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Forced convection heat transfer characteristics of a cylinder (maintained at a constant temperature)
immersed in a streaming power-law fluids have been studied numerically in the two-dimensional
(2-D), unsteady flow regime. The governing equations, namely, continuity, momentum and thermal
energy, have been solved using a finite volume method based solver (FLUENT 6.3) over wide ranges of
conditions (power law index, 0.4 6 n 6 1.8; Reynolds number, 40 6 Re 6 140; Prandtl number,
1 6 Pr 6 100). In particular, extensive numerical results elucidating the influence of Reynolds number,
Prandtl number and power-law index on the isotherm patterns, local and average Nusselt numbers
and their evolution with time are discussed in detail. Over the ranges of conditions considered herein,
the nature of flow is fully periodic in time. The heat transfer characteristics are seen to be influenced
in an intricate manner by the value of the Reynolds number (Re), Prandtl number (Pr) and the power-
law index (n). Depending upon the value of the power-law index (n), though the flow transits from being
steady to unsteady somewhere in the range �33 < Re < 50, the fully periodic behavior is seen only beyond
the critical value of the Reynolds number (Re). As expected, the average Nusselt number increases with an
increase in the values of Reynolds and/or Prandtl numbers, irrespective of the value of the flow behavior
index. A strong influence of the power-law index on both local and time-averaged Nusselt numbers was
observed. Broadly, all else being equal, shear-thinning behavior (n < 1) promotes heat transfer whereas
shear-thickening behavior (n > 1) impedes it. Furthermore, this effect is much more pronounced in
shear-thinning fluids than that in shear-thickening fluids.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The flow past a circular cylinder represents a classical problem
in fluid mechanics and has thus received considerable attention
over the past 50 years or so. This flow also denotes an idealization
of many industrial applications such as the flow in tubular and pin-
type heat exchangers, in the use of thin wires as measuring probes,
in thermal processing of food particles, etc. Consequently, over the
years, a significant body of knowledge has accrued on various as-
pects including flow regimes and their transitions, gross engineer-
ing parameters like hydrodynamic forces (lift and drag coefficients)
exerted on a cylinder immersed in moving fluids, rates of heat and
mass transfer and detailed structures of the flow field like wake
phenomenon, vortex shedding, isotherm patterns, etc. Undoubt-
edly, the field has attained a level of maturity, as far as the behavior
of Newtonian fluids is concerned. Excellent reviews and survey
articles, even books exclusively devoted to the flow over a single
ll rights reserved.

x: +91 512 259 0104.

ineering, Indian Institute of
cylinder are now available [1–3]. Suffice it to add here that even
for Newtonian fluids, the momentum characteristics have been
studied much more thoroughly than the corresponding heat/mass
transfer problems for this flow configuration.

On the other hand, many so-called ‘‘structured” substances of
multi-phase nature and/or of high molecular weight encountered
in industrial practice (pulp and paper suspensions, food, polymer
melts and solutions, foams, micellar solutions, etc.) display
shear-dependent flow behavior [4]. Owing to their high viscosity
levels, it is common to encounter laminar flow conditions in the
processing of these materials. Admittedly, many non-Newtonian
fluids, notably, polymeric systems also display visco-elastic behav-
ior; the available scant literature both for the creeping flow past a
single cylinder and over a periodic array of cylinders seems to sug-
gest the visco-elastic effects to be minor in this flow configuration
[5]. Furthermore, currently available visco-elastic simulations
examine the role of visco-elasticity in the absence of shear-thin-
ning behavior in the limit of zero Reynolds number (creeping flow)
and under these conditions, the elasticity effect is predicted to be
small. On the other hand, the test fluids used in the few experimen-
tal studies available displays both shear-dependent viscosity and
visco-elastic characteristics. Therefore, it is not only unfair to
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Nomenclature

cp specific heat of the fluid, J/kg K
D diameter of the cylinder, m
h convective heat transfer coefficient, W/m2 K
H height of the computational domain, m
I2 second invariant of the rate of the strain tensor, s�2

L length of the computational domain, m
Lu upstream length, i.e., the distance from the inlet bound-

ary to center of the cylinder, m
Ld downstream length, i.e., distance from center of the cyl-

inder to outflow boundary, m
m power-law consistency index, Pa sn

n power-law flow behavior index, dimensionless
Nu time-averaged surface averaged Nusselt number,

dimensionless
NuN normalized average Nusselt number using the corre-

sponding Newtonian value, [=Nu(non-Newtonian)/
Nu(newtonian)], dimensionless

Nu(h) Local Nusselt number (NuLocal) over the surface of the
cylinder, dimensionless

p pressure, Pa
po free stream pressure, Pa

Pr Prandtl number, dimensionless
Re approach Reynolds number, dimensionless
t time, s
T time period, s
T temperature, K
To temperature of the fluid at the inlet, K
Tw temperature of the surface of the cylinder, K
Uo uniform inlet velocity of the fluid, m/s
Ux, Uy x-and y-components of the velocity, m/s
x,y stream-wise and transverse coordinates, m

Greek symbols
g viscosity, Pa s
h angular displacement from the front stagnation (h = 0),

degrees
q density of the fluid, kg/m3

s shear stress, Pa
sxx, sxy x-and y-components of the extra stress tensor, Pa

Subscript
Local point value
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compare these experiments with numerical predictions, but it is
also not obvious whether the significant deviations seen from the
Newtonian kinematics are due to their shear-dependent viscosity
or visco-elasticity or due to a combination of both [5]. Therefore,
it seems reasonable to begin with the analysis of purely viscous
power-law type fluids as long as the power-law constants are eval-
uated in the shear-rate range appropriate for the flow over a cylin-
der, and the level of complexity can then be built up gradually to
accommodate other non-Newtonian characteristics such as yield
stress, visco-elasticity, etc.

