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1. Introduction

Image thresholding is widely used as a popular tool in image
segmentation. It is useful in separating objects from background,
or discriminating objects from objects that have distinct gray
levels. Thresholding involves bi-level thresholding and multilevel
thresholding. Bi-level thresholding classifies the pixels into two
groups, one including those pixels with gray levels above a certain
threshold, the other including the rest. Multilevel thresholding
divides the pixels into several classes. The pixels belonging to the
same class have gray levels within a specific range defined by
several thresholds. Both bi-level and multilevel thresholding
methods can be classified into parametric and nonparametric
approaches. The nonparametric approach is based on a search of
the thresholds optimizing an objective function such as the
between-class variance (Otsu’s function) (Otsu, 1979), entropy
(Kapur’s function) (Kapur et al., 1985).

In parametric approach, the gray-level distribution of each
class has a probability density function that is assumed to obey a
given distribution. An attempt to find an estimate of the
parameters of the distribution that best fits the given histogram
data is made by using the least-squares method. It typically leads
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to a nonlinear optimization problem, of which the solution is
computationally expensive and time-consuming. A great number
of thresholding methods belonging to parametric and nonpara-
metric approaches have been proposed in order to perform bi-
level thresholding (Sezgin and Sankur, 2004; Lievers and Pilkey,
2004; Chu et al., 2004; Gonzales-Baron and Butler, 2006). They are
extendable for multilevel thresholding as well. However, the
amount of thresholding computation significantly increases with
this extension. To overcome this problem, several techniques have
been proposed. Some of them are designed especially for
computation acceleration of a specific objective function, such
as the Otsu’s function (Lin, 2001; Dong et al., 2008; Riddi et al.,
1987; Ng, 2004; Liao et al., 2001), while other techniques are
designed to be used with a general purpose. Among the last
category, we can find those that involve a sequential dichotomiza-
tion technique (Yen et al., 1995; Sezgin and Tasaltin, 2000; Wu et
al., 2004) and those that use an iterative scheme (Yin and Chen,
1997). In the first strategy, the histogram is dichotomized into two
distributions by using a bi-level thresholding and the distribution
with the largest variance is further dichotomized in two more
distributions by applying the same bi-level thresholding. This
dichotomization process is repeated until a stopping criterion is
satisfied. The dichotomization techniques are faster algorithms.
Unfortunately, they are sub-optimal techniques and they do not
provide the optimal threshold values. The second approach starts
with initial thresholds. Then, these thresholds are adjusted


www.elsevier.com/locate/engappai
dx.doi.org/10.1016/j.engappai.2009.09.011
mailto:siarry@univ-paris12.fr

K. Hammouche et al. / Engineering Applications of Artificial Intelligence 23 (2010) 676-688 677

iteratively to improve the value of the objective function. This
improvement process stops when the value of the objective
function does not increase between two consecutive iterations.
The implementation of this method is similar to the one presented
by Luo and Tian (2000), where the Kapur’s function is maximised
by using the iterated conditional modes (ICM) algorithm. How-
ever, the iterative schemes are sensitive to initial values of
thresholds and can converge to the local optimum. Other
strategies can also be applied for fast multilevel thresholding, as
the one proposed in Kim et al. (2003), where the resolution of the
histogram is reduced using the wavelet transform. From the
reduced histogram, the optimal thresholds are determined faster
by optimizing the objective function based on an exhaustive
search. The selected threshold values are then expanded to the
original scale.

Another alternative to fast multilevel thresholding uses a new
class of algorithms, called meta-heuristics. A meta-heuristic is a
set of algorithmic concepts that can be used to define heuristic
methods applicable to a wide set of various problems (Blum and
Roli, 2001; Glover and Kochenberger, 2003). In other words, a
meta-heuristic can be seen as a general-purpose heuristic
method, designed to guide an underlying problem specific
heuristic toward promising regions of the search space, containing
high-quality solutions. A meta-heuristic therefore is a general
algorithmic framework, which can be applied to different
optimization problems at the price of relatively few modifications.
The meta-heuristic techniques are able to escape from local
optima and their use has significantly increased the ability of
finding very high-quality solutions to hard, practically relevant
combinatorial optimization problems in a reasonable time. This is
particularly true for large and poorly understood problems.
Several different meta-heuristics have been proposed and new
ones are under constant development. Some of the most famous
ones are Genetic Algorithms (GA) (Goldberg, 1989), Particle
Swarm Optimization (PSO) (Kennedy and Eberhart, 1995), Differ-
ential Evolution (DE) (Storn and Price, 1995), Ant Colony
Optimization (ACO) (Dorigo and Stiitzle, 2000), Simulated Anneal-
ing (SA) (Kirkpatrick et al., 1983), Tabu Search (TS) (Glover and
Laguna, 1997) and explorative local search methods, including
Adaptive Search Procedure (GRASP), Variable Neighborhood
Search (VNS), Guided Local Search (GLS) and Iterated Local Search
(ILS) (Blum and Roli, 2001; Glover and Kochenberger, 2003).

Taking into account the advantages of the meta-heuristics to
escape from local optima with a reasonable time, some meta-
heuristic techniques have been extensively employed to search
more fastly the optimal thresholds. These techniques are designed
to be used with a general purpose, with either the parametric or
the non-parametric approaches, for the multilevel thresholding
problem. This problem, which consists in searching the various
thresholds, can be considered as a nonlinear optimization
problem and the objective functions can have several local
optima. For solving such NP-hard problems, enumerative search
methods are practically inappropriate because of the presence of
several local minima. Their performance deteriorates with the
complexity of the problem related to the number of thresholds.
For example, the complexity of an exhaustive search grows
exponentially with the number k of thresholds as O(L*-D), L
representing the number of gray levels in the image.

Indeed, the optimization techniques based on GA have been
widely applied to solve the multilevel thresholding (Yin, 1999;
Jinsong et al., 1999; Yang et al., 2003; Chang and Yan, 2003; Cao et
al., 2008; Hammouche et al., 2008; Lai and Tseng, 2004; Tao et al.,
2003; Bazi et al., 2007). In Yin (1999), Jinsong et al. (1999), Yang et
al. (2003), Chang and Yan (2003), Cao et al. (2008), Hammouche et
al. (2008), the GA uses binary encoding while in Lai and Tseng
(2004), Tao et al. (2003) and Bazi et al. (2007), the floating

encoding is used. In addition to the way of coding the vectors
solutions, these techniques differ by their fitness function. In Yin
(1999) and Cao et al. (2008) the objective function is similar to
Otsu’s or Kapur’s functions. In Jinsong et al. (1999) the objective
function is the Kapur’s function and in Yang et al. (2003) it is
assimilated to the relative entropy (Chang et al., 1994). Chang and
Yan (2003) have employed a GA to maximize the conditional
probability entropy (CPE) based on Bayesian theory, in order to
determine the optimal thresholds. CPE considers that the pixels
with the same gray level in an image may belong to different
classes with different probabilities. An optimal classification
method for these pixels is to classify them in the class with
higher probability. More recently, the GA presented in Ham-
mouche et al. (2008) determines the threshold number as well as
the optimal threshold values, by using an objective function
derived from a correlation function (Yen et al., 1995). In Lai and
Tseng (2004), the intensity distributions of objects and back-
ground in an image are assumed to be Gaussian distributions with
distinct means and standard deviations. The histogram of a given
image is fitted to a mixture Gaussian probability density function.
The GA is used to estimate the parameters in the mixture density
function, so that the square error between the density function
and the actual histogram is minimal. Tao et al. (2003) use a GA in
order to find the optimal combination of all the fuzzy parameters
by maximizing the fuzzy entropy. The fuzzy parameters describe
the membership functions of three parts of the image, namely
dark, gray and white parts. The optimal parameters are then used
to define two threshold values. Bazi et al. (2007) use a genetic
algorithm to provide the initial parameters to the expectation-
maximization (EM) algorithm. The parameters of the objects and
background classes are assumed to follow generalized Gaussian
distributions. Each chromosome is viewed as a vector represent-
ing statistical parameters defining the mixture of the class
distributions.

