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With increasing Internet connectivity and traffic volume, recent intrusion incidents have reemphasized
the importance of network intrusion detection systems for combating increasingly sophisticated network
attacks. Techniques such as pattern recognition and the data mining of network events are often used by
intrusion detection systems to classify the network events as either normal events or attack events. Our
research study claims that the Hidden Naïve Bayes (HNB) model can be applied to intrusion detection
problems that suffer from dimensionality, highly correlated features and high network data stream vol-
umes. HNB is a data mining model that relaxes the Naïve Bayes method’s conditional independence
assumption. Our experimental results show that the HNB model exhibits a superior overall performance
in terms of accuracy, error rate and misclassification cost compared with the traditional Naïve Bayes
model, leading extended Naïve Bayes models and the Knowledge Discovery and Data Mining (KDD)
Cup 1999 winner. Our model performed better than other leading state-of-the art models, such as
SVM, in predictive accuracy. The results also indicate that our model significantly improves the accuracy
of detecting denial-of-services (DoS) attacks.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

According to recent Internet security reports, the volume and
sophistication of targeted network attacks has increased substan-
tially in recent years. The increasing number of threats against
and vulnerabilities of a diverse set of targets, such as military, gov-
ernment and commercial network systems, require increasing sit-
uational awareness and various cyber security measures (Baker,
Filipiak, & Timlin, 2011; Fossi et al., 2011). Intrusion detection is
a security measure that helps to identify a set of malicious actions
that compromise the integrity, confidentiality, and availability of
information resources (Dokas et al., 2002). Intrusion detection is
a difficult problem because of the tradeoff considerations of detec-
tion accuracy, detection speed, the dynamic nature of the networks
and the available processing power for processing high volumes of
data from distributed networked systems (Kabiri & Ghorbani,
2005). These considerations led to intrusion detection research,
which includes both misuse detection and anomaly detection. Mis-
use detection relies on a learning algorithm that is trained by a
dataset in which each instance is labeled as either a normal event
or an intrusion. Although the algorithm cannot detect novel attacks
that were not included in the training set, it can be automatically
retrained with the new attack instances through a new training
ll rights reserved.
dataset (Kumar & Spafford. 1994). Anomaly detection builds mod-
els of normal network events and detects the events that deviate
from these models (Denning, 1987). This method can detect new
types of attack events because it only relies on known normal
events. Despite its advantages, the anomaly detection method suf-
fers from a high rate of false alarms due to previously unobserved
normal events. Hybrid models utilize both misuse detection and
anomaly detection approaches to improve the prediction perfor-
mance (Depren, Topallar, Anarim, & Ciliz, 2005; Zhang, Zulkernine,
Haque, 2008).

Data mining explores and analyzes large datasets to discover
understandable and useful patterns and models (Hand, Mannila,
& Smyth, 2001). The data mining of network events is often lever-
aged to differentiate attack events from normal events by using
various methods, such as outlier detection (Lazarevic, Ertoz,
Kumar, Ozgur, & Srivastava, 2003), clustering data into categories
(Frank, 1994), classifier models for predicting the categories, and
association-rule-based models.

Classification is the identification of the category labels of in-
stances that are typically described by a set of features (attributes)
in a dataset. Learning classifier models learn from the given train-
ing data and infer the class labels for the instances of the new data.
Scholars have applied numerous classifier models to the intrusion
detection problem, including rule-based detection (Lunt, 1989),
neural networks (Cannady, 1998; Lippmann & Cunningham,
2000; Zhang, 2001), fuzzy logic (Bridges & Vaughn, 2000), the
hidden Markov model (Bo, Hui-Ye, & Yu-Hang, 2002), the random
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forest model (Zhang, Zulkernine, Haque, 2008), data mining (Lee,
Stolfo, & Mok, 1999; Wu & Yen, 2009) and Bayesian analysis (Bar-
bara, Wu, & Jajodia, 2001).

