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Wide-Band System Identification Using Multiple
Tones With Allpass Filters and Square-Law Detectors
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Abstract—This paper introduces a method of wide-band system
identification that uses a uniformly spaced set of tones with allpass
filters and square-law detectors to obtain estimates of amplitude
and phase at the associated discrete frequencies. The bandwidth of
the detectors is on the order of the tone spacing and so can be much
smaller than the overall signal bandwidth, thereby making feasible
the use of low-cost analog RF integrated circuits and/or pure digital
signal processing with all of its inherent advantages. Applications
of this technique include equalization and compensation for fiber
optic and wide-band cellular communication systems.

Index Terms—Allpass filters, square-law detectors, tones, wide-
band system identification.

I. INTRODUCTION

WITH ever increasing data rates, the bandwidth of trans-
mission systems is stressing the capabilities of signal

processing technology to keep pace. Indeed, with optical fiber
transmission, data rates of 40 Gb/s and higher are being contem-
plated. So, it is a challenge just to realize circuits for demod-
ulating the data. Therefore, the task of equalization and other
compensation is largely relegated to analog circuits. This is a
distinct disadvantage since digital signal processing, with all of
its inherent advantages and compatibility with computer con-
trol, cannot then be applied.

Even though analog circuits are used for signal preprocessing,
there is still the possibility of digital measurement and control,
which would greatly enhance performance and reliability, as
well as reduce cost. The task of channel measurement to ob-
tain amplitude and phase over a set of frequencies is a classical
system identification problem, where a known training signal at
the far end serves as a reference. With extremely wide-band sig-
nals, it is not feasible to directly apply digital signal processing
for this purpose because analog–digital (A/D) converters with
sufficient bandwidth and resolution do not exist. However, if
the signal bandwidth can somehow be reduced before sampling,
then the feasibility of digital signal processing with all of its ad-
vantages becomes an option.

In this paper, we elaborate and generalize a method of wide-
band system identification that has been suggested for optical
applications [1], whereby a uniformly spaced set of tones is used
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to indirectly obtain estimates of amplitude and phase at the as-
sociated discrete frequencies. The technique uses allpass filters
followed by square-law detectors to obtain relatively low-band-
width signals that can be digitized and processed to obtain the
information. The bandwidth of the detectors is on the order of
the tone spacing and so can be much smaller than the overall
signal bandwidth.

One example where this technique could be usefully applied
is in 40 Gb/s fiber optic systems, where it is necessary to iden-
tify the channel frequency response for purposes of equaliza-
tion and polarization mode dispersion (PMD) compensation.
In this case, direct digitization of the wide-band signal is not
feasible with today’s technology. However, making use of low-
cost ring-waveguide optical allpass filters, a parallel set of rela-
tively low-bandwidth digitizable signals can indirectly provide
the necessary wide-band channel information.

Another application example is obtaining channel state in-
formation for wide-band wireless communication systems. In
this case, direct digitization is possible, but expensive. Here, the
technique of this paper could provide an alternative for low-cost
terminals, where mass-produced analog allpass filters are used
in conjunction with a slower low-cost A/D converter.

II. BASIC TECHNIQUE

Fig. 1 shows a block diagram of the multi-tone wide-band
system identification technique. The system to be identified is
denoted by , and we intend to obtain measurements of its
amplitude and phase response over a set of discrete frequen-
cies that are applied as a multi-tone input signal

. The system output , which is contaminated by noise
, is applied to a set of allpass filters, denoted by ,

, which can either be realized in a fixed par-
allel bank or as a single adjustable unit to obtain sequential
measurements. The allpass filter outputs (in parallel or serial)
are then square-law detected to obtain the continuous-time sig-
nals , which are then sampled and synchronously com-
plex-demodulated [upper output path of Fig. 1(a)] to obtain a
set of complex numbers , . Alterna-
tively, low-cost analog demodulator chips could be employed
first, followed by digitization [lower output path of Fig. 1(a)].
In what follows, the set of complex numbers will be used to
estimate the system amplitude and phase over the set of fre-
quencies [Fig. 1(b)].

We note that such an undertaking could conceivably be ac-
complished using a bank of narrow-band coherent tone detec-
tors. However, the necessary phase matching would inevitably
be very difficult to achieve and maintain with analog circuits.

1057-7122/$20.00 © 2006 IEEE
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Fig. 1. Block diagram of the multi-tone wide-band system identification technique. (a) Measurement of mth datum. (b) Estimation of relative phase ^��� and
normalized amplitude â.

It is for this reason that we prefer to encode the desired infor-
mation into difference frequency terms that can be reliably pro-
cessed to obtain accurate estimates.