The DE, an improved version of GA is used for image
thresholding. The proposed method in Rahnamayan et al. (2006)
splits the input image in n sub-images and assigns a threshold
level to each sub-image. Then the DE algorithm is applied to find
the optimal threshold values by minimizing the dissimilarity
between the input image and its binary version. Finally, the sub-
images, thresholded by the corresponding threshold optimal
values, are assembled to form the binary image. Unfortunately,
this method which is specifically designed in the case of local and
bilevel thresholding, cannot be applied to the global multilevel
thresholding.

Besides GAs, PSO is another latest evolutionary optimization
technique, which is used for the multilevel thresholding (Zahara
et al., 2005; Yin, 2007; Feng et al., 2005; Maitra and Chatterjee,
2008; Fan and Lin, 2007). In Zahara et al. (2005), the PSO is used in
conjunction with the simplex method for the Gaussian curve
fitting and for the Otsu’s function optimization. It is used in Yin
(2007), for optimizing the cross entropy (Li and Lee, 1993) and for
determining the single threshold value maximizing the 2-D
entropy (Feng et al., 2005). The strategy developed in Maitra
and Chatterjee (2008) uses the Kapur’'s function as criterion; it
employs a cooperative learning that consists in decomposing a
high-dimensional swarm into several one-dimensional swarms.
The comprehensive learning allows discouraging convergence in
each one-dimensional swarm. In Fan and Lin (2007), the
histogram is approximated by a mixture Gaussian model. The
Gaussian’s parameter estimates are iteratively computed by
combining the PSO with the EM algorithm.

Like the GA and the PSO, SA (Cheng et al., 1998; Hou et al.,
2006; Nakib et al., 2007) and ACO (Tao et al., 2007) have been,
also, exploited in image thresholding. In Nakib et al. (2007), the SA
is used as a multiobjective optimization technique to find the
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optimal threshold values of three criteria, namely the within-class
criterion, the entropy and the overall probability of error criterion.
The same paper proposes a variant of SA in order to solve the
Gaussian curve-fitting problem. As in Tao et al. (2003), the SA
(Cheng et al., 1998) and the ACO (Tao et al., 2007) are also used to
find the optimal combination of all the fuzzy parameters by
maximizing the fuzzy entropy. The fuzzy parameters describe also
the membership functions of two parts of the image, namely dark
and bright parts.

Despite the intensive use of the meta-heuristics in threshold-
ing, no paper related to the ACO applied specifically to global
multilevel thresholding was found in our bibliography search. In
addition, no work would be published concerning Tabu-based
multilevel thresholding and DE algorithm allowing the direct
computing of the threshold values. So, in this paper, three new
multilevel thresholding techniques based on the DE, ACO and TS
are developed in order to determine directly the values of
thresholds. A comparative study between six meta-heuristic
techniques, namely a GA, PSO, DE, ACO, SA and TS, is then
conducted in the multilevel thresholding framework. The choice
of these six meta-heuristics, contrary to the other methods, as
explorative local search methods, is motivated by their use of
nature inspired concepts. For each of the six meta-heuristics
quoted previously, more sophisticated versions have been devel-
oped. However, to carry out an equitable comparison between
these meta-heuristics, only the standard versions will be used in
this paper.

The remainder of this paper is organized as follows. In Section
2, the problem of the multilevel thresholding is formulated as an
optimization problem and the objective function treated are
briefly presented. The Section 3 deals with a review of the meta-
heuristic optimization techniques and their application for the
resolution of the multilevel thresholding problem. Section 4 gives
comparative results of the six implemented meta-heuristic
techniques. Concluding remarks are given in Section 5.

2. Multilevel thresholding problem formulation

The optimal thresholding methods search for the thresholds
such that the segment classes on the histogram satisfy the desired
property. This is performed by minimizing or maximizing an
objective function which uses the selected thresholds as para-
meters.

For thresholding purpose, the pixels of an image I having N
pixels with L gray levels L={0,1, ...,L—1}, are classified into K
classes (C;,C, ..., Cy, ..., Cx) using a set of (K—1) thresholds
T=(tyto, ..., tg ..., tx_1) such that t; <t < ... <tx_q. For conve-
nience, we assume two extreme thresholds to=gmin and tx=gmax
where g and gnax are the lower and higher gray level in the
image, respectively (typically g,,,;,=0 and gpnax=L—1).

A pixel with gray level g is assigned to class Cy if t,_1 <g<t,
k=12,..., K.

The thresholding problem consists in selecting the set of
thresholds T* which optimizes an objective function F(T), such
that:

T* = argmax F(T) (1)
0<T<L-1

Several objective functions have been proposed in the
literature devoted to the thresholding (Sezgin and Sankur,
2004). These functions are determined generally from the
histogram of the image, denoted by h(i), i=0,...,L—1, where h(i)
represents the number of pixels having the gray level i. The
normalized probability at level j is defined by the ratio
pi = (h(i)/N).

Among these functions, the objective function defined by Otsu
is the most popular (Otsu, 1979). It defines the weighted sum of
within-class variances of the classes:

K

F=0p=Y" on(py — p? @
k=1

where w; and p are the probability and the mean, the gray level

of the class C, respectively.

te—1 1 el

wr= Y Di ﬂk=w—k_2 ip; and A3)

i=tgy J=t

u= Y"1 ip; is the total mean gray level of the image.

3. Review of meta-heuristic optimization techniques

Meta-heuristic techniques are optimization algorithms which,
in order to escape from local optima, drive some basic heuristic:
either a constructive heuristic starting from a null solution and
adding elements to build a good complete one, or a local search
heuristic starting from a complete solution and iteratively
modifying some of its elements in order to achieve a better one.
The meta-heuristic feature permits the low level heuristic to
obtain solutions better than those it could have achieved alone,
even if iterated. Usually, the controlling mechanism is achieved
either by constraining or by randomizing the set of local neighbor
solutions to consider in local search as is the case of SA or TS, or by
combining elements taken by different solutions as is the case of
GA, DE, PSO or ACO.

