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Abstract—An improved nondominated sorting genetic algo-
rithm–II (INSGA-II) has been proposed for optimal planning of
multiple distributed generation (DG) units in this paper. First,
multiobjective functions that take minimum line loss, minimum
voltage deviation, and maximal voltage stability margin into con-
sideration have been formed. Then, using the proposed INSGA-II
algorithm to solve the multiobjective planning problem has been
described in detail. The improved sorting strategy and the novel
truncation strategy based on hierarchical agglomerative clus-
tering are utilized to keep the diversity of population. In order to
strengthen the global optimal searching capability, the mutation
and recombination strategies in differential evolution are intro-
duced to replace the original one. In addition, a tradeoff method
based on fuzzy set theory is used to obtain the best compromise
solution from the Pareto-optimal set. Finally, several experiments
have been made on the IEEE 33-bus test case and multiple actual
test cases with the consideration of multiple DG units. The fea-
sibility and effectiveness of the proposed algorithm for optimal
placement and sizing of DG in distribution systems have been
proved.

Index Terms—Distributed generation (DG), distribution system
planning, multiobjective optimization (MOO), nondominated
sorting genetic algorithm–II (NSGA-II).

I. INTRODUCTION

I N RECENT years, distributed-generation (DG) technology
has become a heavily researched topic, given increasing

global concerns for environmental protection, energy-saving
issues, increasing complexities of wind power, photovoltaic
power generation, and other renewable energy technologies.
After DG is connected to a distribution network, the structure,
operation, and control mode of the distribution network will
be changed tremendously. It is dif�cult to estimate how many
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DG capacities will be needed to be connected to distribution
systems. Undoubtedly, it is certain that increasing penetration
levels require robust tools and methods that help assess capa-
bilities and requirements of networks in order to produce the
best planning and control strategy [1]. The challenge from DG
planning is that the planning needs to solve the optimization
problem with many objectives and constraint factors. It should
be recognized that modern distribution business will see many
market players pursuing contrasting and different objectives.
Among many methods and tools, the multiobjective evolu-
tionary algorithm provided a powerful searching method in
multiple objective components to obtain an even Pareto-op-
timal set.

From the perspective of mathematical optimization, DG unit
injection is also a complex multiobjective optimization issue.
The objectives include optimal energy consumption, the min-
imum power consumer’s electricity purchasing cost, and the
minimum power loss based on constraints of power grid secu-
rity and DG power output. Multiobjective economic/emission
dispatch algorithms were investigated in [2] and [3]. Among the
research about optimization methods, multiobjective models of
DG planning were optimized by various methods, such as the
simulated annealing technique, Tabu search method integrated
with the genetic algorithm (GA) [4], and Fuzzy optimization
method [5].

Recent studies about the DG planning model and various al-
gorithms are surveyed as follows. Several intelligent optimiza-
tion algorithms, such as GA [6]; particle swarm optimization
(PSO) [7], [8]; differential evolution (DE) [9]; and arti�cial bee
colony (ABC) [10] are used to solve the optimization problem
considering minimum costs for network upgrading, operation,
maintenance, and losses for handling the load growth and max-
imum DG penetration level. Besides, several sensitivity anal-
ysis methods of DG allocation were proposed in [11]–[13]. In
case of multiple con�icting objectives, there may not be a solu-
tion which is the best compromise for all objectives. Therefore,
a “tradeoff” solution is needed instead of a single solution in
multiobjective optimization. Based on GA, Farouk et al. [14]
proposed a multiobjective optimization approach to maximize
savings in system-upgrade investment deferral, cost of annual
energy losses, and cost of interruption. Jin et al. [15] established
a multicriteria planning model for minimizing the cost and max-
imizing the reliability of generating units. A multiobjective per-
formance index-based size and location determination of DG

0885-8977 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON POWER DELIVERY

with different load models was presented in [16]. Nekooei et al.
[17] studied a new approach using an improved harmony-search
(HS) algorithm.

Although the attention of previous works focused on power
loss and costs for network upgrading, relatively few efforts were
involved with voltage deviation and voltage stability improve-
ment. The inherent relations among multiple objectives were not
investigated yet. In this paper, we �rst establish a mathematical
model of the optimal DG planning problem, and then solve this
optimization problem by the proposed improved nondominated
sorting genetic algorithm II (INSGA-II) with the consideration
of line loss, voltage deviation, and voltage stability margin.