Our intrusion detection model is a multinomial classifier that is
used to classify network events as normal or attack events, such as
DoS, probe, U2R, and R2L. The model is based on a new data mining
method called Hidden Naïve Bayes (HNB). The HNB classifier mod-
el is applied to several datasets and shows promising results com-
pared with the traditional Naïve Bayes and its extended methods
(Jiang, Zhang, & Cai, 2009). As to our knowledge, no systematic re-
search exists addressing the applicability and effects of using HNB
based classifier in intrusion detection domain. Our experimental
research study explores the traditional Naïve Bayes and leading
structurally extended Naïve Bayes approaches including the new
HNB approach. To our knowledge, there is no other comparative
research study in intrusion detection domain looked at the Naïve
Bayes and structurally extended Naïve Bayes approaches compre-
hensively. In our study, we augmented the Naïve Bayes and ex-
tended Naïve Bayes methods with the leading discretization and
feature selection methods to increase the accuracy and decrease
the resource requirements of intrusion detection problem. Based
on the results of our study, HNB based classifier model stands
out as simple and practical intrusion detection system with better
predictive accuracy and cost.

The Naïve Bayes method, which is the simplest form of a Bayes-
ian network, is a popular data mining method that has been ap-
plied to many domains, including intrusion detection. The
method’s simplicity relies on the assumption that all of the fea-
tures are independent of each other. The HNB method, which re-
laxes this assumption, has been successfully applied to web
mining (Bo, Qiurui, Zhong, & Zengmei, 2009; Xin, Rongyan, Xian,
& Rongfang, 2007). Background information on the Naïve Bayes
methods and its extensions are presented in the Related Work sec-
tion of our paper.

Because of its good performance in earlier work in other do-
mains, this study applies the HNB classifier model to the intrusion
detection problem. In the Research Method section, we present the
rationale behind our use of the HNB model and introduce our mod-
el and the conceptual framework.

We used the classic KDD Cup 1999 (KDD’99) intrusion detection
dataset to test our claim that with respect to the intrusion detec-
tion problem, the HNB method outperforms the traditional Naïve
Bayes method, the leading structurally extended Naïve Bayes
methods and the winning KDD’99 method in terms of detection
accuracy, error rate and misclassification cost. Because of the chal-
lenges associated with the dataset, we preprocessed the dataset
with several discretization and feature selection methods. The
KDD’99 dataset and its properties are presented in the KDD’99
dataset section.

In the Experiments and Results section, we explain and discuss
our experimental setup. We also present and compare the results
obtained with the HNB classifier with those obtained with the tra-
ditional Naïve Bayes classifier, the classifiers based on the structur-
ally extended Naïve Bayes methods and the KDD’99 winner as a
common benchmark. Finally, we compare our results with those
of the state-of-the-art models from earlier studies. The conclusions
of our research study are presented in the last section.
A1 A2 A3 An
……

Fig. 1. Naïve Bayes structure.
2. Related Work

A classifier function takes each instance of a dataset and maps it
to a distinct class by prediction. In the intrusion detection case, a
binary classifier assigns the network events to either a normal
event class or a malicious event class, whereas a multiclass classi-
fier further assigns the malicious event class to DoS, probe, U2R or
R2L classes.

Similar to many other data mining techniques, building the
optimum classifiers requires two important tasks: the selection
of the input feature (attribute) from a potentially large set of pos-
sible features in a given dataset and the selection of the model
(optimization) based on the selected features (Hofmann & Sick,
2003). Selecting the right features is challenging, but it must be
performed to reduce the number of features for the sake of efficient
processing speed and to remove the irrelevant, redundant and
noisy data for the sake of predictive accuracy (Huan & Lei, 2005).
A multiclass classifier G needs to map the feature space with A fea-
tures into C classes on a dataset D, which consists of
{E1, E2, . . ., Ei, . . .,Et} instances.

2.1. Bayesian network classifiers

The Bayesian network is one of the most common classifiers for
statistical data mining methods. The Bayesian network is based on
a directed acyclic graph, where nodes represent attributes, and arcs
represent attribute dependencies. In this method, the conditional
probabilities for each node, which are based on its parents’ attri-
butes, quantify the attribute dependencies. A features, which con-
sist of attributes {A1,A2, . . .,Ai, . . .,An}, are represented as nodes in a
Bayesian network, and (a1, a2, . . ., ai, . . ., an) are the attribute values
of an instance Ei. The class variable C is represented as the top node
in a Bayesian network, and c represents the value that C takes for
instance E. The Bayesian network classifier can be defined as

cðEÞ ¼ arg max
c2C

PðcÞPða1; a2; . . . ; anjcÞ: ð1Þ

Naïve Bayes classifiers. The simplest form of a Bayesian network clas-
sifier is the Naïve Bayes (NB) classifier, in which all of the attributes
are naively assumed to be independent given the class shown in
Fig. 1 and defined in (3).