In the following sub-sections, these six above-mentioned
meta-heuristic techniques used for multilevel thresholding are
described in detail.

3.1. The genetic algorithm

GA is a search technique developed by Holland which mimics
the principle of natural evolution (Goldberg, 1989). In the “simple
GA” technique, the decision variables are first decoded into binary
numbers (0 and 1) and hence create a population pool. Each of
these vectors or chromosomes is then mapped into its real value
using specified lower and upper bounds. A model of the process
then computes an objective function for each chromosome and
gives the fitness of the chromosome. The optimization search
proceeds by using three operators: reproduction, crossover and
mutation. The reproduction (selection) operator selects good
strings in a population and forms the mating pool. The chromo-
somes are copied based on their fitness value. No new strings are
produced in this operation. The crossover allows for a new string
formation by exchanging some portions of a string (chosen
randomly) with a portion of a string of another chromosome,
generating child chromosome in the mating pool. If the child
chromosomes are less fitted than the parent chromosomes, they
will slowly die in the subsequent generation. The effect of
crossover can be detrimental or good. Hence, not all the strings
are used for crossover. A crossover probability P. is used, where
only 100 P, percent of the strings in the mating pool are involved
in crossover operation, while the rest of them are kept unchanged
in the next generation. Mutation is the last operation. It is used to
further perturb the child vector using mutation probability P,,.
The mutation alters the string locally to create a better string.
Mutation is needed to create a point in the neighborhood of the
current point, thereby achieving a local search and maintaining
the diversity in the population. The entire process is repeated till
some termination criterion is met.
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Table 1

Pseudo-code of the genetic algorithm: randnr{(a, b): uniform pseudo random integer
in the interval [q, b]. rand(a, b): uniform pseudo-random real number in the interval
[a, b].

Procedure Genetic algorithm

1- Initialize population pop “Create population from randomly chosen threshold values”
2- Evaluate population pop “Evaluate all candidate solutions™
3- Store the best solution 7* (elite) with its fitness in a separate location.

4- for a fixed number of iterations

“Apply selection: tournament selection
oldpop = pop
for all individuals j in pop
if individual j , i.e., pop(j), is not in the elite then
select another individual m randomly, i.e., m = randixt(0,N)
if individual m in oldpop is better than individual j in pop then
pop(j) = oldpop(m)

“Apply crossover: arithmetic crossover”
oldpop = pop
for all individuals j in pop
if individual j is not in the elite and rand(0,1)<Pc then
select another individual m randomly, i.e., m = randint(0,N)
for all candidate solution parameters k in 7
cw=rand (0, 1)

pop(j)_ti = cw * oldpop(j )_ti + (1 — cw) * oldpop(m)_tx

“Apply mutation and check bounds: Gaussian mutation with fixed mutation rate”
for all individuals j in pop
if individual j is not in the elite and rand(0,1)<Pm then
for all vector solution parameters k in 7'

pop(j)_ti = pop(j)_ti+ N(O, 1) * 6% (gmax = &min)
if pop(j)_ti >gmax then pop(j)_ti = gmax
if pop(j)_te <gmin then pop(j)_te = gmin

Evaluate population pop “Evaluate all candidate solutions”

Compare the best individual T of the pop with T*. If T has a fitness value better than
T*, then replace 7% with T.

5-Output best recorded solution 7*

For the multilevel thresholding, we have chosen a numerical
optimization version of the GA with floating point encoding,
Gaussian mutation, arithmetic crossover and tournament selec-
tion. In our GA implementation (see Table 1), first a population of
N individuals containing the vector solutions encoded in floating
point numbers is created (initialization) and the fitness of each
individual is evaluated by the fitness function (evaluation). As
mentioned above, for the initialization of the population, the GA
uses randomly chosen threshold values from the range [gmin €max)-
Each individual j of the population pop contains K threshold
values noted pop(j)_tr (k=12,...,K), such that pop(j)_tk
[min &nmax], Where gnin and gnex are the minimum and the
maximum gray values in the image, respectively.

After initialization, we evaluate the individuals stored in
variable pop according to the fitness function and determine the
best individual T* (elite). The population is iteratively refined by
selection of individuals, application of mutation and crossover
operators, re-evaluation of the new population according to the
fitness function and updating of the best solution T* We use
tournament selection. We first save the current population pop as
oldpop and for each individual j we choose another individual m
randomly from oldpop, compare the fitnesses, and substitute j by
m in population pop if m’s fitness is better. Before applying
crossover, we save again the current population pop as oldpop, and
then apply arithmetic crossover, as follows:

pop()_ty = cwxoldpop(j)_ti, + (1 — cw)xoldpop(m)_t; 4)

where pop(j)_ty is the kth solution parameter (threshold value) of
individual j, pop(j) is the offspring of the parents oldpop(j) and
oldpop(m), cw is a uniform random weight cwe[0 1], which
is generated for each problem parameter (threshold) k. Gaussian
mutation was chosen, such that pop(j)_tx=pop(j)_tx+N(O, 1)+ *
(8max— &min)» Where N(O, 1) is the Gaussian normal distribution

with mean 0 and variance 1, and ¢ is the variance parameter of the
mutation operator which is fixed to 0.05 in our experiments.

The crossover and mutation operators are applied to each
individual in the population, with a probability P,, for mutation
and P. for crossover, respectively. The algorithm terminates after a
fixed number of iterations. The optimization result is given by the
best individual T* in the last generation.

3.2. Particle swarm optimization

PSO, inspired by the swarming behavior of animals as bird
flocking, was introduced by Kennedy and Eberhart (1995). A
particle swarm is a population of particles, where each particle is
a moving object that ‘flies’ through the search space and is
attracted to previously visited locations with high fitness. In
contrast to the individuals in evolutionary computation, particles
neither reproduce nor get replaced by other particles.

Each particle consists of a position vector T, which represents
the candidate solution to the optimization problem, the fitness
F(T) of solution T, a velocity vector V and a memory vector Thest of
the best vector solution encountered by the particle with its
recorded fitness.

The position of a particle is updated by

T(t+1)=T)+V(t) (5)

and its velocity according to
Vit+1) = V() + o, (Tbest - T(t)) +¢, (T* - T(r)) (6)

where ¢, ¢, are uniform distributed random numbers within
[@miny @max] (typically @min=0 and @mne=2) that determine the
weight between the attraction to position Thest, which is the best
position found by the particle so far and T* the overall best
position found by all particles. Note that ¢, and ¢, are generated
for each component of the velocity vector. Moreover, the so-called
inertia weight w controls how much the particles tend to follow
their current direction compared to the memorized positions
Thest and T*. Finally, the velocity of the particles is limited by a
maximum velocity vqx.

As it has been mentioned in the introduction, several multi-
level thresholding methods based on the PSO have been proposed
with different strategies. In our study, we use a simple PSO
algorithm for a fair comparison with other meta-heuristic
techniques. The algorithm works as outlined in the pseudo-code
of Table 2. Denoting the number of particles by N and the swarm
particles by the population pop, the position vector T of each
swarm particle j, which contains the threshold values ¢
(k=1,2, ...,K), is denoted by pop(j)_t, and the velocity vector
V=(vy,v3, ..., vk) of each swarm particle j is noted pop(j)_vi.
(j=1,2, ..., N). The best positions of the particles are memorized in
another population denoted by bestpop.