The remainder of this paper is organized as follows. Section II
formulates the proposed multiobjective optimization issue for
DG planning. Section III describes the proposed INSGA-II
method to solve the optimization problem. Section IV provides
numerical results and comparisons with the proposed approach
using various test systems with DG units, and Section V sum-
marizes the main contributions and conclusions of this paper.

II. PROBLEM FORMULATION

A. Objective Functions

Three objectives are considered in the optimization model,
which include: 1) reducing system line losses; 2) reducing
voltage deviation; and 3) increasing voltage stability margin
when DG units are considered in the distribution network (DN).
1) Minimization of Line Losses: The �rst objective is to min-

imize system line losses after DG injection into the distribution
network. This objective function is as

(1)

where is the set of branches of network, and de-
notes that are two nodes of a branch, and and are
voltage magnitudes of nodes and , respectively. is the
conductance between nodes and . And is the difference
between nodal phase angles and .
2) Minimization of Voltage Deviation: The second objective

is to minimize the voltage deviation between nodal voltage and
speci�ed voltage magnitude. Nodal voltage magnitude is an im-
portant indicator to evaluate system security and power quality
(PQ). The minimization of voltage deviation can help guarantee
a better voltage level in distribution power systems. The func-
tion can be written as

(2)

where is the voltage magnitude at the th bus, and is
the speci�ed voltage magnitude. and are the upper
and lower limits at the th bus, respectively. is the number
of buses. The exponent in (2) is set to 2 in order to make the
difference between the voltage in the th node and the speci�ed
voltage non-negative.
3) Maximization of Voltage Stability Margin: The third

objective is to maximize steady-state voltage stability margin.

Voltage stability margin is the measure of the security level of
the distribution system. Among different indices for voltage
stability, a fast indicator of voltage stability, L-index, is chosen
as the indicator for voltage stability index. L-index was pre-
sented by Kessel and Glavitsch [18], and developed by Jasmon
and Lee [19]. The L-index of branch can be expressed as
follows:

(3)

where indicates the extent of branch voltage stability. The
branch voltage will be instable if the value of is large. Ob-
viously, the voltage instability of the network is determined by
the most instable branch, and its expression is as

(4)

where the -index ranges from 0 (no load of system) to 1
(voltage collapse). The bus with the highest -index will be
the most vulnerable bus and, hence, this method helps identify
the weak areas needing critical reactive power support in the
system. In order to maximize the voltage stability margin, the
corresponding function is as

(5)

B. Constraints

For DN with the integrated DG units, three types of con-
straints, which include power-�ow equality, nodal voltage, and
DG capacity are considered in the optimization model.
1) Equality Constraints: The constraint of power-�ow equa-

tions is as follows:

(6)

where and are active and reactive generation out-
puts, and and are the active and reactive loads at node
, respectively. and are the real and imaginary parts of

the nodal admittance matrix, respectively.
2) Inequality Constraints: Generation limits

(7)
(8)

Load bus voltage constraints

(9)

Thermal limits

(10)
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where , , , and are the lower/upper active
and reactive generating unit limits of DG, respectively. is
the apparent power thermal limit of the circuit between bus
and .
3) DG Capacity Constraint: Every country has a limit on the

penetration of DG for a distribution system to ensure reliability.
If we assume the maximum DG penetration factor is 25%, then
the maximum injected DG capacity should be less than 25% of
the total active power load in DN, that is

(11)

where is the total active power load of DN.

C. Overview Formulation

Aggregating objectives and constraints, the problem can be
formulated as a nonlinear MOO problem as follows:

(12)
(13)
(14)

where is the number of objectives, and and are the
state vector and the control vector, respectively.

is composed of independent adjustable variables of in-
jected DG units. If each DG has a prespeci�ed power factor,
then each installed DG has two variables: injecting position and
active power output of DG. For multiple DG units to be installed
in a system, can be illustrated as follows:

(15)

where is the maximal allowable injection number of DG.
is the allocation position of the th DG, and is the

state vector to be composed of system nodal voltage magnitude
and phase angle as follows:

(16)

D. Treatment for Equality and Inequality Constraints

Power-�ow equations can be satis�ed during the process of
power-�ow calculation. The inequality constraints (7) and (8)
can be satis�ed in the encoding period. Through penalizing in-
equality constraints (9)–(11) to the objective function, the con-
strained optimization problem can be transformed to the uncon-
strained form, which can be expressed as follows:

(17)

where , , and are penalty factors of voltage constraint,
line thermal constraint, and DG penetration, respectively.