PðEjcÞ ¼ Pða1; a2; . . . ; anjcÞ ¼
Yn

i¼1

PðaijcÞ ð2Þ

Although the conditional independence assumption leads to biased
posterior probabilities, a Naïve Bayes classifier is easy to construct
because of the computational simplicity of reaching P(C) and
P(ai|c), and its accuracy performance is comparable with that of
classification trees and neural networks (Langley, Iba, & Thompson,
1992).

cðEÞ ¼ arg max
c2C

PðcÞ
Yn

i¼1

PðaijCÞ: ð3Þ

The Naïve Bayes classification model is one of the most popular
models because of its simplicity and computation efficiency, both
of which are inherited from its conditional independence assump-
tion property, as well as its good performance on datasets for which
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this property is fairly accurate. However, the model does not per-
form well if this assumption property is not satisfied, as observed
in datasets (Yaguang, Songnian, & Yafeng, 2011) that have complex
attribute dependencies, such as the KDD’99 intrusion detection
dataset. The findings also indicate that the Naïve Bayes model is
not as accurate for large datasets (Kohavi, 1996).

One of the leading examples of the application of the Bayesian
method in the intrusion detection domain can be found in research
based on an anomaly detection system called Audit Data Analysis
and Mining (ADAM). ADAM relies on pseudo-Bayes estimators to
estimate the prior and posterior probabilities of new attacks and
then uses these probabilities to construct a Naïve Bayes classifier
for classifying normal and attack events without prior knowledge
about new attacks (Barbara et al., 2001).

In the last two decades, many studies have focused on relaxing
the conditional independence assumption of Naïve Bayes models.
The intrusion detection model introduced in this study utilizes
structure extension and feature selection approaches. The follow-
ing section introduces these two approaches and briefly explains
other leading approaches, such as attribute weighting, local learn-
ing and data expansion.

2.1.1. Structure extension
In this approach, the Naïve Bayes structure is extended by using

directed arcs to explicitly represent attribute dependencies as a
Bayesian network model. Because learning the optimal structure
of the Bayesian network model is an NP-hard problem (Chickering,
Heckerman, & Meek, 2004), some restrictions or heuristics must be
applied to make the approach practical, such as those applied in
the tree-augmented Naïve Bayes (TAN) (Friedman, Geiger, &
Goldszmidt, 1997), averaged one-dependence estimators (AODE)
(Webb, Boughton, & Wang, 2005), Weightily AODE (Jiang, 2006)
and HNB (Jiang et al., 2009) models.

The TAN learning algorithm is an extension of Naïve Bayes in
which an attribute node might have at most one additional parent
node other than the class node, as shown in Fig. 2. The additional
arc represents the interaction between the attribute nodes. This
model is based on conditional mutual information, defined by
Friedman et al. (1997) as

IPðX; Y jZÞ ¼
X

x;y;z

Pðx; y; zÞ log
Pðx; yjzÞ

PðxjzÞPðyjzÞ ð4Þ

where x, y and z are the values of variables X, Y and Z, respectively.
Ip(Ai;Aj|C) is computed for each attribute pair and represents the
weight of the arc’s connection to attribute nodes Ai and Aj on the
Bayesian network. With these values, the maximum weighted span-
ning tree is constructed (Jiang et al., 2009).