The input to the system is defined as the multi-tone com-
plex

(1)

where . Here, for convenience we assume that the
tones are all unity amplitude and zero reference phase. How-
ever, if it is preferable to generate tones at different amplitudes
and phases (e.g., the framing sequence in a synchronous optical
transmission system), then that information (which is known to
the designer) can be subsumed into the unknown system .

In the absence of noise, the output of is written as

(2)

where and are, respectively, the unknown amplitude and
phase response of at frequency , and .

The allpass filter frequency responses take on discrete
sets of values at the tone frequencies, denoted as

(3)

Nominally, the magnitude of is unity; however, we allow
for a more general representation here to accommodate actual
realizations. Thus, in the noiseless case, the output of the th
allpass filter is expressed

(4)

where denotes the real part.
We will assume here that the tones are uniformly spaced at

the difference frequency

(5)

We then square the allpass filter outputs and retain only base-
band terms at low multiples of . We will focus on the dc and
fundamental tone difference frequency terms, and calculate

(6)

where LPF denotes a zonal low-pass filter that only retains dif-
ference frequency components of the square-law process and

(7)

are differential channel phases. (Here, we have made the usual
assumption that the sum frequencies are much higher than the
difference frequencies so that they are effectively filtered out by
the zonal filter.) The first term (dc) in (6) contains information on
the unknown amplitudes and the second term contains
information on both and differential phases . We assume
that it is only necessary to identify up to an arbitrary constant
phase term, hence, it is sufficient to obtain the ’s rather than
the actual channel phases . More will be said later about the

’s.
The signals are now sampled at times , ,

(assuming normalized system bandwidth), where is the down-
sampling ratio, i.e., the ratio of system bandwidth to detector
bandwidth, and synchronously demodulated at the tone differ-
ence frequency to obtain

(8a)
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where is the number of samples averaged [see upper output
path of Fig. 1(a)]. Note that if the filters have not been running
for some time before , then it would be necessary to
discard a number of samples before (8a) is calculated in order
to let the transient response settle out.

Alternatively, one could use existing low-cost analog RF in-
tegrated circuits for synchronous demodulation as depicted in
the lower output path of Fig. 1(a), whereby

(8b)

In this case, the A/D converter bandwidth requirement is even
further reduced.

Substituting (6) into (8) and assuming that is large enough
to effectively reject the dc and harmonics of , we obtain

(9)

where

(10)

and

(11)

It is convenient to express (9) in vector-matrix form to obtain
the compact expression

(12)

where is an vector of the synchronous demodulator
outputs , is an matrix with components (11)

(13)

is an diagonal matrix, and is an
vector of differential phase components . (The quantity is
interpreted as a vector with components .) Thus, with this
formulation, we now seek a solution for , given the measure-
ments .

In general, noise and other effects will perturb the measure-
ments (12). Therefore, a least-squares type of solution is desired,
which would involve the minimization of over all
possible values of the complex vector , which contains the
unknown relative amplitudes and differential phases . The
minimum is reached using the generalized inverse of , so that
we have

(14)

where

(15)

and superscript denotes (Hermitian) complex conjugate.
Taking the phase then gives the differential phase estimate
vector

(16)

Note that for the generalized inverse in (15), the number of
measurements that form the vector must always be greater
than or equal to the dimensionality of . In fact, the more
measurements that are made, the better, at least theoretically.
For example, with tones and measurements, is
of the form

and (15) is an overdetermined solution. In order to achieve ac-
curate solutions, it is desirable that the matrix be well con-
ditioned. Intuitively, this can be ensured by making the allpass
filters very sharp and tuning their crossover frequencies, i.e., the
frequencies at which the phase of is radians (180 de-
grees), equal to the tone frequencies. In addition, we can add
one or two additional allpass filters tuned below and above the
tone frequencies. Thus, we can achieve well conditioned solu-
tions of the differential phases using up to
measurements. In practice, realizing high-Q analog allpass fil-
ters may be difficult, so there will generally be some overlap of
the allpass responses that will tend to degrade the conditioning.
We will have more to say about this later in the simulations and
theoretical studies.

Also note that in obtaining an unweighted least-squares so-
lution, we have tacitly assumed that the perturbations of each
component of , due to noise and numerical precision, are in-
dependent and identically distributed (i.i.d.). As will be shown
later, the noise effects are in fact strongly correlated, and so
we can contemplate improving the estimation using weighted
least-squares techniques. Another refinement would be possible
if there were some other means of independently obtaining am-
plitude estimates, in which case the phase estimates might be
improved. These advanced techniques will be discussed in fur-
ther detail later in Section V.