III. IMPROVED NSGA-II ALGORITHM

A. Overview of NSGA-II

NSGA-II uses nondominated sorting and sharing to search a
compromising solution for MOO, and it is an ef�cient algorithm
for a large number of benchmark problems [20].

B. Dominated, Nondominated, and Pareto-Optimal Set

MOO can be expressed as follows:

(18)

where denotes the th objective function, and is the fea-
sible searching space.
De�nition 1: A solution is said to dominate (denoted

by ) if and only if

for (19)

De�nition 2: For , solution is said
to be a nondominated solution (Pareto solution) of set if

, and there is no solution for which dominates .
De�nition 3: Assume that set contains all non-

dominated solutions of , then
is a Pareto front

of set .

C. INSGA-II: Improved Nondominated Sorting Strategy

The improved sorting strategy simultaneously considers the
nondominated sorting and density information for each indi-
vidual. Suppose that is the population size, it �rst com-
putes the nondominated rank for each individual in population
using the fast nondominated sorting strategy to be introduced by
NSGA-II; then, it adds its nondominated rank and the number
of individuals that dominate it. The procedure is as follows:

(20)

where is the th individual, is the nondominated rank
of , and is the number of individuals to dominate .
Finally, for , sorts in ascending order,
and assigns the order to as the improved rank, i.e.,

(21)

where is the improved rank of . It will be as a rank
result of improved nondominated sorting.

In order to demonstrate the effect of the INSGA-II, a 2-D ob-
jectives optimization problem is taken as an example. It assumes
that after fast nondominated sorting, individuals are at the
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Fig. 1. Individual distribution chart.

�rst rank, and individuals are at the second rank. It also
assumed that individual is dominated by individual , , and
; individual is dominated by individual and ; and indi-

vidual is dominated by individual , respectively, which can
be shown in Fig. 1. Using the traditional sorting strategy, the in-
dividuals have the same rank. However, the number of
their respective adjacent dominating solutions is different. To
illustrate the different density corresponding to , , and ,
three equal radius circles are displayed to cover the adjacent in-
dividuals. As shown in Fig. 1, individual is more crowded
than , and individual is more crowded than . Through the
improved sorting strategy, the rank of individual , and
are 4, 3, and 2, respectively. Therefore, the individual that has
less density holds the lower rank, which means it has more supe-
riority in the selection process. In this way, the improved sorting
strategy is bene�cial to maintain better diversity in population.

D. INSGA-II: HAC-Based Truncation Strategy

The truncation strategy in NSGA-II is shown in Fig. 2. Here,
individuals with lower rank can be conserved directly to the
next-generation population (see process 1), until the size of the
next-generation population over�ows if all individuals in cer-
tain rank are maintained. According to NSGA-II, individuals in
that rank should be sorted using the crowded comparison oper-
ator [20] in descending order, and then individuals needed to �ll
all population slots are chosen (see process 2).

However, the truncation strategy may destroy the diversity
of solutions; namely, it may lead to the uneven distribution. In
order to better conserve the diversity and evenly distributed per-
formance in Process 2, a method based on hierarchical agglom-
erative clustering (HAC) [21] is introduced. In the proposed
method, individuals in the truncated rank are clustered into an
appropriate number of clusters, and then those with the largest
crowding distance in each cluster are conserved to �ll popula-
tion slots. The space distance of solutions is used to measure
the similarity of individuals in pair, and the Euclidean distance
is utilized as the distance metric.

Taking 2-D objectives optimization problem as one example,
as shown in Fig. 3, �ve individuals need be extracted from can-
didates which are all in the same rank. Two steps should
be followed to complete the truncation:

Fig. 2. Schematic chart of the truncation strategy.

Fig. 3. Schematic chart of the truncation strategy based on HAC.

Step 1) Use the HAC algorithm to separate all individuals
into �ve clusters .

Step 2) Execute the crowded-comparison operator for each
individual and choose the one with the largest
crowding distance in each cluster. Then, the indi-
viduals , , , , and are extracted.