In the AODE learning algorithm, all of the predictions of one
dependence estimator are aggregated, where each attribute has
TAN Structure

C
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Fig. 2. TAN structure.
one correlated attribute (Webb et al., 2005). This algorithm utilizes
the bagging method (Breiman, 1996) to reduce the variance of the
predictions. The Jiang study introduced the Weightily AODE
(WAODE) algorithm by assigning different weights to these one-
dependence classifiers (Jiang & Zhang, 2006).
2.1.2. Feature selection
This approach removes redundant or irrelevant features from

the dataset to prevent decreases in classification accuracy and
unnecessary increases in computational costs (Blum & Langley
1997). There are three major feature selection approaches: (1)
embedded, (2) wrapper and (3) filter methods. Embedded methods
are embedded in specific mining methods, such as random forests,
in which the importance of each feature is estimated through out-
of-bag data (Breiman, 2001). Wrapper methods use the feedback
received from a specific classifier to evaluate the quality of the fea-
ture subset. Selective Bayesian classifiers (SBC) (Langley, 1994) and
evolutional Naïve Bayes (ENB) (Jiang, Zhang, Cai, & Su, 2005) are
two wrapper methods that use the classification accuracy of the
Naïve Bayes method to evaluate alternative feature subsets during
their search through the entire feature space. Finally, filter meth-
ods rely on the general characteristics of the training data. Filter
methods are used to pre-select the feature subset independent of
any classifier method. Although wrapper models tend to be more
accurate than filter methods, filter methods are computationally
less expensive and do not rely on the performance of a specific
classifier.
2.1.2.1. Filter methods. Because this classifier-independent feature
selection method only relies on the statistical characteristics of
the training data, its lower computational cost makes it essential
for large datasets with large feature spaces, such as the KDD’99
intrusion detection dataset. Although there are numerous filter
methods, this study examines three major methods: (1) correla-
tion-based feature selection, (2) consistency-based filter and (3)
INTERACT.

The correlation-based feature selection (CFS) method (Hall,
1999) ranks and selects the feature sets with biases towards sub-
sets containing features that are highly correlated with the class
and uncorrelated with each other. The method relies on a correla-
tion-based heuristic evaluation function to ignore the features that
are irrelevant because of their low correlation with the class. Addi-
tionally, redundant features are screened out because of their high
correlation with the remaining features. A feature is selected based
on the extent to which it predicts classes in the areas of the in-
stance space that are not already predicted by other features.

The consistency based filter (CONS) method (Dash & Liu, 2003;
Huan & Setiono, 1997) uses an inconsistency criterion that speci-
fies the extent to which the dimensionally reduced data can be ac-
cepted. The algorithm generates a random subset in each round. If
the random subset contains fewer features than the current best
subset, the inconsistency criterion of the data with the random
subset of features is compared with that of the data with the cur-
rent best subset. If the new subset is more consistent than the cur-
rent best subset, the latter is replaced by the new set (Hall, 1999).

INTERACT (INT) is a filter algorithm (Zhao & Liu, 2007) that
searches interacting features in two steps. In the first step, the fea-
tures are ranked in descending order by their symmetrical uncer-
tainty (SU) values. SU is defined as the ratio between the
information gain and the entropy of two features and is used as
a correlation measure to evaluate the relevance of individual fea-
tures. In the second step, a backward elimination process is applied
to features with low consistency contribution, which indicates the
extent to which the consistency will be affected by the elimination
of a feature.
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2.1.3. Other approaches
Although our model does not use the following approaches, we

briefly introduce these methods to be consistent and comprehen-
sive in our efforts to address the effects of relaxing the conditional
independence assumption of Naïve Bayes. Some of the methods
based on these approaches are also compared (in terms of perfor-
mance) with our model in this study.

In the attribute weighting approach, each attribute’s weight is
determined according to its contribution to the classification. The
weighted Naïve Bayes (WNB) model uses this approach and is de-
fined as

cðEÞ ¼ arg max
c2C

PðcÞ
Yn

i¼1

PðaijCÞwi ; ð5Þ

where wi is the weight of attribute Ai. In this approach, the issue of
how the weights are learned is significant and is an important re-
search area (Deng, Wang, & Wang, 2007; Hall, 1999; Jiang & Zhang,
2006; Jiang et al., 2009).

In the local learning approach, the Naïve Bayes model is built on
a subset of the training dataset. Local learning utilizes the idea that
the negative impact of the conditional independence assumption
in a subset is smaller than that in the entire dataset. Local learning
is more accurate than other methods on larger datasets and allows
new models that are embedded with each other to be created.
NBTree (Kohavi, 1996) and DTNB (Hall, 2008) models combine
the Naïve Bayes and decision tables, whereas the locally weighted
Naïve Bayes (LWNB) (Frank, Hall, & Pfahringer, 2003), lazy Bayes-
ian rule (LBR) and selective neighborhood Naïve Bayes (SNNB)
(Xie, Hsu, Zongtian, & Lee, 2002) models are leading Naïve Bayes
models that are embedded with the k-nearest neighbors model.