As far as known to us, there has been no prior study on the con-
vective heat transfer from a heated circular cylinder to incom-
pressible power-law liquids in the two-dimensional periodic
(unsteady) flow regime. This constitutes the main objective of this
work. At the outset, it is, however, useful to briefly recount the
available limited work on the flow of Newtonian fluids in the un-
steady flow regime and of power-law fluids past a cylinder to facil-
itate the subsequent presentation of the new results on heat
transfer in the time-dependent periodic flow regime.
2. Previous work

It is instructive to recapitulate the flow regimes observed for the
flow of Newtonian fluids over a long cylinder oriented normal to the
direction of flow. It is now readily agreed that, for an unconfined
flow, the first signature of flow separation occurs at about Reynolds
number, Re � 4–5. As the Reynolds number, Re, is gradually incre-
mented, the two symmetric vortices grow in size up to about Rey-
nolds number, Re � 46–47 [6,7] (albeit values ranging from 45 to
50 have been reported in the literature, e.g., see [1,2]) when the flow
becomes asymmetric about the mid-plane and this is followed by
vortex shedding, thereby leading to the periodic (time-dependent)
flow regime, albeit the flow is still two-dimensional (2-D). This flow
regime persists up to about Re � 188.5 ± 1 [8] (though values rang-
ing from �170 to �190 have been cited in the literature, e.g., see
[1,2]) and beyond this value, the flow ultimately transits to three-
dimensional (3-D) in character. Naturally, such changes in the de-
tailed kinematics also manifest at macroscopic level via the different
scalings of the drag and lift coefficients, Nusselt number, etc. with
the Reynolds number. Additional complications arise from the pres-
ence of confining walls, entry velocity profiles, etc. It is, therefore,
impossible to develop a single sound theoretical framework to
estimate the values of the engineering parameters spanning all flow
regimes [1,9]. While numerous studies delineating the fluid
mechanical aspects in the laminar vortex shedding regime are avail-
able [1,9], only scant literature is available on the corresponding
convective heat transfer problem even in Newtonian fluids. Since a
detailed review of the pertinent literature up to 1996 is available
elsewhere [10], only the key points and/or the subsequent studies
are included here.

Most studies on heat transfer relate to the flow of air and are
thus restricted to the single value of the Prandtl number,
Pr = 0.71. Only very recently, the effect of a 100-fold variation in
the value of Prandtl number (Pr) has been investigated numeri-
cally in the steady flow regime up to Reynolds number, Re = 40
[11]. Similarly, while the flow is known to be time-dependent be-
yond Re P 46–47, many investigators have sought steady state
solutions to the governing equations, e.g., see [10,12], and
obviously, it is difficult to justify this assumption for Reynolds
number, Re > �47. Therefore, there have been relatively a few
time-dependent studies for convective heat transfer from a heated
cylinder even in Newtonian fluids. For instance, Karniadakis [13]
presented limited results on Nusselt number for a cylinder in air
up to Reynolds number (Re) of 200 and found these to be in good
agreement with the experimental results available in the litera-
ture. Similarly, Cheng et al. [14] studied the so-called lock-on ef-
fect on convective heat transfer from a transversely oscillating
circular cylinder. They considered two values of the Prandtl num-
ber (Pr), corresponding to air and water, i.e., �0.7 and 7, respec-
tively. For the case of a non-oscillating cylinder, they reported
time-averaged values of the drag coefficient and heat transfer
up to Re = 200 which were shown to be in line with the other per-
tinent studies. Subsequently, Mahfouz and Badr [15] have exam-
ined the influence of rotational oscillation of a cylinder on
forced convection heat transfer in air. In the limiting case of a
fixed cylinder, they also demonstrated the periodic-variation in
Nusselt number at three values of the Reynolds number,
Re = 80,100 and 200. Their time averaged values of Nusselt num-
ber are also consistent with the prior numerical and experimental
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values. In an extensive study, Lange et al. [16] studied numerically
heat transfer from a cylinder to air in the range of Reynolds num-
ber as Re 6 200. In particular, they tried to ascertain the effect of
temperature-dependent properties on heat transfer. Similarly,
Baranyi [17] has also numerically studied heat transfer from a
heated cylinder to air in the range of Reynolds number as
50 6 Re 6 180 over which the flow can be treated as two-dimen-
sional (2-D). He reported detailed results on momentum and heat
transfer characteristics. Thus, in summary, only limited numerical
studies are available on heat transfer from a cylinder in the time-
dependent regime even in Newtonian media, and most of these
relate to air. Therefore, very little is known about the effect of Pra-
ndtl number (Pr) on heat transfer from a cylinder in the time-
dependent regime.

In contrast, the corresponding literature on the flow of power-
law fluids over a cylinder is not only of recent vintage, but is also
less extensive and is restricted only to the steady flow regime. Fur-
thermore, early studies [18–22] invariably assumed the identical
flow regimes to exist as that for Newtonian fluids. Thus, for in-
stance, D’Alessio and Pascal [18], Chhabra et al.[19], Soares et al.
[20], Bharti et al. [21,22], etc., all reported the values of flow and
heat transfer parameters over wide ranges of power-law index
(n), Prandtl number (Pr) and up to about Re = 40 by assuming the
flow to be steady. It is now readily acknowledged [23] that the
wake formation is delayed to about Re � 11–12 in shear-thinning
(n < 1) fluids and it occurs at as low a value as Re � 0.3 in shear-
thickening (n > 1) fluids. Similarly, the steady flow regime ends at
Re � 33–35 in highly shear-thickening (n > 1) fluids [23]. This
clearly casts some doubts about the reliability of the results based
on the assumption of the steady flow regime, as also noted above
for Newtonian fluids. Notwithstanding this intrinsic limitation, suf-
fice it to add here that reliable results are now available on heat
transfer from a cylinder immersed in streaming power-law fluids
up to about Prandtl number (Pr) values of 100–200 [20,22]. Simi-
larly, the role of mixed convection has been elucidated recently
in the cross-flow and aiding buoyancy configurations and under
appropriate conditions, free convection can augment the overall
rate of heat transfer by up to 40–45% in shear-thinning (n < 1) flu-
ids [24,25]. Thus, a reasonable amount of information is available
on convective heat transfer from a cylinder in power-law fluids.
By virtue of the steady flow assumption, these results are limited
to a maximum value of the Reynolds number, Re � 40. Some of
the other relevant studies include elliptic cylinders in power-law
fluids [26,27], confined circular cylinder [28,29], two cylinders in
tandem arrangement [30,31], square cylinder in power-law fluids
[32–34], albeit the steady flow assumption is implicit in all these
studies, with a notable exception of [35,36].