According to the traditional truncation strategy, individuals
, , , , and will be selected. Comparing two groups of re-

sults, the difference can be noticed that the HAC-based trunca-
tion strategy chooses individual but not into population slots,
which is shown in Fig. 4. In order to demonstrate the evenly dis-
tributed performance of the proposed strategy, the coordinates
of each individual are illustrated in Fig. 4. And the variance
of distances of adjacent individuals is calculated to measure
the even degree. Based on the HAC-based truncation strategy,
the variance is 0.3528. For the traditional truncated approach,
the variance is 2.1580. So the proposed improved truncation
strategy can make the obtained solutions be evenly distributed
with more diversity.

E. INSGA-II: Improved Mutation and Crossover Strategy

The mutation and recombination strategy [22] in DE opti-
mization is integrated in the proposed INSGA-II algorithm. De-
tailed operations are described as follows.
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Fig. 4. Results of the proposed and traditional truncation strategies.

Fig. 5. Diagram of the IEEE 33-bus distribution system.

1) Mutation Operation: For each , the
weighted difference of two randomly chosen population vectors

and is added to another randomly selected population
member , to form a mutated vector

(22)

where is the new mutated vector, and is a prede�ned step
size, which is typically chosen from range [0,2]. The mutation
operation can improve the local search around the current best
solution.
2) Recombination Operation: Assuming that the in-

dividual is composed with chromosome vector
, and the mutated individual is com-

posed with chromosome vector ,
then the new individual is created by (23). The new indi-
vidual vector is mixed with the original vector and mutated
vector to yield to the new vector after the recombination
operation

if
if (23)

where , and crossover rate .
is the length of the chromosome. The recombination operation
can increase the diversity of the perturbed parameter vector.

F. Choosing the Best Compromise Solution via a Fuzzy
Decision

For decision making, it is necessary to select a best compro-
mise solution from the obtained MOO solution sets. Here, using

the Fuzzy Set Theory determines the best compromise solution.
First, the membership function of the th solution for the th
objective function is de�ned as

(24)

where and are the maximum and minimum of the
th objective function among all nondominated solutions, re-

spectively. Obviously, gives a measure of the satisfaction
degree of the th solution for the th objective function. Then,
using the fuzzy decision determines the best compromise solu-
tion in the Pareto solution set as

and (25)

where is the number of Pareto solutions.

G. Complete Algorithm of the Proposed Method

The �owchart of the proposed algorithm is shown in fol-
lowing pseudocodes.

Algorithm 1 Procedures of the proposed INSGA-II

Input: The number of objectives, population size , maximal
iteration , etc.

Output: Optimal solution

1: Initialize , and set iteration number
;

2: Power�ow computation, and compute objective values ,
, ;

3: while do

4: Make selection, mutation and recombination operations on
parent group , and form new individuals as offspring
group ;

5: Power-�ow computation, combine current population and
offspring group ;

6: Use improved nondominated sorting strategy in , and
form multiple rank ;

7: Truncate the combined population using the HAC-based
strategy, and form ;

8: ;

9: end while

10: Get the best comprise solution using the Fuzzy Set Theory;

11: return .
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TABLE I
RESULT WITH THE IEEE 33-BUS TEST SYSTEM

Fig. 6. Relation among different objective functions.

IV. EXPERIMENTS AND RESULTS

A. Experiment Setting and Description

In order to demonstrate the effectiveness of the proposed al-
gorithm, the optimal DG allocation of the IEEE 33-bus, and ac-
tual 292-, 588-bus distribution networks with DG are considered
and tested. The actual test systems come from real urban DN in
North China. The environments of the algorithm implementa-
tion and comparison are as follows.

1) The program of the proposed algorithm is developed in
MATLAB. In the implementation of the INSGA-II algo-
rithm, the population number 200; the max-itera-
tion number 100; the mutation factor 0.25;
the crossover factor 0.9; and the penalty factor ,

, and are all set to 50.
2) The algorithm veri�cation and comparison were made

with NSGA-II, strength pareto evolutionary algorithm 2
(SPEA2) [23], and differential evolution multiobjective
optimization (DEMO) [24]. The evolution parameters in
these algorithms are the same as the ones in INSGA-II.