We now turn to the estimation of the amplitudes
. Taking the magnitude of , we obtain

estimates for the components of

(17)

which can be recursively solved, giving

(18)

Note that we have unknowns and only equations. There-
fore, some other information must be gained for the solution.

One way to obtain additional information is to measure the
dc value of the sampled square-law detector outputs

(19)

Here, without loss of generality, we assume that ,
since the ’s can always be rescaled. Thus, from (6), we see
that in the noiseless case each is of value

(20)
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which is recognized as the sum of the tone powers. In order to
gain maximal noise immunity, we will want to average over the

values of (19). Here, we will assume that is measured over
a long enough time so that it is a perfect estimate of the total
sinusoidal power. Thus, the additional information of (20) could
enable us to solve (18).

First, let us define the normalized variables

(21)

(Note that for convenience we have implicitly defined .)
Substituting (18) into (21) obtains the recursion

(22)

whereby we have normalized out the effect of . Next, using
(21) we transform the ’s back into the desired variables

(23)

where is now the only unknown. Substituting the above into
(20) for , we obtain the quadratic equation

(24)

Solving this equation for gives

(25)

Thus, (23) and (25) together specify the amplitude es-
timates , , up to the uncertainty
in (25). For example, with and the true values

, we have total power
and, ideally in the absence of noise, .
From (23) and (25), we then calculate two possible solutions,

and (2,3,1). The
second solution is obviously the correct one, but the first also
satisfies the power constraint (20). Also note that for both solu-
tions, and , thereby presenting the same
cross-term information (17) and hence are indistinguishable on
that basis.

It is not obvious how to easily resolve the sign indeterminacy
in (25). Requiring only relative amplitudes does not
help. It is possible to use the higher-order terms in (6) to gain
additional information on the ’s (as well as the ’s) but
this will complicate the signal processing and require a higher
sampling rate, which is undesirable since the whole idea is to
reduce the bandwidth. Finally, one could assume some kind
of calibration procedure whereby, say, could be initially
determined, and then slow changes tracked by virtue of having
established the sign in (25). In any case, we shall assume for the
rest of this paper that such means have been taken so that we
only have to consider estimation of the normalized amplitude
estimates , which are specified in (22) as a function of the
measured variables .

III. EFFECTS OF NOISE

We will now assess the effects of additive noise on the param-
eter estimates. We assume that the allpass filter outputs
contain zero-mean wide-band Gaussian noise with covariance
matrix . The nature of this covariance depends on whether
the allpass filters are implemented in a fixed parallel filter bank
or as a single tunable filter that obtains sequential measure-
ments. In the first case, the noise, which is assumed to originate
in the channel signal as shown in Fig. 1(a), will be almost
completely correlated at the allpass filter outputs by the fol-
lowing argument. Recall that for good numerical conditioning
and noise immunity, it is desirable to use high-Q allpass filters
so that the phase transition bands do not significantly overlap.
Therefore, each allpass filter will have zero phase response over
most of the frequency band, only making a brief excursion to

at its crossover frequency. This implies that the noise compo-
nents will be almost completely correlated across the filter bank,
so that the output covariance matrix can be expressed as

(26)

where

...
...

. . .
...

(27)

is a matrix of all 1’s. On the other hand, for a serial imple-
mentation, the noise will not be correlated at all between chan-
nels since the measurements are taken at different times, so that

, where is the indentity matrix.
In either case, we must determine the effects of the noise on

the phase and amplitude estimates, respectively, (16) and (22).
To this end, we must first determine the covariance at the output
of the square-law detector and then at the synchronous demodu-
lator output. For generality, we assume the parallel case for the
rest of this paper; the sequential case is similarly handled by
simply zeroing the off-diagonal covariance terms.

A. Square-Law Detector Output

Let us assume for the purpose of this analysis that the allpass
filters are ideal with unit amplitude response and phase response

(28)

Then, the allpass filter outputs (4) can be rewritten as

(29)

where is the noise at the output of the th allpass filter
due to the previously discussed wide-band Gaussian input noise.

The square-law detector consists of a squaring device fol-
lowed by a zonal low-pass filter that rejects carrier terms and
only retains relatively low-bandwidth difference frequency
components. It will be convenient to separate the square-law
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detector output into the various mixing components. We
first write

(30)

where the mixing terms are defined as

(31a)

(31b)

(31c)

and and denote, respectively, signal and noise. After the
low-pass zonal filter is applied to (30), the surviving components
are written as

(32)

Note that the term is the desired noiseless output expressed
in (6). Appendix A shows that and are mutu-
ally uncorrelated approximately white random processes, with
interchannel cross-correlation function approximately given by

(33)

where

(34)

(35)

is the allpass filter pole radius, and is the ratio of the system
bandwidth to the low-pass filter bandwidth. [Note that the gen-
erality of (34) will be more fully utilized in the next section.]
Also, from Appendix A, we have

(36)

Note that the above expressions are approximations, where
the symbolically implies a uniform spectrum and should
not be taken literally.