As far as known to us, there has been only one study of vortex-
shedding from a cylinder in power-law fluids [37]. The key findings
of this work are summarized here. For highly shear-thickening flu-
ids (n = 1.8), the unsteady flow was observed at Re = 40, and
unsteadiness was evident at Re = 50 for all values of power-law in-
dex (n). As expected, the evolution of the kinematics and vortex
shedding phenomenon exhibit complex dependence on the perti-
nent flow governing parameters in the transition region. For a fixed
value of the Reynolds number (Re), the drag coefficient increased
whereas both the lift coefficient and Strouhal number decreased
as the power-law index (n) was gradually increased, i.e., as the
fluid behavior changed from shear-thinning (n < 1) to shear-thick-
ening (n > 1) via the standard Newtonian (n = 1) fluid behavior. For
a fixed value of the power-law index (n), the drag coefficient grad-
ually increased with Reynolds number (Re). Undoubtedly, these
changes seen in the flow field will directly influence the tempera-
ture field in the vicinity of the cylinder and also the overall heat
transfer coefficient. However, no such prior study on heat transfer
is currently available in the literature.
From the foregoing discussion, it is thus abundantly clear that
(i) only limited numerical results are available on heat transfer
from a cylinder in Newtonian fluids (mostly air) in the laminar vor-
tex-shedding regime, and (ii) no prior results are available on the
time-dependent heat transfer from a cylinder in power law fluids.
This work aims to fill these gaps in the literature. In particular, re-
ported herein are extensive numerical results to delineate the role
of power law index, Reynolds and Prandtl numbers on the local
and averaged heat transfer characteristics in the two-dimensional
unsteady flow regime over the following ranges of conditions: Rey-
nolds number (40 6 Re 6 140), Prandtl number (1 6 Pr 6 100), and
power-law index (0.4 6 n 6 1.8) thereby including shear-thinning,
Newtonian and shear-thickening fluid behaviors.

3. Problem statement and governing equations

Consider the two-dimensional (2-D), unsteady flow of an
incompressible power-law liquid streaming with a uniform veloc-
ity (U0) and temperature (T0) over an infinitely long circular cylin-
der (of diameter, D) oriented with its long axis normal to the flow,
as shown in Fig. 1a. The surface of the cylinder is maintained at a
constant wall temperature, Tw (>T0). In order to keep the level of
complexity at a tractable level at this stage, the viscous dissipation
effects are assumed to be negligible and the thermo-physical prop-
erties (heat capacity, thermal conductivity, viscosity and density)
of the liquid are assumed to be independent of temperature. While
these two assumptions lead to the de-coupling of the momentum
and thermal energy equations, these also restrict the applicability
of the present results to the situations where the temperature dif-
ference between the fluid and cylinder is not too large and for
moderate viscosity and/or shearing levels so that the viscous dissi-
pation effects are negligible. In the present simulations, therefore,
the temperature difference DT (=Tw � T0) is maintained small so
that these simplifying assumptions can be justified.

Naturally, it is not possible to mimic truly the unconfined flow
condition, it is simulated here by considering the flow in a channel
(of height H) with the cylinder placed symmetrically in between
the two plane walls with slip boundary conditions (i.e., no dissipa-
tion at the walls), as shown schematically in Fig. 1b. The cylinder is
placed at an upstream distance of Lu from the inlet boundary and at
a distance of Ld (downstream length) from the outflow boundary.
The dimensions of the computational domain (Fig. 1b) L = Lu + Ld

and height H are taken to be sufficiently large to minimize the
end and boundary effects, as discussed in detail in a later section.

The flow and temperature fields are governed by the continuity,
momentum and thermal energy equations for this flow, which, in
their compact forms are written as follows:

� Continuity equation:

r � U ¼ 0 ð1Þ

� Momentum equation:

q
@U
@t
þ U � rU� f

� �
�r � r ¼ 0 ð2Þ

� Energy equation:

qcp
@T
@t
þ U � rT

� �
� kr2T ¼ 0 ð3Þ

where q, U, T, f, cp, k and r are the density of the power-law fluid,
velocity vector (Ux and Uy components in Cartesian coordinates),
temperature, body force, heat capacity, thermal conductivity and



Fig. 1. Schematic representation of (a) a flow over an unconfined cylinder and (b) an approximation of an unconfined flow (uniform velocity, Uo and temperature, T0)
configuration.
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the stress tensor, respectively. The stress tensor, sum of the iso-
tropic pressure (p) and the deviatoric stress tensor (s), is given
by

r ¼ �pI þ s ð4Þ

For incompressible fluids, the extra stress tensor is related to the
rate of deformation tensor as

s ¼ 2ge ð5Þ

where e, the components of the rate of strain tensor, are given by

e ¼ 1
2
ðrUÞ þ ðrUÞT
h i

ð6Þ

For a power-law fluid, the viscosity (g) is given by

g ¼ mðI2=2Þðn�1Þ=2 where I2 ¼ 2ðe : eÞ ð7Þ

In Eq. (7), m is the power-law consistency index and n is the power-law
index of the fluid (n < 1: shear-thinning; n = 1: Newtonian; and n > 1:
shear-thickening) and I2 is the second invariant of the rate of strain
tensor (e). The components of the rate of strain tensor are related to
the velocity components and their derivatives, e.g., see, Ref. [38].

The physically realistic boundary conditions for this flow con-
figuration may be written as follows:

� At the inlet boundary: The uniform flow in the x-direction and
uniform fluid temperature are imposed at the inlet as.