B. Experiment on the IEEE 33-Bus Case

DG units are considered in the modi�ed IEEE 33-bus system
shown in Fig. 5. The algorithm was applied to solve this
problem. The peak loading data of IEEE 33-bus test system,
seen in Table VII, are utilized as the typical load data. The
maximal active power capacities of DG units are set to 1 MW.

In the proposed INSGA-II and the other three evolutionary
algorithms for comparison, the initial vector of all independent

TABLE II
ALGORITHM COMPARISONS IN THE INDEX

Fig. 7. Box-plots of spacing metric values from different multiobjective opti-
mization algorithms.

TABLE III
SIZES OF THE DIFFERENT DISTRIBUTION POWER SYSTEMS

control variables in each chromosome is set to the random
values between their upper and lower limits. The �nal solution
for DG allocation and MOO function values in the IEEE 33-bus
system are shown in Table I.

Distribution relations of the optimal solution set among dif-
ferent objective functions are shown in Fig. 6. As shown in
Fig. 6(a), the optimal solution set is a linear distribution for line
loss objective and system voltage stability objective. The rela-
tion between line loss objective and voltage deviation objective
is shown in Fig. 6(b). The solution result in Fig. 6(b) shows a
reciprocal distribution for two objectives. It also shows that two
objectives have a contrasting relation. Fig. 6(c) shows that there
is a contrasting relation between the system voltage stability ob-
jective and voltage deviation objective.

C. Performance Analysis of the INSGA-II Algorithm

The comparisons of the proposed INSGA-II with NSGA-II,
SPEA2 and DEMO were made. For each algorithm, 30 runs
with different random seeds have been carried out. In the case
of MOO, the comparison of searching performance is substan-
tially more complex than for the single-objective optimization
problem. The following comparisons are based on the index
[25] and spacing metric [26].
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TABLE IV
OPTIMIZATION RESULT OF INSGA-II ON DIFFERENT DISTRIBUTION POWER SYSTEMS

1) Index:
De�nition 4: Let , and be two sets of decision

vectors, the function maps the ordered pair to be
the interval [0, 1]

(26)

The value means that all solutions in
are dominated by solutions in . The opposite
0 represents the situation that none of the solutions in are
covered by the set .

As shown in Table II, 26.17%, 12.21%, and 26.40% solutions
of NSGA-II, DEMO, and SPEA2 are dominated by solutions
of INSGA-II, respectively, while there are 5.99%, 8.44%, and
5.96% solutions of NSGA-II, DEMO, and SPEA2 dominating
solutions of INSGA-II. It shows that the INSGA-II has more ex-
cellent searching performance and better Pareto-optimal front.
2) Spacing Metric: In order to judge the evenly distributed

performance of the Pareto solution set, the spacing metric is
de�ned as the distance variance of each solution to its closest
neighbor, that is

(27)

where is the distance of the th individual to its closest
neighbor, and is the mean of among individuals. The
and can be calculated as follows:

(28)

(29)

A smaller value of spacing metric means that the solutions
in the Pareto solution set are more evenly distributed. And the
value of zero for the spacing metric means that all solutions
in the Pareto solution set are equally spaced. The box plots
of spacing metric values from different MOO algorithms are
shown in Fig. 7.

As shown in Fig. 7, each box plot represents distributions of
spacing metric values. The top and bottom horizontal lines in
each box plot present the boundary values except the outliers.
The exceptional value has been plotted as outliers using “+”.

TABLE V
INSGA-II RESULT WITH A DIFFERENT POPULATION SCALE AND ITERATIONS

The rectangular box contains half of the spacing metric values,
and the red line within the rectangular box shows the median
for spacing metric values. Compared with the other three algo-
rithms, the INSGA-II has the minimal median (see red line) and
minimum value (see bottom solid line). Therefore, INSGA-II
has advantages in �nding evenly distributed solutions, and the
Pareto set derived by INSGA-II has better diversity in selecting
the best compromise solution.

D. Cases Analysis on Different Distribution Systems
The proposed INSGA-II is tested on different distribution

power systems. Table III shows the size of each set of various
test systems.

Table IV shows the optimization result of INSGA-II in three
cases. The computation time will slowly increase when the
scale of distribution grids increases. Most of the increased time
is spent in power-�ow computation for large-scale distribution
power systems. For the optimization objectives, the integration
of DG units signi�cantly reduces the line loss and voltage
deviation and improves the system voltage stability.

