmetric we have dropped all zeros and polesat 0 (i.e., in (B1) we
function. A shift in () corresponds to a linear phase shifhave dropped a prefactor of the forrt), which corresponds to
in the frequency domain and so this shifted function hasaalinear phase factor in the following equation. Consequently,
transform which is a real even function multiplied by a lineathe expressions for group delay are given up to a constant
phase function. For the shiftéen) to be even, the condition group delay, which will have no contribution to the dispersion.

=1
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Replacingz with ¢/ we can now write the frequency response
as follows:

F -

N S
jw 30 8

H(e — ;6% g
. ey g
H(e™™) = ZM 2

H(ej‘“' — el

=1

N
H|ej“" — et
=1

M
H|ej‘~' — oqedt
=1

where ®(w) is the sum of the phases of all of the factors in
the numerator and denominator, each factor having the form
Llexp (jw) — cexp (j#)]. Here the symbol/ indicates the
phase angle or argument function. To get the phase we take
the natural logarithm of the above frequency response and get (b)

exp [j2(w)] (B2)

Transmission {dB)

N M Fig. 9. (a) The group delay and (b) transmission associated with one zero
d(w) = Z Z(Cju: _ o«cjef) _ Z Z(Cju; _ alejel) (B3) of the system function located at= «e’?, for different values ofv.
- T
=1 =1

Clearly, it is enough to look at one such factor and examifiiers has been discussed in detail in [22]. In this appendix we
its contribution to the phase. repeat and emphasize some of the salient features that have
_ _ bearing on the issues presented in this paper. This approach is

P(w) = £(7 — ae??) = tan L [Smw - 0451119} (B4) based on computing the exact fields in each layer and relating

cosw — qcos f the fields in consecutive layers throughk 2 transfer matrices

The group delay associated with one such factor is given b())/f the form [22]

Zl/2

_dé(w) acosd —1 (85) _< 2’711 _7’k>' (C1)

To(w) = dw (14 a?) —2acosé te \ 7Tk 1

wheres = w — 6. On the unit circlex = 1 andr,(w) = —1/2. This matrix connects the layérand layerk 41, wherer;, and
We also note the following interesting property of the abovie are the field reflection and transmission between the layers,
function: respectively .z is the normal complex variable that eventually
is evaluated at = ¢’* to get the frequency response. In the
79(6, 1/ ) = —(1 + 74(6, o). (B6) above, the assumption is that all the layers have the same
optical thickness (this is easily extended to the more general
case, as shown in [22]). The only different matrix is the one
for £k = 0 where z is set to 1 in (C1). These matrices are
ﬁ%‘\a/v multiplied to relate the input and output fields. The total
&hsfer matrix may be written as

Fig. 9 shows the time delay as a functionéofor different
values of « <1 [(B6) may be used fora>1] and the
associated power transmission. As can be seen, when
unit circle is approached the delay becomes very peaked ng
w = 8 and the transmission approaches zero.

If we have a pair of zeros located at and1/z (i.e., at k72 AR(z) BE(z)
ac?® and (1/a)e’?), the sum of their group delays will be tr - to <Bk(z) Ak(z)> (C2)
a constantr,(w) = —1. This is exactly how the zeros are

located in a linear phase filter (see Appendix A); additionaind relates the fields between the input and output (With
zeros on the unit circle contribute a constant delay too (aderfaces in between). The polynomials with tResuperscript
shown earlier). If the system function contaiosly zeros in are known as the reverse polynomials and, in the case of real
this way, the total delay is a constant, the phase is linear, ataefficients (which is the case discussed here), are related to
the dispersion is zero. the forward polynomials through
IX. APPENDIX C AR(z) = 2 AT, (C3)
DIGITAL FILTER REPRESENTATION This has the effect of exchanging first and last coefficients, sec-
OF MULTILAYERED STRUCTURES ond and second-to-last coefficients, etc. It can also be shown
In this appendix we discuss and derive some of the propéhat the reverse polynomial has zeros which are conjugate
ties associated with class Il and lll filters when using a digitaymmetric to the zeros of the forward polynomial (i.e., if
filter description. The representation of multilayered optical;(z) has zeros at; then Af(z) has zeros at/z}). The
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reflection and transmission are now given by [22] 10
—k/Q(t 1) "
z k 0 " —a=10
T(z)=————— i i a=2
) Ap(2) 8 P eI
By(2) 7 Y
Rp(z)=— . (C4) 3 5 D
=" ) L
Here the subscript, on the reflection refers to looking at the g , | ! “
reflection from the “left side.” In order to look at the reflection 2 P
from the “right side” we need to make two changes: 1) change , [P,
. . . . .7 ARS
the sign on all the’s (since we are crossing all the interfaces s
in the opposite direction) and 2) multiply all the matrices in I TP - ST
reverse. The total resulting matrix turns into 40 05 0 o5 10
o/n
—BR(7) A (7) Fig. 10. The group QQIay associated with a smgle—stagg aII—pas_s filter with a
kA~ AN zero located at = ae?? and a pole located at = (1/a)e’?, for different

where the prefactor has been dropped since it does not affedtes ofa.
the reflection which is now given by