Ux ¼ U0; Uy ¼ 0 and T ¼ T0 ð8Þ

� On the surface of the cylinder: The standard no-slip condition is
used and the cylinder is heated so that its surface is maintained
at a constant temperature Tw,

Ux ¼ 0; Uy ¼ 0 and T ¼ Tw ð9Þ
� At the exit boundary: The default outflow boundary condition
option in FLUENT (a zero diffusion flux for all flow variables)
has been used in this work. This choice implies that the condi-
tions of the outflow plane are extrapolated from within the
domain and as such have negligible influence on the upstream
flow conditions. The extrapolation procedure used by FLUENT
updates the outflow velocity and the pressure in a manner that
is consistent with the fully-developed flow assumption, when
there is no area change at the outflow boundary. However,
the gradients in the cross-stream direction may still exist
at the outflow boundary. Also, the use of this condition obviates
the need to prescribe a boundary condition for pressure. This is
similar to the homogeneous Neumann condition, i.e.,

@/
@t
þ U0

@/
@x
¼ 0 where / ¼ Ux;Uy and T ð10Þ

� At the top and bottom boundaries: Since these are fictitious walls
the usual slip flow and adiabatic conditions are imposed, i.e.,

@Ux

@y
¼ 0; Uy ¼ 0 and

@T
@y
¼ 0 ð11Þ

The numerical solution of the governing equations (Eqs. (1)–(3)) in
conjunction with the above-noted boundary conditions (Eqs. (8)–
(11)) maps the flow domain in terms of the primitive variables, i.e.,
velocity (Ux and Uy), pressure (p) and temperature (T) fields. These,
in turn, are used to deduce the local and global momentum charac-
teristics as outlined below and detailed elsewhere [21,22,26–31].
However, at this stage, it is useful to introduce the definitions of
the dimensionless parameters used in the presentation of results.

� The Reynolds number (Re) and Prandtl number (Pr) for power-law
fluids (based on the free stream velocity) are defined as follows:

Re ¼ qDnU2�n
o

m
and Pr ¼ mcp

k
Uo

D

� �ðn�1Þ

ð12Þ

Note that unlike in the case of Newtonian fluids, the Prandtl
number (Pr) for a power law fluid depends upon the velocity
and diameter of the cylinder, in addition to the thermo-physical
properties. However, the Peclet number, Pe (=Re�Pr) is indepen-
dent of the power-law parameters (m, n).

� The local Nusselt number, Nu(h) or Nulocal on the surface of the
cylinder is evaluated using the temperature field as follows:

NuðhÞ ¼ hD
k
¼ � @T

@ns
ð13Þ

where, ns (the unit vector normal to the surface of the cylinder)
is given as
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ns ¼
xex þ yeyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p ¼ nxex þ nyey ð14Þ

where ex and ey are the x- and y-components of the unit vector,
respectively.
The overall surface average value is obtained by integrating
Nu(h) over the surface of the cylinder as:

Nu ¼ 1
2p

Z 2p

0
NuðhÞdh ð15Þ

It is this value of the average Nusselt number which is frequently
needed in process engineering design calculations to estimate
the rate of heat transfer from an isothermal cylinder or con-
versely, to estimate the temperature of the cylinder for a given
rate of heat transfer.
Dimensional analysis of the field equations and boundary con-

ditions suggests the average Nusselt number to be a function of
the kinematic and dimensionless numbers, i.e., Nu = f(Re, n, Pr),
though in view of the periodic nature of the flow, the Nusselt num-
ber shows a periodic variation with time (t). This functional rela-
tionship is developed in this study.
4. Numerical solution procedure

Since detailed descriptions of the numerical solution procedure
are available elsewhere [21–23,25–31,37], only the salient features
are recapitulated here. In this study, the field equations have been
solved using FLUENT (version 6.3). The unstructured ‘quadrilateral’
cells of non-uniform grid spacing were generated using the com-
mercial grid tool GAMBIT. The two-dimensional, unsteady, lami-
nar, segregated solver was used to solve the incompressible flow
on the collocated grid arrangement. The second order upwind
scheme has been used to discretize the convective terms in the
momentum and thermal energy equations. The semi-implicit
method for the pressure linked equations (SIMPLE) scheme was
used for solving the pressure-velocity decoupling. The ‘constant
density’ and ‘non-Newtonian power-law’ viscosity models were
used. FLUENT solves the system of algebraic equations using the
Gauss–Seidel (G–S) point-by-point iterative method in conjunction
with the algebraic multi-grid (AMG) method solver. The use of
AMG scheme can greatly reduce the number of iterations and thus,
the CPU time required to obtain a converged solution, particularly
when the model contains a large number of control volumes.
Relative convergence criteria of 10�8 for the continuity and
x- and y-components of the velocity and 10�15 for residuals of
thermal energy equation were prescribed in this work. Also, the
solution is assumed to have converged when there was no change
(at least up to fourth decimal place) in the total drag coefficient
and the corresponding changes in the value of the lift coefficient
are of the order of 10�5–10�6 for more than 1000 time steps or when
it shows more than 10 constant periodic cycles in time-history of the
lift and drag coefficients and surface averaged Nusselt number.
5. Choice of computational parameters

In this work, the effects of Reynolds number (Re), power-law in-
dex (n) and Prandtl number (Pr) on the two-dimensional unsteady
heat transfer characteristics using the full computational domain
(Fig. 1b) are investigated in the following ranges of conditions:
Reynolds number (Re = 40, 50, 100, 120 and 140), power-law index
(n = 0.4, 0.6, 1, 1.2, 1.4 and 1.8) thereby covering both shear-thin-
ning (n < 1) and shear-thickening (n > 1) fluid characteristics. The
Prandtl number values are chosen as Pr = 1, 10, 50 and 100 so that
heat transfer characteristics can be assessed over a wide ranges of
fluids. It is appropriate to add here that it is common to encounter
industrial fluids (in food and pharmaceutical processing engineer-
ing) with the value of Prandtl number (Pr) as large as 100, or even
higher [39]. However, in numerical studies, the maximum value of
the Prandtl number (Pr) is also restricted by the fact that very fine
grids are required near the cylinder owing to the progressive thin-
ning of the thermal boundary layer with increasing Prandtl num-
ber (Pr). However, a 100-fold variation in the value of Prandtl
number (Pr) covered in this work should provide an adequate
guide for delineating the scaling of the Nusselt number (Nu) with
Prandtl number (Pr). The ranges of parameters selected here are
thus governed, in part, by the typical values encountered in process
engineering applications.