B. Synchronous Demodulator Output

The synchronous demodulator, which is a linear processing
device, can be considered to act independently on each of the
above mixing components, producing an output

(37)

It is shown in Appendix A that these components are mutually
uncorrelated and that the Hermitian covariance matrix of can
be written as

(38)

where is the mean, defined in the noiseless case by
(12), denotes (Hermitian) complex conjugate, and the com-
ponents of and are given by

(39)
and

(40)

where is defined in (34). Note that in (33) is equiv-
alent to the real part of in (39) for the special case .
This relates to the effect of the synchronous demodulator, which
is described fully in Appendix A. A similar relationship holds
between in (36) and in (40).

The complex representation of is rather artificial here, being
a mathematical artifice rather than arising from some physical
process. Therefore, is in general not a so-called proper com-
plex random vector because the usual condition of zero corre-
lation when the complex conjugate transpose in (38) is re-
placed by transpose does not hold [2]–[4]. Accordingly, we
also need to define what we shall call, following [4], the comple-
mentary covariance matrix, which is expressed in Appendix A
as

(41)
where

(42)

Note that in comparison with (38), (41) has no complex conju-
gation on the second factor and the term is absent. Also
note that (42) differs from (39) in that the sum starts at in-
stead of , replaces , a differential phase term is
added, the second argument of the and terms is
instead of , and does not change sign between and

.
It can be easily shown that if (33) and (36) were autocorre-

lations of strictly white signals, instead of only approximately
so, the complementary term (41) would be zero when the
synchronous demodulation (8) was performed over an integer
number of cycles. In fact, this is not so, as the above theory
shows and which is confirmed later by simulation. Therefore,
the complementary term is nonnegligible and its inclusion is
necessary to obtain the correct estimate statistics. This lesson
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was painfully learned during the arduous process of developing
this theory.

C. Phase Estimates

We now go on to use these covariances for calculating the
covariance of the estimated phases (16). First, we note that if
is a complex variable with phase angle , then (see Appendix B)

(43)

where denotes imaginary part. We now apply this to per-
turbations of (16). Note that in the noiseless case, substituting
(12) into (15) gives

(44)

where is defined in (13). Taking differentials about
in (16) and using (43) and (15) then obtains

(45)

where

(46)

Assuming small noise perturbations, we then calculate the co-
variance of , giving

(47)

where and are, respectively, the Hermitian covariance
matrix and symmetric complementary covariance matrices of
given by (38) and (41).

D. Amplitude Estimates

Next, we compute the covariance of the normalized amplitude
estimates (22), for which we will first need to obtain a closed-
form solution. By taking the natural log, we can rewrite (22) as
a set of linear equations in vector form

(48)

where denotes component-wise magnitude

...
...

...
...

...

(49)

is an matrix, and

(50)

is an vector. Solving (48) for gives

(51)

where (52), shown at the bottom of page, expresses .
Now we need to use the fact that for any matrix and vector

function

(53)

(54)

which can be easily established by showing that

(55)

and collecting the components. Applying this to (51) gives

(56)

Next, we need to determine the differential of with respect
to . For any complex variable with phase angle , we have
(see Appendix B)

(57)

Applying this to (56) for (whereby )
and using (15), we obtain finally

(58)

where

(59)

With the above result, we can now write the covariance matrix
of

(60)

E. Cross Estimates

Finally, we note that the phase and amplitude estimates are
coupled and we shall compute their cross-covariance. From (45)
and (58), we have

(61)

...
...

...
...

...
...

(52)
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Fig. 2. Power spectrum of 3-tone signal used in simulations. (a) Full band. (b)
Zoom in at center frequency.

IV. SIMULATION MODEL

A. Description

We now describe the discrete-time model used in the sim-
ulations. For simplicity, we chose as an example
tones with amplitudes and
phases at the receiver input
[ in Fig. 1]. The sinusoids are represented in discrete
time by nominally eight samples per cycle, so that their
normalized frequencies are centered at 0.125 (1/8). The
tone spacing is chosen as 1/100 of the center frequency
so that , with specific frequencies given by

. Fig. 2 shows
the power spectrum of this 3-tone signal (8192 points). To
this signal, we add white Gaussian noise samples of standard
deviation .

The allpass filters were modeled using the standard second-
order discrete-time formulation

(62)

where is the pole radius and is the angular crossover
frequency, at which the phase of is radians (180 degrees).

Fig. 3. Phase response of allpass filter for crossover frequency 0.125 and
various pole radii r.