Additional experiments were made on the actual 588-bus test
systems with different and . As shown in Table V, two
experiments can almost get the same optimization objectives
value. Compared with experiment 1, the population size in ex-
periment 2 increases 50%, and the iteration number increases
accordingly; however, the computation time increases 400%. It
can be concluded that the population size and maximal iteration
number are two major in�uencing parameters in INSGA-II.

E. Method Validation on Average and Light Loading
The optimal planning result for two DG units in Table I is

based on the peak loading of the IEEE 33-bus system. To vali-
date the proposed method suitable for average and light loading,
the optimal result for two DG units is put in the cases of av-
erage and light loading, respectively. The three objectives func-
tion values in the two cases are computed based on the optimal
allocation, that is, DG 1 with 0.5180 MW is integrated in node
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TABLE VI
THREE-OBJECTIVE FUNCTION VALUES IN AVERAGE AND LIGHT LOADING

Fig. 8. Forecasted time-series data of wind generation output and industrial
load.

Fig. 9. Independent optimal placement for DG units in 24 h.

17, and DG 2 with 0.4224 MW is integrated in node 32, respec-
tively. The computation result is shown in Table VI.

As shown in Table VI, three objective function values in the
light loading case are smaller than the average and peak loading
cases. It means that the line loss, system stability, and voltage
deviation become poor with the loading increase. But after op-
timization, three objective function values in three cases are all
obviously decreased. It shows that the optimal DG planning re-
sult based on peak loading can create an active effect on the
same distribution system with light and average loading. The
aforementioned experiment result provides evidence that the
optimal DG allocation scheme in peak loading can be feasible
in various loading levels.

TABLE VII
DATA OF THE MODIFIED IEEE 33-BUS DISTRIBUTION TEST SYSTEM

Note that and are the same as those in the original IEEE 33-bus test
system.

F. Experiment on Time Series Data of the DG and Load With
Seasonal Changes

For the proposed method in the time-series data case, the
optimal placement and sizing problem is analyzed with wind
generation and industrial load in the modi�ed IEEE 33-bus
system. The forecasted time-series data for the wind generator
output and industrial load in four seasons based on the real
urban distribution power system in Northern China are shown
in Fig. 8(a) and (b). Here, assume that the variation of 24 h in
each season is kept the same for wind generation output and
industrial load. Taking the data in the summer as one example,
the proposed multiobjective planning problem is optimized at
each time period, and then multiperiod solutions are obtained.

The optimal DG placement at each time period is shown in
Fig. 9. There is one independent allocation solution for each
hour with time-series data. Based on the density of candidate
solutions, nodes 16 and 32 are selected as the best DG integra-
tion positions.

As shown in Fig. 9, the most appropriate sizing of DG units
can be obtained from the corresponding time period whose DG
positions are nodes 16 and 32. Besides, when DG units are in-
tegrated into the system using the optimal allocation result at
a certain time period, the solution should not violate the pene-
tration rate constraint at other time periods. After individually
putting optimal DG allocation results at 11 19th time period
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and calculating the wind generation output at the 24-h time pe-
riod, the optimal allocation result at the 16th time period is most
appropriate to the constraint at all 24 time periods. Thus, the
sizing values of DG1 and DG2 in the 16th time period can be
selected as the optimal sizing of DG units.

V. CONCLUSION

To summarize the modeling, optimization algorithm im-
provement, and comparison study for optimal planning of
multiple DG units, the following conclusions can be derived as:

1) three objectives to consider minimum line loss, minimum
voltage deviation, and maximal voltage stability margin
can correctly formulate optimal planning of multiple DG
units;

2) by improving the mutation and crossover procedure,
strengthening the nondominated sorting and truncation
strategies, and determining the Pareto solution set using
the fuzzy membership function method, the proposed
INSGA-II can obtain the best compromise solution for
all objectives. Taking IEEE 33-, actual 292-, and 588-bus
systems as test cases, the comparisons of the proposed
INSGA-II with the traditional multiobjective optimization
algorithms, such as NSGA-II, DEMO and SPEA2, indi-
cate that the proposed method can achieve better precision
and diversity.

In practice, the choice of the best site may not always be fea-
sible due to many reality constraints. But the optimization and
analysis here suggest that considering multiobjectives helps to
decide placement and sizing of DG units for the decision-maker.
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