Needless to say that the reliability and accuracy of the numeri-
cal results is strongly influenced by the choice of numerical param-
eters, namely, optimal domain and grid sizes and the time step.
Similar to our previous study [37], the computational domain in
this study is characterized by the values of Lu, Ld and H, the up-
stream and downstream lengths and height. An excessively large
value of these parameters will warrant enormous computational
resources and a small value will unduly influence the results and
hence a judicious choice is germane to the accuracy of results. Sim-
ilarly, an optimal grid should be sufficiently fine to adequately cap-
ture the flow and temperature fields without being excessively
resources intensive. In the numerical simulations of the unsteady
flows, the choice of time step (Dt=T/Ns where T =D/Uo and Ns are
the characteristics time of one periodic oscillation and number of
time steps per period, respectively) also plays an important role
in obtaining the time accurate solutions of the momentum and en-
ergy equations. Based on our previous study, the time step Dt=T/
100 is used in the present investigation. The extent of domain
and grid effects on momentum characteristics of unsteady flow
of power-law fluids over a cylinder have been discussed in detail
in a recent study [37]. Based on our previous experience [19–31],
the domain and grids used in the unsteady flow calculations [37]
are assumed to be adequate to resolve the heat transfer phenom-
ena with acceptable levels of accuracy within the range of condi-
tions of interest here. Thus, all results reported herein are based
on the following choices [37]: the domain size (Lu = 20D, Ld = 80D
and H = 90D) and grid size G3 which consists of 212323 cells (for
more details, see, [37]). Finally, to add further weight to our claim
for the accuracy of the results, the numerical results obtained here-
in have been compared with the literature values in the next
section.
6. Results and discussion

Prior to presenting the new results obtained in this work, it is
appropriate to validate the solution procedure to ascertain the
accuracy and reliability of the results presented herein. This is
accomplished by presenting comparisons with the prior results
for a few cases.
6.1. Validation of results

Since extensive comparisons for the flow of Newtonian and
power-law fluids past a single cylinder and two cylinder system
in steady and unsteady flow regimes have been dealt with in detail
elsewhere [11,19–31], only the additional limited comparisons for
the unsteady heat transfer are presented here in Table 1. An excel-
lent correspondence can be seen to exist between the present and
literature values. Sivakumar et al. [23] showed this flow to be stea-
dy at Re = 40 for shear-thickening fluids (n 6 1.4) and therefore the
present values (based on an unsteady solution) are in good agree-
ment with the previous values based on the assumption of steady
flow. On the other hand, for highly shear-thickening fluid (n = 1.8),



Table 1
Comparison of the present average Nusselt number (Nu) values with the literature values for a range of conditions.

Source Re = 40, Pr = 1 Re = 40, Pr = 100

n = 0.6 n = 1.0 n = 1.8 n = 0.6 n = 1.0 n = 1.8

Present 4.0775 3.6755 3.2772 ± 0.0001 21.0598 17.9052 16.1327 ± 0.0004
Bharti et al. [27] 4.0545 3.6533 3.2321 20.8647 17.7713 15.4875
Soares et al. [20] – 3.5700 – – –

Re = 100, n = 1, Pr = 0.71

Present 5.1529 ± 0.0021
Karniadakis [13] 5.7000
Cheng et al. [14] 4.8584
Mahfouz and Badr [15] 5.3100
Lange et al.[16] 5.128
Baranyi [17] 5.132

Table 2
Comparison between the present values and experimental values of Nusselt number
in Newtonian fluids.

Pr Re Average Nusselt number (Nu)

Ref. [40] Ref. [41] Present

0.7 100 5.26 4.62 5.153

10 50 – 9.14 9.18
100 – 13.28 13.94
140 – 15.94 16.58

50 50 – 17.41 16.27
100 – 25.30 24.38
140 – 30.36 28.82

100 50 – 22.98 21.25
100 – 33.40 30.90
140 – 40.07 36.47

Fig. 2. Comparison between the present predictions of the surface pressure
coefficient [Cp = 2(p�p0)/ðU2

0Þ where p0 is the free stream pressure] with experi-
mental data [42] at Re = 107.
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the flow transits from being steady to unsteady at about Reynolds
number, Re = 34–35 and therefore, at Re = 40, the flow is likely to
be unsteady. In spite of this fact, the time averaged values of the
Nusselt number obtained using unsteady and steady state schemes
for n = 1.8 and Re = 40 are close to each other at smaller value of
the Prandtl number (Pr = 1), but the two values differ by up to
Fig. 3. Comparison between the present predictions of Nusselt number with experimental data [40] at Re = 120 and Pr = 0.7.
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8–9% at Pr = 100. This difference is likely to grow further with the
increasing values of Reynolds number and/or Prandtl number and/
or both. Hence the steady state values will become increasingly
less accurate as the Reynolds number (Re) is gradually increased.
Next, the present value of the average Nusselt number of 5.1529
for Re = 100 and Pr = 0.71 compares favorably with the numerical
Pr=1

(a)

(b)

(c)

(d)

Pr=10

Re=40

Fig. 4. Isotherm profiles at Re = 40 and Pr = 1, 10 and 100 and for power-law inde

Pr=1

(a)

(b)

(c)

(d)

(e)

Pr=10

Re=40, n=1

Fig. 5. Time evolution of the near wake structure of isotherm profiles for a single time
cylinder in cross-flow at time: (a) t = 0, (b) t = T/4, (c) t = T/2, (d) t = 3T/4 and (e) t = T.
studies of Mahfouz and Badr [15], Karniadakis [13], Cheng et al.
[14] and of Baranyi [17]. It is worthwhile to re-iterate here that
the discrepancies of this magnitude are not at all uncommon in
such numerical studies. Finally, included in Table 2 is a comparison
between the present numerical results and the experimental data
available in the literature. For air (Pr = 0.7), the present value of
Pr=100

x: (a) n = 0.4, (b) n = 0.6, (c) n = 1 and (d) n = 1.4 for a cylinder in cross-flow.

Pr=100
.8

period (T) at Re = 40 and Pr = 1, 10 and 100 and for power-law index n = 1.8 for a



Pr=10

Re=100, n=0.4
Pr=100Pr=1

(a)

(b)

(c)

(d)

(e)

Fig. 6. Time evolution of the near wake structure of Isotherm profiles for a single time period (T) at Re = 100 and Pr = 1, 10 and 100 and for power-law index n = 0.4 for a
cylinder in cross-flow at time: (a) t = 0, (b) t = T/4, (c) t = T/2, (d) t = 3T/4 and (e) t=T.