The initialization of the algorithm is similar to that used for the
GA above (using randomly chosen threshold values), but addi-
tionally requires the initialization of the velocity vectors, which
are uniformly distributed random numbers in the interval [O,
Vmax]- After initialization, the memory of each particle is updated
and the velocity and position update rules are applied. The
velocity of each swarm particle is updated using the following
equation:

Ppop_vi. = wxpop_vy+ ¢ (bestpop_tby, — pop_ty)+ ¢, (t — pop_ty)
(7)
If a component k of the velocity v of a particle exceeds Va4 it is

truncated to this value, i.e., pop(j)_vi=vmnax The position of each
swarm particle j is also updated as follows:

Pop(j)_tx = pop(j)_ti +pop()_vi ®)
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Table 2
Pseudo-code of the PSO algorithm.

Table 3
Pseudo-code for the DE Rand/1/Exp operator.

Procedure Particle swarm optimization

1- Initialize population pop “create population from randomly chosen threshold values”
2- Evaluate population pop “evaluate all candidate solutions™
3- Store the best solution 7* with its fitness in a separate location.

4- Update particle memories
For a fixed number of iterations
For all individuals j in population pop
For all candidate solution parameters k in 7'

“Update velocity”
0, = rand(@,, @) a0d @, = rand (@, 0,
pop_v, =w* pop_v, +,(bestpop _t, — pop_t,)+, (1, — pop_1,)

“Constrain particle velocity to [Viin, Vinax]”
if pop(j)_vi > Vinax then pop(j) _vi = Viax
if pop(j)_vk < Vin then pop()_vi = Viin

“Update position”
pop(j)_tx = pop(j)_tx + pop(j)_vi

“Constrain particle position to [Zin, max]”
if pop(j)_tx <guin then pop(j)_ti = gmin
if pop(j)_ti > gmax then pop(i)_ty =gmax

endfor //k
endfor //j

Evaluate population pop “evaluate all candidate solutions™

“Update Particle Memories”
For each particle j

If its fitness is better than that of the same particle in the bestpop then
bestpop(j)_tx = pop(j)_tx
Compare the best individual 7 of the pop with 7*. If 7 has a fitness value better than
T*, then replace T* with T.
endfor //iteration

5-Output best recorded solution 7*

If a component k of the new position vector is outside the
domain, it is truncated to the limit values g, and g,qx Then, the
population of the best position encountered by each particle and
by all particles is updated. This process is applied to all particles
and repeated for a fixed number of iterations. The best recorded
vector solution T* in the last iteration and its fitness constitute the
optimization result.

3.3. Differential evolution

DE is another evolutionary optimization technique developed
by Storn and Price (1995). It is simple to implement, requires little
or no parameter tuning, and is known for remarkable perfor-
mance. A number of recent studies comparing DE with other
heuristics, such as GA and PSO, indicate superiority of DE
(Vesterstrom and Thomsen, 2004; Paterlini and Krink, 2006).
The outlines of the proposed algorithm for thresholding are
presented in Table 3.

After generating and evaluating an initial population, exactly in
the same way as described for the GA and PSO above, three
operators named mutation; crossover and selection are succes-
sively applied in each generation. The mechanics of mutation and
crossover differ from those used in GA. Basically, the mutation
creates a mutant vector Y by adding the weighted difference
between two population vectors to a third vector population.
Hence, for each vector solution j, choose three other vector
solutions I, m and n randomly from the population (with
j#l#£m=#n), calculate the difference of | and m, scale it by
multiplication with a parameter f and add the result to n in order
to create a candidate solution Y=(yy, y2, ..., Yo ..., YK)-

Yie=Ppop(n)_ti+f (Pop(m)_t, — pop(h_ti ) ©

Procedure Differential evolution

1- Initialize population pop “create population from randomly chosen threshold values”
2- Evaluate population pop “evaluate all candidate solutions™
3- For a fixed number of iterations

For all individuals j in population pop

“Create difference vector”
Select /,m,n uniform randomly from [1..N] with j # [/ #m #n
For all candidate solution parameters &

yi=pop(m)_t, +f* (pop(n)_t.— pop(l)_t)

“Apply DE-crossover”
For all candidate solution parameters k&
if rand(0 1) < Cr then ¢, = yy else ¢x = pop(j)_tx

“Evaluate the new candidate solution”
Evaluate vector solution C

“Apply selection”
if fitness F(C) of the solution C is better than the fitness of pop(j) then
Pop(j)_tk = cx
pop(j)_fitness = F(C)

endfor //j
endfor //iteration

4- Output best recorded solution 7* of the population pop

Afterwards create another vector solution C by crossover of Y
and vector solution j, as follows:

if rand > Cr

otherwise (10)

Ck = {yk .
pop()_ti

where Cr is predefined crossover constant and rand is uniform

pseudo-random real number in the interval [0, 1].

The crossover process used in DE is somewhat similar to
uniform crossover in GAs, such that the result of the crossover
contains a certain proportion of consecutive solution parameters
of each parent. Finally, evaluate the new candidate solution
with the fitness function and apply tournament selection by
substituting vector solution j with the new vector solution C and
its fitness, in case the fitness of C is better than the fitness of
vector solution j. This description which refers to the so-called
Rand/1/Exp DE operator, which is the most successful, is adopted
in our implementation. Different other strategies have been
suggested. These strategies can vary based on the vector to be
perturbed in the mutation process, the number of difference
vectors considered for perturbation and the type of crossover used
(Storn and Price, 1997). The process is repeated for a fixed number
of iterations and the optimization result is the best recorded
vector solution and fitness at the end of the run.

In DE algorithm, just three factors control evolution: the
population size, N; the weight applied to the random differential,
f; and the crossover constant, Cr. Larger values for fresult in higher
diversity in the generated population and lower values in faster
convergence. The scaling factor fis a user supplied constant in the
range (0 <f< 1.2). The constant Cr belongs to the range [0, 1].