In the simulations, up to filters are used, where , ,
and are set to the angular tone frequencies (for best con-
ditioning, as previously discussed) and we select ,
which is well outside of the tone bandwidth. (The only purpose
of the fourth allpass filter instead of no filter is to achieve delay
match with the other three.) Fig. 3 plots the phase response of

(center frequency, ) for several values of .
As can be seen, the response sharpens as becomes closer to 1.
However, for pole radius close to 1, the transient response also
becomes longer, taking approximately samples to die
out to the level (e.g., 1000 samples for ). There-
fore, we have made a provision to discard a certain number of
samples before synchronous demodulation.

The allpass filter outputs are squared and decimated by the
factor to simulate the square-law detector low-pass filter out-
puts . (At this point, there is no need to sample the signals as
shown in Fig. 1 because the simulated signals are already dis-
crete-time.) The standard Matlab decimation routine involves
first low-pass filtering to limit aliasing and then downsampling
to retain only one out of every samples. Thus, the bandwidth
is reduced by the factor , relating to the previously de-
fined analog low-pass filtering associated with the square-law
detector. For the simulation results presented here, we have se-
lected as a reasonable compromise between numerical
efficiency and controlling aliasing effects due to nonideal down-
sampling filters.

Finally, samples are accumulated as in the upper output
path of Fig. 1(a) to produce output measurements , which are
then used to compute the differential phase estimates per (16)
and normalized amplitude estimates per (22). We have chosen

for this simulation so that the synchronous demodu-
lator bandwidth is , being sufficiently selective to
isolate and recover the decimated difference frequency compo-
nent at . This choice was also
motivated by the desire to minimize windowing effects, since
then encompasses an integer number
of cycles at the decimated difference frequency.

In the simulation, samples are discarded before the
synchronous demodulation calculation is started in order to let
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the transient response of the allpass filters stabilize, as previ-
ously discussed. Here, is the largest value considered,
which corresponds to a transient time constant of about 1000
samples. Given that we have selected
undecimated samples for synchronous demodulation, we have
chosen a total number of input samples so that the
initial 1792 samples will provide for about two time constants.
Thus, discarding decimated sam-
ples, we start the synchronous demodulation at in all
cases.

In all simulations, the starting phase of the sinusoids is varied
over an ensemble of realizations. This is accomplished by inter-
jecting a delay between each batch of samples. Since all of
the desired information is at the difference frequency [2nd
term of (6)], we span its starting phase over it-
erations by choosing the interblock delay for the th iteration
as the integer nearest to . (Recall that
here.) So, for example, with , we have 20 realizations
with difference frequency starting phases uniformly distributed
over (0 , 360 ) in 18 increments.

B. Results and Discussion

The power spectra at the output of the center frequency square
law detector are shown by the solid traces in Fig. 4 for

and several values of (8192 samples, overlapped
128-point Hanning window). Also plotted are the spectra of the
various mixing components: (dashed), (dotted), and

(dashed-dot). The difference frequency spectral compo-
nent is the peak centered at . We also see peaks at
dc and . The relative strength of the component spectra
depends on the input noise power: for [Fig. 4(a)], the

term dominates, followed by the term, with neg-
ligible contribution; for [Fig. 4(b)], the
and terms are roughly comparable, but are still consider-
ably lower than the peak of the term at the difference fre-
quency; for [Fig. 4(c)], the term dominates. The
theoretical amplitude of the difference frequency signal compo-
nent is calculated from the second term of (6) for this example
as 1.0492. Therefore, the 64-point (8192/128) power spectrum
of the component should be
(15.5 dB) at the difference frequency 0.16, in agreement with
the figure. The theoretical and power spectra are
approximately white with power levels shown in Table I, which
were calculated from (33) and (36), and are seen to be in rough
agreement with the levels shown in Fig. 4.

Fig. 5 shows the calculated estimates and for iter-
ations. The three traces in each plot are for number of measure-
ments (solid), (dashed), and (dotted).
For the noiseless case [Fig. 5(a)], the estimate vari-
ation is solely due to slightly different aliasing effects as the
starting phases are varied, as previously discussed. We also see
some estimate bias from the true values (horizontal lines), again
due to the aliasing. The noiseless case should be considered as a
baseline for assessing noise effects since the nonideal behavior
represents simulation artifacts and does not reflect fundamental
performance limitations—the actual wide-band input signal is
analog, not digital. Fig. 5(b) and (c) shows how the estimates
are affected by the addition of noise ( , 2). We see that

Fig. 4. Power spectra of square-law detector output for r = 0:999, showing
total spectrum (solid) and components from S � S (dashed), N � N (dotted),
and S�N (dashed-dot) terms. (a) � = 0:1. (b) � = 1. (c) � = 10.

the variation of the parameter estimates is increased from their
noiseless values.