Pr=1

(a)

(b)

(c)

(d)

(e)

Pr=10 Pr=100
Re=100, n=1

Fig. 7. Time evolution of the near wake structure of isotherm profiles for a single time period (T) at Re = 100 and Pr = 1, 10 and 100 and for power-law index n = 1 for a
cylinder in cross-flow at time: (a) t = 0, (b) t = T/4, (c) t = T/2, (d) t = 3T/4 and (e) t = T.
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average Nusselt number, Nu = 5.153 at Re = 100 is remarkably close
to that reported by Eckert and Soehngen [40]; the two values differ
only by 2%. Similarly, one of the most widely used correlation for
heat transfer from a cylinder to Newtonian fluids encompassing a
wide range of Prandtl number (Pr) values is that of Whitaker
[41], as given below:
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Re=100, n=1.8
Pr=1
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(b)
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(d)

(e)

 

Fig. 8. Time evolution of the near wake structure of isotherm profiles for a single time period (T) at Re = 100 and Pr = 1, 10 and 100 and for power-law index n = 1.8 for a
cylinder in cross-flow at time: (a) t = 0, (b) t = T/4, (c) t = T/2, (d) t = 3T/4 and (e) t = T.

Pr=1

(a)

(b)

(c)

(d)

(e)

Pr=10

Re=140, n=0.4
Pr=100

Fig. 9. Time evolution of the near wake structure of Isotherm profiles for a single time period (T) at Re = 140 and Pr = 1, 10 and 100 and for power-law index n = 0.4 for a
cylinder in cross-flow at time: (a) t = 0, (b) t = T/4, (c) t = T/2, (d) t = 3T/4 and (e) t = T.
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Nu ¼ ð0:4Re1=2 þ 0:06Re2=3ÞPr0:4ðlb=loÞ
0:25 ð16Þ

Eq. (16) was stated to correlate bulk of the literature data with an
average accuracy of ±25%. Since the maximum value of DT = 2–3 K
is used in the present study the viscosity correction factor (lb/
lo)0.25 � 1 and the resulting values of the mean Nusselt number
are listed in Table 2. For air, the present value of the average Nusselt
number (Nu) differs by about 10% from that predicted by Eq. (16).
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Pr=10

Re=140, n=1
Pr=100

Fig. 10. Time evolution of the near wake structure of isotherm profiles for a single time period (T) at Re = 140 and Pr = 1, 10 and 100 and for power-law index n = 1 for a
cylinder in cross-flow at time: (a) t = 0, (b) t = T/4, (c) t = T/2, (d) t = 3T/4 and (e) t = T.
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(b)

(c)
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Pr=10 Pr=100
Re=140, n=1.8

Fig. 11. Time evolution of the near wake structure of Isotherm profiles for a single time period (T) at Re = 140 and Pr = 1, 10 and 100 and for power-law index n = 1.8 for a
cylinder in cross-flow at time: (a) t = 0, (b) t = T/4, (c) t = T/2, (d) t = 3T/4 and (e) t = T.
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Similarly, for the higher values of Prandtl number (Pr = 10, 50 and
100), the present values deviate by no more than 10% from the
experimental values. This order of deviation is well within the error
band of Eq. (16). Such a close correspondence between the present



Fig. 12. Time evolution of the variation of the local Nusselt number on the surface of the cylinder in a single time period (T) for different values of power-law index (n) and
Prandtl number (Pr) at Reynolds number, Re = 40 at time: (a) t = 0, (b) t = T/4, (c) t = T/2, (d) t = 3T/4 and (e) t = T.
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and experimental results over a 100-fold variation in Prandtl num-
ber (Pr) inspires confidence in the new results for power-law fluids
presented herein. In addition to the aforementioned benchmarking
of the global characteristics, Fig. 2 shows a comparison between the



Fig. 13. Time evolution of the variation of the local Nusselt number on the surface of the cylinder in a single time period (T) for different values of power-law index (n) and
Prandtl number (Pr) at Reynolds number, Re = 100 at time: (a) t = 0, (b) t = T/4, (c) t = T/2, (d) t = 3T/4 and (e) t = T.
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present values of the non-dimensional surface pressure coefficient
with the experimental results available in the literature [42] at
Re = 107. The correspondence is seen to be good. Finally, Fig. 3 con-
trasts the present predictions of the local Nusselt number at
Re = 120 and Pr = 0.7 with the experimental results of Eckert and
Soehngen [40]. Once again the match is seen to be good. The de-
tailed comparisons shown in Figs. 2 and 3 lend further support to
the reliability of the new results reported herein. In summary, it
is appropriate to conclude that the correspondence seen in Tables
1 and 2, and in Figs. 2 and 3 is regarded to be satisfactory and
acceptable, and the present results are believed to be reliable to
within ±3–4%.

6.2. Heat transfer results

Some physical insights into the nature of heat transfer can be
gained by examining the isotherm (constant temperature) con-
tours close to the surface of the cylinder and local Nusselt number
variation on the surface of the cylinder.

6.2.1. Instantaneous isotherm profiles
Representative plots showing the dependence of the instanta-

neous isotherm patterns in the vicinity of the cylinder on the
Reynolds number (Re), Prandtl number (Pr) and power-law index
(n) are presented in Figs. 4–11. These figures show the periodic
behavior of isotherm patterns in a time period (T) for a range of
values of the Reynolds number (Re) and power-law index (n). For
a fixed value of the Reynolds number (Re), as the fluid behavior
changes from Newtonian (n = 1) to shear-thickening (n > 1), the
isotherms become somewhat elongated and wide. The change in
the liquid behavior from Newtonian (n = 1) to shear-thinning
(n < 1) shows the opposite influence on the isotherm patterns. As
seen in our recent study [37], the flow is expected to be steady
for power-law index of n < 1.4 at Reynolds number of Re = 40 and
no vortex shedding is expected to occur under these conditions.
Similarly, no vortex shedding occurred in shear-thinning (n < 1)
fluids at Re = 40. For Reynolds number (Re = 40), the isotherm lines
are symmetric for power-law index of n 6 1.4 whereas for highly
shear-thickening fluids (n = 1.8) asymmetry is observed. It is seen
that the front surface has the maximum clustering of the constant
temperature lines which indicate high temperature gradients and
thus high values of the local Nusselt number in this region, as com-
pared to the other parts of the cylinder for lower value of the
Prandtl number (Pr = 1). For a fixed value of the Reynolds number
(Re), this clustering of isotherms near the rear surface of the cylin-
der intensifies with the increasing value of the Prandtl number (Pr).