3.4. Ant colony optimization

ACO meta-heuristic, a population-based approach was pro-
posed by Dorigo et al. to solve several discrete optimization
problems (Dorigo and Stiitzle, 2000). The ACO mimics the way of
the real ants to find the shortest route between a food source and
their nest. The ants communicate with one another by means of
pheromone trails and exchange information about which path
should be followed. The more the number of ants traces a given
path, the more attractive this path (trail) becomes and is followed
by other ants by depositing their own pheromone. This auto
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Table 4
Pseudo-code for the ant colony optimization.
Procedure Ant colony optimization

1- Create the pheromone matrix 7

2- Initialize the populations pop

3- Store the best solution 7* of the population pop with its fitness in a separate location.
4- For a fixed number of iterations

“Determine the population pop from the pheromone matrix 7”
For all individuals j in population pop
If rand >q then
pop(j)_t; =argmaxz,
el En]
Else pop(j)_t, =rand y;[2p S
Evaluate population pop “evaluate all candidate solutions™
“Update the best solution 7#”
Compare the best individual 7 of the pop with T*. If T has a fitness value better than

T*, then replace T* with T. F,o=F(T*)

“Update the pheromone trails”
Tk = PTy +(1 p)Fmdx
endfor //iteration

5- Output best recorded solution 7*

catalytic and collective behavior results in the establishment of
the shortest route. This real-life search behavior was the key
motivation factor leading to the formulation of artificial ant
algorithms to solve several large-scale combinatorial and function
optimization problems. In all these algorithms, a set of ant-like
agents or software ants solve the problem under consideration
through a cooperative effort. This effort is mediated by exchanging
information on the problem structure the agents concurrently
collect while stochastically building solutions. The first ACO
algorithm proposed in the literature was called Ant System (AS).
Its computational results were promising but not competitive
with other more established approaches. Therefore, improved
versions, such as Ant Colony System (ACS) (Dorigo and Gambar-
della, 1997) and Max-Min Ant System (Stiitzle and Hoos, 1998),
has been proposed. These algorithms differ mainly with the AS by
the way of pheromone global updating. In the ACS, the manage-
ment of the trails is subdivided into two levels: a local update and
a global update. Hence, we have chosen in this paper to use, as
basic version of ACO, the ACS without the local updating rule, like
in the ant system. In the proposed ACO algorithm for multilevel
thresholding, a set of concurrent distributed agents collectively
discover the optimal threshold values. The summary of the
proposed ant algorithm for multilevel thresholding is depicted
in Table 4.

In the proposed ACO, a colony of N simple agents or artificial
ants search for good solutions at every generation. The ants evolve
a set of solutions and form a population of threshold values like
for the GA, PSO and DE algorithms. The threshold values produced
by the ant j is also noted pop(j)_ti (k=1,2, ..., K). Every artificial ant
j of a generation builds up a solution T=(tt5, ..., ty, ..., tgx) by
using the information provided by the pheromone matrix denoted
7, where each element 7 is pheromone trail that lies the gray
level i to the kth threshold, i=0,2;...,L—1 and k=12, ...,K.
Initially, the trail pheromones t; are randomly generated in the
range [0, 1].

To generate a solution T, the agent selects the threshold value
for each element of string T according to the following rule: using
probability qo, the gray value having the maximum pheromone
concentration is chosen as  threshold value, i.e.
pop(j)_ty = argmaxty, . Otherwise the kth threshold value is

ie [gmin gmax}
determined using a stochastic distribution with a probability
(1—qo), such that: pop(j)_t, =rand[8min 8&max]. qo is a priori

defined number, 0 <qg<1, qo is fixed to 0.98 in our simu-
lations. In ACS, this rule is called pseudo-random-proportional
rule.

Once all ants have their solutions built up, these solutions are
evaluated according to the objective function. The value of best
solution in memory (T*) is updated with the value of the solution
obtained as “current iteration best solution”, if it has a best
objective function value than that of the best solution in memory.
The pheromone trails are then updated. The trail updating process
applied in this algorithm is performed as follows:

Tik = pTi+(1 — p)At amn

where p is the persistence of trail that lies within [0, 1] and (1 —p)
the evaporation rate. Higher value of p suggests that the
information gathered in the past iterations is forgotten faster.
At denotes the amount of pheromone trail added to 7 by the best
ant corresponding to the best solution found so far: At=F;qx,
where is the fitness of the best solution T*.

Such a pheromone updating process reflects the usefulness of
dynamic information provided by the artificial ants. Thus, the
pheromone matrix is a kind of adaptive memory that contains
information provided by the previously found superior solutions,
and is updated at the end of the iterations. At any iteration level,
the algorithm essentially executes two steps, viz., (1) generation of
new N solutions by artificial ants using the modified pheromone
trail information available from previous iteration and (2)
updating pheromone trail matrix. The algorithm repeatedly
carries out these two steps for a maximum number of given
iterations, and solution having the best function value represents
the optimal threshold values.

3.5. Simulated annealing

SA is commonly considered to be the oldest among the meta-
heuristics and surely one of the first algorithms that has an
explicit strategy to avoid local minima. The term simulated
annealing derives from the roughly analogous physical process of
heating and then slowly cooling a substance to obtain a strong
crystalline structure. It was first presented as a search algorithm
for optimization problems in Kirkpatrick et al. (1983). The
fundamental idea is to allow moves resulting in solutions of
worse quality than the current solution (uphill moves) in order to
escape from local minima. The probability of doing such a move is
decreased during the search.

The algorithm starts by generating an initial solution (either
randomly or heuristically constructed) and by initializing the so-
called temperature parameter temp. Then the following process is
repeated until the termination condition is satisfied: A solution T’
from the neighborhood WV(T) of the solution T is randomly sampled
and it is accepted as new current solution depending on F(T), F(T')
and T. T replaces T if F(T') < K(T) or, in case F(T')> =FT), with a
probability which is a function of temp and F(T')-F(T). The
probability is generally computed following the Boltzmann
distribution

exp(—(F(T") — T(T))/temp).

The temperature temp is decreased during the search process;
thus at the beginning of the search the probability of accepting
uphill moves is high and it gradually decreases, converging to a
simple iterative improvement algorithm. The temperature is
reduced using a geometric rule temp(t+1) = temp(t)*o.

o is a factor chosen in the range [0.5, 0.99].

The application of SA for multilevel thresholding is summar-
ized in Table 5.
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Table 5
Pseudo-code for the simulated annealing.

Table 6
Pseudo-code for the tabu search.

Procedure Simulated annealing

1- Generate randomly one initial vector solution 7=(t,t, ..., ti,...,tx-1)
2- Evaluate the vector solution and store it as the best solution 7% (7*=T)
3- Temp=Tempiy;;
While temp<tempjinai
For a fixed number of iterations
Create a vector solution 7 in neighborhood of the vector solution 7'
t'. =t trand ;. (0 %)
if £k <@uin then ' = Guin
if 1k >@ax then ¢ =gax

AE=F(T")-F(T)
if AE<O then T=T"
else if rand(0  1)<e “E/™ then T=T"

“Update the best solution”
if F(T*)< F(T) then T*=T
endfor // iteration
temp = temp * o
endwhile

4- Output best recorded solution 7*.

3.6. Tabu search

The TS proposed by Glover and Laguna (1997) is a well-known
meta-heuristic that guides a local heuristic search procedure to
explore the solution space beyond local optimality. Its major
components are a set of moves for generating a set of trial
solutions, a set of tabu restrictions (recorded in a tabu memory)
for forbidding some moves, and a set of aspiration criteria for
releasing some forbidden moves. For a given solution, a given tabu
memory recording the given solution, and a given set of aspiration
criteria, the TS regards the given solution as the current solution
and the best solution visited. It then iteratively operates according
to the following steps, until the termination condition is satisfied.
First, the TS performs a set of moves on the current solution to
generate a set of trial solutions. Based on the tabu memory, the TS
checks whether each newly generated trial solution is tabu. If the
newly generated trial solution is identical to one of the solutions
in the tabu memory, it is tabu; otherwise, it is an allowable
solution. If the tabu solution satisfies one of the aspiration criteria,
the TS then restores the tabu solution to an allowable solution.