The above simulation was repeated for various values of all-
pass filter parameter using iterations and the re-
sulting statistics are compiled in Table II. Since the 2000 iter-
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TABLE I
THEORETICAL SQUARE-LAW DETECTOR OUTPUT SPECTRAL LEVELS OF

CENTER FREQUENCY CHANNEL

ations involve different aliasing and noise realizations, the sta-
tistical significance of the values in the table are relatively ac-
curate to the level of , i.e., about 2%. We
see that the mean of and is negatively biased by about 1
in all cases, being about the same with ( , 2) and without

noise. As previously discussed, these effects are due to
a small amount of aliasing in the discrete-time simulation and
the fact that they do not significantly change in the presence of
noise means that they are probably negligible. The mean nor-
malized amplitude estimates are also similarly biased with and
without noise. In contrast to the means, the standard deviations
do all increase in the presence of noise, as expected. They also
increase systematically as is reduced. This is due to the fact
that with less sharp allpass filters, there is some correlation be-
tween the response at different tone frequencies which tends
to degrade the conditioning of the matrix defined in (11),
thereby enhancing perturbations due to aliasing and extrinsic
noise. In most cases, the bias and standard deviation decrease
somewhat as increases, which is understandable because re-
dundant measurements are being utilized in the overdetermined
case . Finally, we observe the estimate correlations,
which are not meaningful for the noiseless case but take on def-
inite values in the presence of extrinsic noise. This relates to the
correlation between the allpass filter outputs, as extensively dis-
cussed in Section III and Appendix A.

We now compare the simulation results of Table II with the-
oretical calculations. We will concentrate on the standard devi-
ations and correlations in the presence of noise, which are the
most meaningful measures. Table III compares calculations of
the theoretical exact [5] and approximate values derived for the
differential phase estimates in Section III using the results of
Appendix A with the simulation results in Table II, all for .
For and we see that there is close agreement
between the exact and approximate theoretical values, which are
moreover in reasonable agreement with the simulation results.
For , the approximation breaks down because the filter
responses are too broad. Also, we see a wider gap between the
exact theoretical and simulation results. This is due to the poorly
conditioned matrix, as previously discussed. Similar calcu-
lations are presented in Table IV for the amplitude estimates,
where again we see good agreement except for the problematic
case .

V. ADVANCED ESTIMATION TECHNIQUES

A. Side Amplitude Information

We have so far considered joint estimation of the amplitude
and phase, which is captured in the least-squares estimate (15).
If there were some independent means of obtaining amplitude

Fig. 5. Calculated estimates ^��� and â for discrete-time simulation with M = 2

(solid), M = 3 (dashed), and M = 4 (dotted) measurements; r = 0:999. (a)
� = 0. (b) � = 1. (c) � = 2.

measurements, one could consider using this information to pos-
sibly refine the phase estimates. Ideally, we would then know
in (12) exactly. In that case, instead of minimizing
over all values of the complex vector , we would minimize
only over values of the phase vector . This is equivalent to min-
imizing over all values of a complex vector with
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TABLE II
MEAN, STANDARD DEVIATION, AND CORRELATION OF ESTIMATION ERRORS FOR VARIOUS VALUES OF r, �, AND M . (� , � STATISTICS IN DEGREES;

â , â STATISTICS RELATIVE TO A = 1)

TABLE III
EXACT, APPROXIMATE, AND SIMULATED PHASE ESTIMATE STATISTICS (IN DEGREES) FOR VARIOUS VALUES OF r, AND M ; � = 1

TABLE IV
EXACT, APPROXIMATE, AND SIMULATED AMPLITUDE ESTIMATE STATISTICS (RELATIVE TO A = 1) FOR VARIOUS VALUES OF r, AND M ; � = 1

the constraint that the components of , , all have unit mag-
nitude: , . However, this is a difficult
problem to solve because using Lagrange multipliers to enforce
the constraints generally leads to a set of nonlinear simultaneous

equations. We have instead obtained a gradient solution that re-
cursively minimizes

(63)
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over . Taking the complex gradient gives, after some matrix
algebra

(64)

Using the negative of this to adjust , we obtain the recursion

(65)

where is a step size chosen to achieve fast convergence while
maintaining stability.

We modified the simulation to implement the above con-
strained estimation algorithm, assuming perfect a priori
information for the amplitudes , , (i.e., perfect knowl-
edge of ). For the same parameter values used in Section IV,
rapid and stable convergence was achieved in less than ten steps
for . However, the noise-impaired differential phase
estimates did not significantly improve. This result held even
if we artificially fixed the mean value of to its ideal value
(12), thereby eliminating all aliasing effects in the simulation.
We therefore conclude that, at least for this example, side
information on the amplitudes is not very useful.