Fig. 14. Time evolution of the variation of the local Nusselt number on the surface of the cylinder in a single time period (T) for different values of power-law index (n) and
Prandtl number (Pr) at Reynolds number, Re = 140 at time: (a) t = 0, (b) t = T/4, (c) t = T/2, (d) t = 3T/4 and (e) t = T.
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This is, in part, due to the gradual thinning of the thermal boundary
layer. The time-dependence of isotherm structures has been stud-
ied within a time period (T). For Reynolds number above 50, iso-
therm patterns show a constant periodic behavior. This behavior
repeats again and again after each time-period. The instantaneous
patterns seen in Figs. 4–11 for both shear-thinning (n < 1) and
shear-thickening (n > 1) power-law fluids are qualitatively similar
to that in Newtonian (n = 1) fluids. For instance, two (primary
and secondary) closed vortices are formed in the rear of the cylin-
der at low Reynolds numbers. However, at high Reynolds and/or
Prandtl numbers, only one closed vortex is seen in the rear of the
cylinder. Irrespective of the type of fluid behaviour, the time cycle
repeats in the same manner as in the Newtonian fluids. For Rey-
nolds number (Re) values above 50, wavering motion of the layers
in a time period (T) is observed in the downstream region of the
cylinder. As these layers continue to move downstream, the down-
stream tip of each layer finally breaks off from its upstream main
body. These figures also show that the neck of the layer connecting
its downstream tip with the main body attached to the cylinder
surface is stretched and lifted upward or downward depending
on the time interval. After bending, stretching and thinning of
the neck, finally the neck dislodges itself. This wave-like motion
shows a regular cyclic pattern and the cycle repeats over and over
again. The trends seen above are qualitatively consistent with that
reported in the literature for Newtonian fluids [13–15].

6.2.2. Time evolution of the local nusselt number (NuLocal) profile on
the surface of cylinder

Representative instantaneous variation of the time evolution of
the local Nusselt number (NuLocal) over the surface of the cylinder
is shown in Figs. 12–14 for a range of values of the Reynolds num-
ber (Re), Prandtl number (Pr) and flow behavior index (n). The
dependence of instantaneous local Nusselt number (NuLocal) pro-
files on the Reynolds number (Re), power-law index (n) and Prandtl
number (Pr) is qualitatively similar to that reported for local Nus-
selt number in the steady regime [20,22,29]. For instance, for fixed
values of the Reynolds number (Re), power-law index (n) and
Prandtl number (Pr), the local Nusselt number (NuLocal) is seen to
decrease from its maximum value at the front stagnation point
(h = 0o) along the surface toward the rear of the cylinder. The max-
imum and minimum values of the instantaneous local Nusselt
number (NuLocal) occur at locations other than front (h = 0o) and
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rear (h = 180o) stagnation points (measured from the front stagna-
tion point). Two distinct peaks are seen under these conditions.
The minimum value of the local Nusselt number (NuLocal) occurs
at the point of separation (h = hs < 180o) and beyond h > hs, it shows
some recovery up to the rear stagnation point (h = 180o). This is
clearly due to the recirculation of fluid in the rear of the cylinder.
The value of the Nusselt number at the front stagnation point,
Nu(0) changes very little with the intervals of time step in a time
period (T). On the other hand, the local Nusselt number (NuLocal)
in the vicinity of the rear stagnation point changes very rapidly
within a time period (T). This change is suppressed with the
increasing value of power-law index (n), for fixed values
of Reynolds (Re) and Prandtl (Pr) numbers. Thus, the rapid
fluctuations in the local Nusselt number (NuLocal) are suppressed
as the fluid behavior changed from shear-thickening (n > 1) to
Newtonian (n = 1) and then to the shear-thinning (n < 1) fluids.
Fig. 15. Variation of surface averaged Nusselt number (Nu) with Reyn
This indicates the thinning of the boundary layer as outside the
boundary layer a power-law fluid (n < 1) will exhibit enormously
large viscosity which suppresses the rapid fluctuations. For fixed
values of Prandtl number (Pr) and the flow behavior index (n),
this variation increases with an increasing value of the Reynolds
number (Re).

6.2.3. Average Nusselt number
In this section, the role of the flow behavior index (n), the Rey-

nolds number (Re) and Prandtl number (Pr) on the time-averaged
surface Nusselt number is discussed. Fig. 15 and Table 3 illustrate
the influence of the Reynolds number (Re), Prandtl number (Pr) and
flow behavior index (n) on the time-averaged Nusselt number (Nu)
over the range of conditions studied herein. Generally speaking,
the dependence of average Nusselt number (Nu) on the Reynolds
number (Re), power-law index (n) and Prandtl number (Pr) is
olds number (Re), power-law index (n) and Prandtl number (Pr).
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qualitatively similar to that seen in the steady flow regime
[20,22,29]. For instance, the average Nusselt number (Nu) shows
an increase with the increasing value of Reynolds number (Re)
and/or Prandtl number (Pr) and/or both, irrespective of the fluid
behaviour. For fixed values of the parameters (Re, Pr), the average
Nusselt number (Nu) increases as the fluid behavior changes from
Newtonian (n = 1) to shear-thinning (n < 1); however, the opposite
effect is seen in shear-thickening (n > 1) fluids. This suggests that
shear-thinning (n < 1) fluid behavior promotes heat transfer due
to lower effective viscosity, and as expected, shear-thickening
(n > 1) impedes heat transfer. Over the ranges of power-law index
(n) and Reynolds number (Re), an increase in the value of Prandtl
number (Pr) from 1 to 100 increases the time-averaged Nusselt
number (Nu) by 5–6 folds which suggests that the time averaged
Nusselt number scales with Prandtl number as NuaPr0.35, which
is consistent with the classical (1/3) dependence and is only
slightly less than the value of 0.4 in Eq. (16). The increase in the
time-averaged Nusselt number (Nu) is relatively small in shear-
thickening fluids (n > 1) compared to that in shear-thinning
(n < 1) fluids. This is in part due to the higher effective viscosity
of a shear-thickening fluid than that of a shear-thinning fluid under
otherwise identical conditions.