The TS selects the best among all allowable trial solutions
as the next solution, and then, inserts the next solution into the
tabu memory. If the tabu memory is full, the oldest solution in
the tabu memory is removed. Finally, the next solution replaces
the best solution visited, if the next solution is better.

The role of the tabu restrictions is to prevent solution cycling
(repeatedly visiting the same points in the search space), which
forces the search in different directions instead of trapping it into
local optima. The aspiration criteria enable the generation of
better solutions from the tabu solutions because the tabu
solutions may contain good attributes. Two important compo-
nents of TS are intensification and diversification strategies (Blum
and Roli, 2001). Intensification strategies encourage the explora-
tion of the search space around good solutions already found,
while the diversification strategies seek to spread the search
towards previously unexplored regions of the search space. Some
advanced mechanisms exploiting information collected during
the whole search process are commonly introduced in tabu search
to deal with the intensification and the diversification of the
search (Gendreau, 2002).

TS has exhibited great success in many applications; however,
in our knowledge, no paper has until now treated the problem of
thresholding through the TS. Hence, we propose an application of
this algorithm to optimize an objective function related to the
multilevel threshold purpose. Although there are more or less

Procedure Tabu search

1- Generate randomly one initial vector solution 7=(,15, ..., tj,....tx-1)
2- Evaluate the vector solution and store it as the best solution 7% (7*=T)
3- Initialize the tabu memory pop=®
4- For a fixed number of iterations
“Create a best vector solution vy,
Build a set of neighborhoods ¥(7) for the vector solution 7'
For each ve V(T)
If ve popand F(v)> F(v,
endfor
T=v,,

Ythen v, =v

best

“Update of the tabu memory”
POp = pop IV,
“Update the best solution”
if F(T*)< F(T) then T*=T
endfor //iteration

5- Output best recorded solution 7*.

sophistical variants of the TS algorithm, we have considered the
standard version, in order to keep the requirement of an equitable
comparison. The proposed algorithm is described in Table 6.

In this proposed algorithm, the tabu memory of size N is noted
pop. The set of trial solutions are denoted by V(T)=(vqy,vy, ...,
Vi, ...Vny), they correspond to the neighborhoods of the vector
solution T. A trial solution v;, can be created, as in SA, by
modifying locally and randomly the threshold values ¢, as
follows:

Vig =ty £ randivr[0, (L —1)/32] 12)

The number N, of neighbors is fixed, after several experi-
mentations, to 20. The interval [0, (L — 1)/32] constitutes a small
part of number L of gray values present in the image.

4. Experimental results and comparison study

In this section, we will evaluate the performance on the
multilevel thresholding methods based on the six meta-heuristic
techniques presented in the previous section. Some experiments
with real images are presented to illustrate the key features of
each optimization technique in the efficiency of the thresholding
computation. Six well-known images named Lena, peppers, house,
airplane, lake and boats with 256 gray levels are used. These
images of size (256 x 256) are shown in Fig. 1. Fig. 2 shows their
respective histograms.

In order to compare the quality of the solutions provided by
the six meta-heuristic techniques for the multilevel thresholding,
the value of the best fitness F(T*) corresponding to the best
threshold solution T* is used as comparative criterion. Of course,
the smaller the objective function value, the better the algorithm.
Additional results are presented in order to investigate the
influence of the time computation of each optimization technique.

The meta-heuristic techniques presented in the Section 3 have
several parameters of which values considerably affect the
performance of the algorithms. We have done preliminary testing
on these algorithms for the purpose of getting good combinations
of parameters and results are listed in Table 7. Broadly speaking,
these preliminary tests consisted in tuning, one by one, each
parameter of each algorithm. For each algorithm, we varied the
values of the parameter to be tuned while fixing the values of the
other parameters (initially these values were selected in
accordance with the recommendations mentioned in the
literature). The optimal value of the parameter to be tuned is
that which gives the smallest value of the objective function. The
size N of the population and the number of iterations have a great
influence on the computing time and on the convergence. As these



K. Hammouche et al. / Engineering Applications of Artificial Intelligence 23 (2010) 676-688 683

N
M?-L
Fig. 1. Test images: (a) Lena, (b) Peppers, (c) House, (d) Boats, (e) Lake, and
(f) Airplane.

two parameters are linked, the population size N was kept
unchanged, while the number of iterations was taken as a variable
for all algorithms, in order to further facilitate the comparison
between them for time convergence. The size N of population is
also linked to the number of thresholds (i.e. the number of
variables) to be determined, as it is explained later in this section.
A common value of N equal to 100 for all algorithms was a good
choice for all tests carried out in this paper.

Since the heuristic algorithms are of stochastic type, the
six algorithms are run 50 times. Table 9 reports the mean and
the standard error of the mean fitness over 50 runs, for each
image with a threshold number varying from 1 to 4. These
mean values of the fitness can be compared to the optimal
values of the objective functions found by an exhaustive search
(Table 8).

We can see that all the algorithms give good results both in
terms of accuracy (mean fitness) and robustness (small variance,
i.e. similar results of repeated runs), when the number of
thresholds is small. The TS give mean fitness values equal to the
optimal values when only one threshold is searched, while the
ACO and SA are efficient only when the number of thresholds do
not exceed 2. For a great threshold number, the results obtained
by GA, PSO and DE are much better than the others. These three
algorithms converged consistently to the same solution with the
same fitness value and very lower variance. However, in few

situations, these techniques become less robust since the variance
values are relatively high. It is the case when the number of
thresholds is equal to 4 for the GA with House, Lake and Airplane
images; for PSO with the Peppers, House and Airplane images and
the DE with the Boats image. DE maintains a robust convergence
for all images (except for Boats image). Thus, the DE seems the
most efficient. However, in a general way, we can say that the
results of the GA, PSO and DE are comparable and are close to
those provided by the exhaustive search.

In the above experiment, the number of iterations, which is
used as stopping criterion, differs from an algorithm to another
one. However, this parameter considerably affects their time
computation. In order to compare the convergence time of the six
meta-heuristic algorithms, we have computed the iteration
number and the time necessary to ensure the convergence to
the optimum for each algorithm. The run of each algorithm was
stopped when the fitness value F(T*) of the best solution reached
the optimal value of the objective function (F,,) stored in Table 8,
i.e. |[F(T*) — Fop| <e=10"", where ¢ is a threshold value which
fixes the accuracy of the measurement. We note then the number
of iterations and time taken by each algorithm to achieve the
desired accuracy. Therefore, the stopping criterion of all algo-
rithms (Tables 1-6) is modified; it is based on the value of the
fitness and not on the number of iterations. Each algorithm was
run 50 times, the Table 10 gives the mean number of iterations
and the average of the CPU time taken by each algorithm to meet
the stopping criteria. Our experiments are performed on a HP
Pentium IV-2.8 GHz PC with 256 Mb RAM.