B. Weighted Least-Squares/Maximum Likelihood

So far in this paper, we have used a least-squares estimator
for the unknown parameters. However, given the results of Sec-
tion III, we know that the noise is not i.i.d. Therefore, we could
possibly improve the estimation quality by incorporating this
knowledge in a form of weighted least squares, which is equiv-
alent to a maximum-likelihood solution in the case of Gaussian
noise. As we have already observed in Section III-B, the non-
proper complex demodulator output requires special treatment
using both the Hermitian covariance matrix and symmetric
complementary covariance matrix . Here, we will need to de-
rive a maximum-likelihood estimator of , given the
complex synchronous demodulator output vector . From Ap-
pendix C, we can express the maximum likelihood estimator as

(66)

where

(67)

(68)

(69)

and

(70)

Note that in the special case when is square ,
. Also, if were proper with , then

and (66) reduces to ,
which for further reduces to the least-squares formula-
tion (15).

The simulation was modified to incorporate the maximum
likelihood estimator. For the same parameter values used in Sec-

tion IV, the differential phase and relative amplitude estimates
were only slightly improved. As the allpass pole radius is de-
creased from 0.999 to 0.9, the numerical conditioning becomes
slightly better than for the unweighted least-squares solution,
but not dramatically so. So from this exercise, we conclude that
weighted least-squares offers little improvement, at least for the
parameter values considered in this paper.

VI. CONCLUSION

In this paper, we have presented a wide-band system identi-
fication technique that can be implemented with parallel dig-
ital processing, making it attractive for systems that are oth-
erwise only measurable using analog techniques. This method
can be implemented using either a simple tunable wide-band
analog allpass filter or a bank of fixed allpass filters, followed
by square-law detection and digital sampling at a reduced rate. A
mathematical basis was derived for the scheme and an analysis
was presented for the effects of noise on estimate errors and cor-
relations. A simulation for three tones was presented and results
were compared with their theoretical values. A major conclu-
sion of this study is that the allpass filters should be neither too
sharp nor too broad: sharp filters would lead to modeling inaccu-
racies, especially when they have to be calibrated and controlled
as tunable analog filters; broad filters have strong coupling be-
tween the responses at different tone frequencies and this leads
to poor numerical conditioning. For the simulations in this paper
we found that a pole radius of about 0.99 provided
reasonably accurate and predictable results.

Future work could extend these results to a moderately large
number of tones, say 10–30, to see how the technique scales.
Also, other filter types that are more representative of hard-
ware for specific applications could be studied using the general
theory of this paper. For example, in fiber optic applications, an
optical ring resonator with couplers could be modeled as a more
general IIR filter, still with allpass-like phase but also incorpo-
rating frequency-dependent loss.

APPENDIX A
DERIVATION OF CROSS-CHANNEL CORRELATIONS

In the main text, the square-law mixing terms (30) of each
allpass filtered channel are low-pass filtered to produce the de-
tector output components (32), and then are synchronously de-
modulated to form output components (37). In this appendix, we
sketch a theoretical derivation of the cross-correlation between
the different channels, before and after synchronous demodula-
tion. A more complete treatment, along with asymptotic exact
results, can be found in [5].

As a starting point, we shall represent the wide-band Gaussian
noise input , depicted in Fig. 1, as the sum of a large number
of sinusoids with random phase, viz.,

(A1)
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where is the noise power, the ’s are uniformly spaced over
the normalized (single-sided) system radial bandwidth from 0
to , and the ’s are independent random variables, uniformly
distributed on (0, ). This representation assumes that the noise
is “white,” i.e., uniform, within the system bandwidth, and en-
ables tractable analysis of the mixing terms that result from
the nonlinear square-law device. The model does not employ
a random amplitude for each sinusoid; however, we maintain
that this is not necessary for large by appealing to the central
limit theorem.

With the above model, the noise output of the th allpass
filter output is written

(A2)

where is the phase of the th allpass filter frequency re-
sponse, which is assumed here to be ideal with unity magnitude
(28). Substituting this into (31b) expresses the cross-term
of the square-law detector output as

(A3)

where

(A4)

is a subset of the angular frequencies centered around
that contribute to difference frequency components within

the passband of the low-pass filter.
We now consider the correlation between the th and th

channels and calculate (A5), as shown at the bottom of the page,

where we have used the following reasoning to obtain the final
result. First, since the ’s are uniformly distributed over (0,

) and independent over the frequency index , only cross-
terms with survive ensemble expectation. Next,
taking expectation over time , only sinusoids with frequency
index will contribute. Similar calculations can be
performed to obtain

(A6)

where

(A7)
Further approximation of (A5) and (A6) is deferred to the end of
this appendix, where it will be conveniently expressed in terms
of a more general formulation.