In order to isolate the role of power-law index (n), the time-
averaged Nusselt number values are normalized with respect to
the corresponding Newtonian values, at the same values of Rey-
nolds and Prandtl numbers, as follows:

NuN ¼ Nuðn;Re; PrÞ
Nuðn ¼ 1;Re; PrÞ ð17Þ

Fig. 15 also illustrates the effect of power-law index (n) on the nor-
malized time-averaged Nusselt number (NuN) over the ranges of
conditions studied herein. Thus, the value of normalized time-aver-
aged Nusselt number is NuN > 1 for shear-thinning (n < 1) fluids
thereby suggesting enhancement of up to about 40–50% and NuN

< 1 for shear-thickening fluids (n > 1) thereby suggesting deteriora-
tion (�10–12%) in heat transfer. The influence of the power-law in-
dex (n) is seen to be stronger in shear-thinning (n < 1) fluids than
that in shear-thickening (n > 1) fluids, under otherwise identical
Table 3
Dependence of the (a) average Nusselt number (Nu) and (b) amplitude of the average Nusse
(n).

n Re = 40 Re = 50 Re = 100 Re = 120 Re = 140

(a) Average Nusselt number (Nu)
Pr = 1

0.4 4.3674 4.8334 7.3376 8.1964 8.9727
0.6 4.0775 4.5029 6.7067 7.4736 8.1762
1 3.6755 4.0686 5.8604 6.4683 7.0316
1.4 3.4216 3.7994 5.3319 5.8466 6.3222
1.8 3.2771 3.6139 4.9816 5.4377 5.8579

Pr = 50
0.4 18.8923 21.7542 34.9458 39.1836 43.9816
0.6 16.5330 18.4603 29.7920 32.9430 35.9163
1 14.0989 16.2746 24.3820 26.7194 28.8155
1.4 12.9173 15.1618 21.6691 23.5973 25.3298
1.8 12.5812 14.3842 20.0498 21.7401 23.2540

(b) Amplitude of the average Nusselt number (DNu)
0.4 – 0.00007 0.0131 0.0354 0.0661
0.6 – – 0.0051 0.0143 0.0291
1 – 0.00008 0.0018 0.0044 0.0097
1.4 – 0.00016 0.0011 0.0019 0.0039
1.8 0.00019 0.00031 0.0010 0.0012 0.0020

Pr = 50
0.4 – – 0.2437 0.5013 0.7270
0.6 – – 0.0704 0.1606 0.2639
1 – – 0.0273 0.0437 0.0616
1.4 – 0.00096 0.0204 0.0255 0.0319
1.8 0.00028 0.00138 0.0156 0.0197 0.0224
conditions, as also seen for drag coefficients [37]. This augmenta-
tion in heat transfer in shear-thinning fluids can thus be attributed
to the lowering of effective viscosity.

Finally, before leaving this section, it is useful to emphasize here
that both the flow and temperature fields in the vicinity of the cyl-
inder are determined by a complex interplay between the viscous,
inertial, and pressure forces prevailing in the fluid. These forces, in
turn, show different scaling with respect to the power-law index,
velocity and the characteristic linear dimension. For instance, the
viscous forces scale as � Un

0 whereas the inertial forces scale as
U2

0. Now, for a fixed value of velocity (U0), the inertial force does
not change, but the viscous force can decrease or increase depend-
ing upon the value of the power-law index (n). Conversely, for a gi-
ven fluid, with a gradual increase in the fluid velocity, the viscous
term will diminish for a shear-thinning (n < 1) fluid whereas it will
grow in a shear-thickening (n > 1) fluid. Therefore, some of the
trends seen in the preceding sections are due to such complex
interactions.
7. Concluding remarks

Extensive numerical results on the rate of heat transfer from a
cylinder to power-law fluids in the time dependent flow regime
have been studied over wide ranges of conditions as: Reynolds
number (40 6 Re 6 140); Prandtl number (1 6 Pr 6 100) and
power-law index (0.4 6 n 6 1.8). The effects of the dimensionless
parameters (Re, n, Pr) on isotherm patterns, local and averaged
Nusselt number as well as their evolution with time are discussed.
Depending upon the value of the power-law index, fully developed
periodic regime is observed beyond the transition Reynolds num-
ber. The average Nusselt number increases with Reynolds and/or
Prandtl numbers, irrespective of the value of the flow behavior in-
dex. The strong dependence of the power-law index on both local
and time-averaged Nusselt number is also observed. The effect of
power-law index on the heat transfer characteristics is seen to be
stronger in shear-thinning fluids than that compared to the
shear-thickening fluids. Broadly, it is thus possible to achieve
higher rates of heat transfer in shear-thinning fluids than that in
lt number (DNu) on Reynolds number (Re), Prandtl number (Pr) and power-law index

Re=40 Re = 50 Re = 100 Re = 120 Re = 140

Pr = 10
10.4309 11.8193 19.0500 21.2759 23.3940

9.3639 10.5013 16.6890 18.5460 20.2373
8.1159 9.1848 13.9415 15.3302 16.5843
7.4602 8.5288 12.4590 13.6180 14.6559
7.1561 8.1033 11.5485 12.5732 13.4855

Pr = 100
25.6641 28.5799 44.9473 50.6768 57.7266
21.0598 23.5016 38.0174 41.9475 45.7478
17.9052 21.2464 30.9006 33.8433 36.4659
16.4078 19.3576 27.4000 29.8203 31.9952
16.1327 18.3244 25.3239 27.5619 29.3403

– – 0.1603 0.3515 0.4954
– – 0.0577 0.1364 0.2435
– – 0.0246 0.0457 0.0729
– 0.00018 0.0162 0.0272 0.0394

0.00020 0.00042 0.0125 0.0199 0.0284
Pr = 100
– – 0.2442 0.5611 1.1698
– – 0.0678 0.1448 0.2936
– – 0.0241 0.0369 0.0482
– 0.00116 0.0157 0.0200 0.0227

0.00044 0.00212 0.0129 0.0145 0.0155
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Newtonian fluids otherwise under identical conditions. It needs to
be re-iterated here that the results reported herein are limited by
the assumption of constant thermo-physical properties (hence
small DT) and hopefully, future studies in this area will endeavor
to address this issue as well as other such as the role of buoyancy
on the overall rate of heat transfer in this flow.
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