As for the exhaustive search, for all meta-heuristic algorithms,
the number of iterations and the run time increase with the
threshold number but not of the same manner. The convergence
times of the GA, PSO and DE are faster than those of the
exhaustive search except for one threshold. This exception can be
explains by the size N of the population which is fixed to 100 for
all algorithms. Indeed, the size N of the population has a great
influence on the run time. However, when the threshold number
is small, it not necessary to use a great size of the population.
Therefore, for one or two thresholds, the run times of the meta-
heuristic algorithms can be significantly shorted by reducing the
size of the population. The GA, PSO and DE converge in little
iterations. However, by comparing these three algorithms
between them, we can see that the PSO is the most efficient in
terms of time execution, followed by the GA and the DE. The
GA, PSO and DE converge much faster comparatively to the ACO,
SA and TS. The iteration numbers necessary to ensure of the
ACO, SA and TS are higher to those of the GA, PSO and DE. The
convergence times of the ACO, SA and TS are also shorter than
those of the exhaustive search except for one or two thresholds for
the same raisons previously explain.

Finally, the tests carried out show that the performances of the
GA, PSO and DE in terms of precision, robustness and time
convergence are much better comparatively to the ACO, SA and TS.
Among the first three algorithms, the DE is the most efficient with
respect to the quality of the solution and the PSO converges the
most quickly.

5. Conclusion

In this paper, three new multilevel thresholding techniques
based on DE, ACO and TS were proposed in order to determine
directly the values of thresholds. Furthermore, we considered
three other meta-heuristic algorithms for solving the multilevel
thresholding problem, namely GA, PSO and SA.

These six meta-heuristic algorithms were then compared by
testing them on various images. We have found that all algorithms
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Fig. 2. Gray-level histograms of test images: (a) Lena, (b) Peppers, (c) House, (d) Boats, (e) Lake, and (f) Airplane.

Table 7
Parameters of the GA, PSO, DE, ACO, SA and TS.

AG PSO
Population size (N) 100 Population size (N) 100
Maximum number of iterations 1000 Maximum number of iterations 1000
Crossover probability (P¢) 0.9 Inertia weight (w) 0.5
Mutation probability (Pp,) 0.1 Maximum velocity (Vimin) -5
Mutation variance parameter (o) 0.05 Minimum velocity (Vmin) +5
¢mi11 0
¢max 2
DE ACO
Population size (N) 100 Population size (N) 100
Maximum number of iterations 5000 Maximum number of iterations 10 000
Scaling factor (f) 0.3 Probability (qo) 0.5
Crossover constant (Cr) 0.9 Persistance of trail (p) 0.1
SA TS
Maximum number of iterations 10 000 Tabu list size (N) 100
Initial temperature (Tempinit) 100 Maximum number of iterations 10 000
Final temperature (Tempgnal) 0.01 Number of neighbor solutions 20