We now derive expressions for the correlation of the syn-
chronous demodulator outputs (37). In order to obtain statis-
tics over an ensemble , we consider multiple realizations over
time and, for analytical convenience, center the -sample syn-
chronous demodulator window at each time instance . By con-
sidering the synchronous demodulation as a linear filter, we ob-
tain (A8) and (A9), shown at the bottom of the page, where

(A10)

(A5)

(A8)

(A9)
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In a similar manner as before, we now calculate the
cross-channel correlations as shown in (A11)–(A13), shown at
the bottom of the page, and

(A14)

Equations (A11)–(A14) were used for the exact calculations
in the main text. However, these are not very efficient to com-
pute when is a large number, e.g., 8192, especially (A12)
which involves a double sum over . Therefore, we now go on
the derive approximate expressions for these quantities that can
be quickly computed over many parameter sets. First note that
for moderately large so that the bandwidth of is small
compared to the allpass transition bandwidth, (A10) can be ap-
proximated as

(A15)

where . Substituting this into (A11) and taking
the limit as (whence frequencies are contained in

) yields the integral expression (A16), shown at the botttom
of the page.

Next, we assume second-order allpass filters of the form (62)
and approximate their phase response as [5]

(A17)

where is defined in (35) and is the pole radius. Using this to
express the various phase terms in (A16) gives

(A18)

where we have defined

(A19)

The integral can be evaluated using contour integration in
the complex plane [5], thereby with (A18) above yielding (39)
and (34) in the main text for the special case when .
Similar calculations for the complementary cross-correla-
tion (A13) yield (42). For the cross-correlation, the total
phase is approximately zero over most indexes, and summing
the si function as an integral obtains (40).

The square-law detector outputs can be considered as special
cases of the above theory for , whereby the integration
is approximately limited to the appropriate bandwidth .
Thus, by substituting into (39) and (40), the cross-corre-
lations (33) and (36) follow as approximations of (A5) and (A6),
expressed in terms of (34).

(A11)

(A12)

(A13)

(A16)
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Fig. 6. Differentials in the complex plane.

APPENDIX B
DIFFERENTIALS IN COMPLEX PLANE

Consider the differential of the phase function

(B1)

where is a complex variable with real components
and . Note that can be considered as a function of and .
The usual representation of the derivative of a complex variable
forms

(B2)

Combining this with a similar expression for the partial with
respect to gives the total differential

(B3)

This result can also be appreciated by drawing a diagram in
the complex plane with (see Fig. 6), where one
immediately sees the special cases

(B4a)

(B4b)

We also consider differentials of the magnitude

(B5)

Proceeding as above, we calculate

(B6)

and then obtain

(B7)

Again, one immediately sees the special cases (Fig. 6)

(B8a)

(B8b)

APPENDIX C
MAXIMUM LIKELIHOOD ESTIMATION IN GENERAL

COMPLEX GAUSSIAN NOISE

In this appendix, we derive the maximum likelihood estimator
of a complex vector , given measurements of the com-
plex vector

(C1)

where is an arbitrary matrix and is an
vector of zero-mean complex Gaussian noise with Hermitian
covariance matrix

(C2)

where superscript denotes conjugate transpose. For gener-
ality, we also define the complementary covariance matrix

(C3)

For so-called proper complex random variables, the real and
imaginary parts are uncorrelated and of equal variance (circu-
larly symmetric) so that . However, there are many ap-
plications for which this condition does not hold [2]–[4].

From [3] we can write the -dimensional probability den-
sity of as

(C4)

where is an unimportant constant and

(C5)

where

(C6)

is a Hermitian matrix (Shure complement) and

(C7)

is a symmetric matrix. Therefore, considering as an unknown
parameter vector, we write the probability density of the obser-
vations as

(C8)

The maximum-likelihood estimate of is then determined by
maximizing (C8)

(C9)
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Equivalently, we seek to minimize

(C10)

Taking derivatives of the components of (C10) with respect to
, we have

(C11)

(C12)

and

(C13)

(Note that in minimizing such quadratic forms, and can
be considered as independent variables [6].) Thus, equating the
derivative of (C10) to zero formulates the maximum likelihood
estimate

(C14)

To obtain , we simultaneously solve the above equation and its
complex conjugate, eliminating , giving

(C15)

where

(C16)

and

(C17)

Note that in the special case when is square ,
. Also, if were proper with , then

and (C15) reduces to , which
for further reduces to the usual least-squares solution

.
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