BR > —k/2 . . . . .
Ra(z) = Bt (7). ce) * term in 7'(z) in (C3)]. This relation was also pointed
Ap(2) out in [24].
We can now make the following observations. Finally, if the structure is symmetric then the time delays in

1) As can be seen from (C3), the transmission has At @ndfir must be equal, implying tha,. is a constant. As
polynomial in the numerator and therefore no zeros. Th{§3S Pointed out in Section I1I-B, a symmetric structure may
implies that the transmission response is MP and therdg NoN-MP, however, if the constant group delay is removed,
a Hilbert transform relation between the amplitude arfif€ rémaining delay is due only to the poles, in which case we
phase. are back to an MP situation. Note also that sinces constant

2) All the responses associated with the same structdfelfeauency it does not contribute to the dispersion.

(T,Ry, and Rg) have the same polynomial in the
denominator. APPENDIX D
3) Since the reverse polynomial has the conjugate sym- ALL-PASS FILTERS

metrlc' Zeroes of the forward pqun_om|a|, thgn _'f the In this appendix we discuss all-pass filters and their phase
reflectlonR'L Is MP (@l thg zeros inside the unit CIrCIe)correcting properties. All-pass filters have constant amplitude
the _reflectlon RR S maximum phase (all the Zerosresponse over all frequencies and are therefore well suited
outside the unit cwcle). . for phase equalization—the phase may be tailored without
4) When the structure is symmetricir and R are adjusting the amplitude. This immediately implies that all-pass

. . _ PR : A | _
identical so thaB’“(z? . Bk_ (.Z) which means th"’_lt th_e filters are non-MP. All-pass filters have the following system
numerator polynomial coefficients are symmetric ("efunction H(z):

first and last coefficients are equal, etc.).

Next, we examine what can be said, in general, about the ﬁ(z — %)
group delay. As was shown in Appendix B, the total group ol
delay is the sum of the delays associated with each of the H(z) = (D1)
poles minus the sum of the delays associated with each of the H(z —1/2%)
zeros. From (C4) and (C6) we see that all three responses have i=1

the same contribution to the total group delay determined lfyis means that the zeros and poles come as conjugate
the poles (roots oft;), which we will call7,,,.. The total group symmetric pairs. Here, as in Appendix B, we ignore the zeros
delay contribution from the zeros of the forward polynomiaind poles at = 0, which do not contribute to the dispersion.
(roots of By) will be written as7,.. Using this notation, the To understand this filter better we look at one such pair in
total delay inRy, is simply 7,, — 7,.. In Appendix B it was the frequency response with a zerozat= ac’’ and a pole
also pointed out that there is a simple relation (B6) betweei (1/a)c/?:
the delays of conjugate symmetric pairs. We use this fact to ' oI _ pei?
compute the delay oRRr and getr,, + 7,. + 7., wherer, is H(Y) = o e
a constant (frequency-independent) group delay. This constant e’ — (1/aje

group delay is related to the choice of reference planes: thdt ¢an be easily verified that this frequency response has a

reference plane foRy is at= = L but the reference p|anefrequency-indepe_nde_nt amplitude response. Th_e corresponding
for Ry is atz = 0 and 7, is a measure of the transit time9"OUP delay of this single-stage all-pass filter is

through the structure length [24], [25]. From the above we ;o= —1+a? (D3)

see that the sum of the delays in reflection (fréfp and Bg) 97 14 a?—2acosé’

is equal to twice the delay in transmission [note that the delayFig. 10 shows this group delay for different values of

in transmissioralsoincludes a constant delay arising from théwith «> 1 so that the poles lie inside the unit circle). Here

(D2)
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again the delay is sharply peaked near= # and diverges [16] O. E. Martinez, “Matrix formlism for pulse compressordEEE J.

as the unit circlee = 1 is approached), but the amplitude
response idlat. By building up a multistage all-pass filter

[17]

(which is just a product of many single-stage all-pass filters),
the group delay may be adjusted at many frequencies. THigl

may become very complex and require many all-pass staggs

if the phase response is complicated.
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