Temperature multiplier (o) 0.9
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Table 8
Threshold values, objective function values and time processing provided by an exhaustive search for the test images.
K Otsu
Threshold values Objective function Time (ms)
Lena 2 102 0.3128012303 0
3 78-145 0.1438152862 141
4 57-106-159 0.0710375037 10313
5 47-84-119-164 0.0428575875 598016
Peppers 2 117 0.3028234202 0
3 67-132 0.1355182600 156
4 62-116-160 0.0754486001 13843
5 44-83-121-162 0.0493072659 877875
House 2 147 0.2171193157 0
3 96-155 0.0717776906 109
4 82-112-158 0.0523300014 8297
5 82-112-156-205 0.0355574650 463594
Airplane 2 101 0.2132116778 0
3 77-140 0.0998682872 109
4 59-111-151 0.0605269320 8000
5 56-104-141-168 0.0393339123 441500
Lake 2 125 0.1452788445 0
3 88-155 0.0776876954 125
4 80-140-193 0.0445815164 10016
5 69-111-158-197 0.0280979914 586407
Boats 2 154 0.1694023170 0
3 117-175 0.0974979570 94
4 94-146-191 0.0609037629 6188
5 88-132-174-203 0.0392906184 319797
Table 9
Mean values of the optimal fitness values and standard deviation over 50 runs.
k Lena Peppers House
Mean value Variance Mean value Variance Mean value Variance
AG 2 0.3128012303 2.95E-16 0.3028234202 1.99E-17 0.2171193157 8.99E—-17
3 0.1438152862 9.32E-17 0.1355182600 6.54E—17 0.0717776906 5.10E—-17
4 0.0710375037 5.10E—17 0.0754486001 9.27E-17 0.0523300014 2.74E-17
5 0.0428575875 1.94E-18 0.0493072659 1.20E-17 0.0366138075 8.49E—4
PSO 2 0.3128012303 2.95E-16 0.3028234202 1.99E-17 0.2171193157 8.99E—17
3 0.1438152862 9.32E—-17 0.1355182600 6.54E—17 0.0717776906 5.10E—17
4 0.0710375037 5.10E-17 0.0754486001 9.27E-17 0.0523300014 2.74E-17
5 0.0428575875 1.94E-18 0.0493077099 1.75E-6 0.0356448038 6.11E—4
DE 2 0.3128012303 2.95E-16 0.3028234202 1.99E-17 0.2171193157 8.99E—17
3 0.1438152862 9.32E—-17 0.1355182600 6.54E—17 0.0717776906 5.10E—17
4 0.0710375037 5.10E-17 0.0754486001 9.27E-17 0.0523300014 2.74E-17
5 0.0428575875 1.94E-18 0.0493072659 1.20E-17 0.0355574650 1.19E-17
ACO 2 0.3128012303 2.95E—-16 0.3028234202 1.99E-17 0.2171193157 8.99E—17
3 0.1438152862 9.32E-17 0.1355182600 6.54E—17 0.0717776906 5.10E—17
4 0.0711280917 7.97E-05 0.0755734681 1.00E-4 0.0523917871 4.81E-5
5 0.0434308107 3.16E-4 0.0499121252 3.14E-4 0.0358975545 1.86E—4
SA 2 0.3128012303 2.95E—16 0.3028234202 1.99E-17 0.2171193157 8.99E—17
3 0.1438152862 9.32E—-17 0.1355182600 6.54E—17 0.0717776906 5.10E—17
4 0.0710393038 7.12E-6 0.0754487676 1.17E-6 0.0523313206 4.67E—6
5 0.0429009037 2.87E-5 0.0493695811 2.83E-5 0.0356106533 2.74E—5
TS 2 0.3128012303 2.95E-16 0.3028234202 1.99E-17 0.2171193157 8.99E—17
3 0.1438369655 1.55E-5 0.1355241399 5.42E—-6 0.1098835500 5.81E-2
4 0.0710653743 1.76E-5 0.0754837403 1.75E-5 0.0536064735 1.10E-3
5 0.0428666703 8.27E—6 0.0493248294 1.23E-5 0.0370671796 2.06E—3
k Boats Lake Airplane
Mean value Variance Mean value Variance Mean value Variance
AG 2 0.2132116778 1.03E-16 0.1452788445 8.21E—-17 0.1694023170 1.50E-16
3 0.0998682872 0 0.0776876954 7.05E—17 0.0974979570 9.43E-18
4 0.0605269320 0 0.0445815164 3.19E-17 0.0609037629 3.58E-17
5 0.0393339123 3.52E-17 0.0280981361 4.89E-7 0.0392921946 2.80E—6
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k Boats Lake Airplane
Mean value Variance Mean value Variance Mean value Variance
PSO 2 0.2132116778 1.03E-16 0.1452788445 8.21E-17 0.1694023170 1.50E—-16
3 0.0998682872 0 0.0776876954 7.05E—17 0.0974979570 9.43E-18
4 0.0605269320 0 0.0445815164 3.19E-17 0.0609037629 3.58E-17
5 0.0393339123 3.52E-17 0.0280979914 1.06E—17 0.0392910125 1.55E-6
DE 2 0.2132116778 1.03E-16 0.1452788445 8.21E-17 0.1694023170 1.50E-16
3 0.0998682872 0 0.0776876954 7.05E—17 0.0974979570 9.43E-18
4 0.0605269320 0 0.0445815164 3.19E-17 0.0609037629 3.58E-17
5 0.0393339731 4.24E-7 0.0280979914 1.06E—17 0.0392906184 4.38E—-17
ACO 2 0.2132116778 1.03E-16 0.1452788445 8.21E-17 0.1694023170 1.50E—-16
3 0.0998682872 0 0.0776876954 7.05E—17 0.0974979570 9.43E-18
4 0.0605869078 4.18E-5 0.0446386081 3.39E-5 0.0609348623 2.77E-5
5 0.0398126462 2.82E-4 0.0283452932 1.41E-4 0.0396366980 1.93E-4
SA 2 0.2132116778 1.03E-16 0.1452788445 8.21E-17 0.1694023170 1.50E—16
3 0.0998682872 0 0.0776876954 7.05E—17 0.0974979570 9.43E-18
4 0.0605279198 3.83E-6 0.0445846257 6.28E—6 0.0609045158 2.17E-6
5 0.0393911669 3.14E-5 0.0281417618 2.51E-5 0.0393471027 3.16E-5
TS 2 0.2132116778 1.03E-16 0.1452788445 8.21E-17 0.1694023170 1.50E-16
3 0.0998723866 5.01E-6 0.0776948986 8.12E-6 0.0975005093 1.99E-6
4 0.0605524295 1.82E-5 0.0445916701 9.70E—6 0.0609108877 8.30E-6
5 0.0393640708 1.14E-5 0.0281081831 7.62E—6 0.0393078092 1.24E-5
Table 10
Computational time of the GA, PSO, DE, ACO, SA and TS.
k Lena Peppers House
Time (ms) Iteration number Time (ms) Iteration number Time (ms) Iteration number
AG 2 1.56 1.36 1.56 1.8 1.56 1.28
3 7.5 9.82 7.2 10.1 6.58 10.02
4 20 27.14 22.2 35.24 30.62 54.34
5 74.36 102.64 85.32 131.18 609.38 945.34
PSO 2 1.24 1.42 1.56 1.4 1.88 13
3 4.7 7.26 5.3 8.46 5.62 7.26
4 9.4 15.64 9.68 15.84 11.86 15.84
5 15.94 26.48 28.44 449 85.3 124.8
DE 2 1.86 1.34 1.56 1.44 1.56 1.42
3 11.56 14 9.38 12.56 9.7 13.54
4 99.7 116.98 116.56 133 78.14 1154
5 976.26 1265.2 966.88 1281.2 707.5 883.46
ACO 2 4.38 5.64 4.38 5.2 3.12 3.96
3 610.32 927.98 860.94 1208.44 674.38 1072.62
4 7213.74 9696.6 7511.56 9348.32 6950 9705.54
5 8233.44 9896.96 9481.56 10000 10376.5 10000
SA 2 4.06 112.8 6.26
3 177.5 263.42 175.64
4 4081.88 4243.74 5089.68
5 6019.68 5716.88 5312.8
TS 2 0.94 9.52 0.94 8.76 0.94 9.84
3 818.42 6607.18 584.06 4452.36 786.56 6625.08
4 1072.8 7915.1 1199.4 8829.78 1190.94 9611.48
5 1098.12 8050.76 1361.88 9314.46 1317.5 9816.74
Boats Lake Airplane
k Time (ms) Iteration number Time (ms) Iteration number Time (ms) Iteration number
AG 2 1.26 1.3 1.24 1.6 0.94 1.46
3 6.24 10.12 7.18 11.54 53 10.68
4 20.62 35.36 23.74 34.06 65.28 10.44
5 45 76.26 100 224.06 455.98 472.92
PSO 2 1.24 1.42 1.56 1.32 1.24 1.24
3 4.06 6.88 4.68 7.7 3.44 6.86
4 8.74 15.26 9.36 15.98 9.06 16.12
5 13.74 239 148.74 259.1 187.18 358.88
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Boats Lake Airplane
k Time (ms) Iteration number Time (ms) Iteration number Time (ms) Iteration number
DE 2 1.26 1.48 1.58 1.5 1.24 1.38
3 8.44 13.26 9.38 13.82 9.08 15.66
4 85 135.46 89.7 129.34 73.44 129.28
5 970 1460 1128.74 1697.24 784.06 1332.98
ACO 2 3.14 4.16 4.06 5.56 2.82 4.64
3 553.74 890.78 717.5 1053.08 450.62 760.42
4 6794.06 9613.04 7036.56 9229.02 5795.64 8755.64
5 7903.74 10000 8557.5 10000 7531.88 10000
SA 2 3.76 4.38 96.86
3 173.12 197.82 93.74
4 4276.88 3886.58 3287.5
5 5445.94 5660 5050.92
TS 2 0.94 9.48 1.26 10.36 0.94 9.02
3 491.56 3835.36 462.18 3637.64 625.96 5418.48
4 1129.06 9006.02 933.44 6947.32 760 6337.02
5 1271.56 9505 1230.32 8507.04 1271.24 9741.52

are comparable in term of solution quality when the threshold
number is small, i.e. less than or equal to 2. While this number
increases, the GA, PSO and DE provide better results than ACO, SA
and TS with a little advantage to the DE.

In term of execution time, the GA, PSO and DE are most
efficient than other algorithms with a great speed for the PSO.

Finally, it turned out that, in the multilevel thresholding
framework, the PSO is superior compared to other meta-heuristics
both respect to precision, as well as robustness of the results and
runtime.

One can see through this study that, except for ACO, the
population based meta-heuristics like GA, PSO and DE outperform
the meta-heuristics like TS and SA, which handle a single solution.
Several local optima of the objective function appear when the
number of thresholds increases and TS and SA found difficulties to
escape from these local optima. Further works consist in applying
sophistical versions of ACO and TS to solve the multilevel
thresholding problem. This comparison can also be extended to
other meta-heuristics, such as the iterated local search, the
variable neighborhood search, or by using a hybridization
between two or several meta-heuristics.
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