The data expansion approach tackles the high variance problem
in learning due to limited training data by adding more instances
with the same pattern if the underlying distribution of the dataset
is known. Instance-cloned Naïve Bayes (ICNB) (Jiang, Wang, Zhang,
Cai, & Huang, 2008) expands the training dataset by cloning certain
training instances based on similarity.

2.2. Application of structurally extended Naïve Bayes classifiers to
intrusion detection problem

As shown in Table 1, some of the extended Naïve Bayes meth-
ods, including the ones that were explained in the earlier section,
have already been applied in the intrusion detection domain. For
example, the TAN method was applied using the KDD’99 dataset
(Benferhat, Boudjelida, & Drias, 2008), and the AODE method was
recently applied to the intrusion detection problem (Baig, Shaheen,
& AbdelAal, 2011). In the AODE method, a feature subset is selected
via an algorithm called the Group Method for Data Handling
(GMDH), and a small subset of the KDD’99 dataset is used. The
semi-Naïve Bayes method, a hybrid of Naïve Bayes and decision
Table 1
Research on Naïve Bayes and its applications to the intrusion detection problem.

Naïve Bayes and variations based
on structure extension

Original
model

Applied to intrusion
detection problem

Naïve Bayes Langley et al.
(1992)

Barbara et al. (2001)

Tree-augmented Naïve Bayes
(TAN)

Friedman
et al. (1997)

Benferhat et al. (2008)

Averaged one-dependence
estimators (AODE)

Webb et al.
(2005)

Baig et al. (2011)

Semi-Naïve Bayesian (DTNB) Hall and
Frank (2008)

Panda and Patra (2009)

Hidden Naïve Bayes (HNB) Jiang et al.
(2009)
trees (DTNB), is proposed for intrusion detection problems in the
Panda study (Panda & Patra, 2009).

Although all of these studies evaluated the results with different
evaluation methods, the results of both studies were promising,
and the aforementioned methods performed better than the tradi-
tional Naïve Bayes method. To the best of our knowledge, the re-
cently introduced HNB method has not been applied to the
intrusion detection problem.

2.3. Hidden Naïve Bayes classifiers

An extended version of the Naïve Bayesian classifier is the hid-
den Naïve Bayes (HNB) classifier, which relaxes the conditional
independence assumption imposed in the Naïve Bayesian model.
The HNB model relies on the creation of another layer that repre-
sents a hidden parent of each attribute; this hidden parent com-
bines the influences from all of the other attributes (Jiang et al.,
2009), as shown in Fig. 3.

In the HNB model, each attribute Ai has a hidden parent Ahpi,
where i = 1,2, . . .,n represents the weighted influences from all of
the other attributes, as shown with the dashed circles. The joint
distribution is defined as

PðA1; . . . ;AnjCÞ ¼ PðCÞ
Yn

i¼1

PðAijAhpi
;CÞ; ð6Þ

where

PðAijAhpi
;CÞ ¼ PðCÞ

Xn

j¼1;j–1

Wif � PðAijAj;CÞ: ð7Þ

The HNB classifier can be defined as

cðEÞ ¼ arg max
c2C

PðcÞ
Yn

i¼1

Pðaijahpi
; cÞ: ð8Þ

where

Pðaijahpi
; cÞ ¼ PðcÞ

Xn

j¼1;j–1

Wij � Pðaijaj; cÞ: ð9Þ

One approach for determining the weights Wij, where i,j = 1,2, . . ., n
and i is not equal to j, uses the conditional mutual information be-
tween two attributes Ai and Aj as the weight of P(Ai|Aj, C), as shown
in (10) (Jiang et al., 2009).
AnA1 A2 A3
……

Ahp1 Ahp2 Ahp3 Ahpn……

Fig. 3. HNB structure.
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Wij ¼
IpðAi; AjjCÞ
Xn

j¼1;j–1

IpðAi; AjjCÞ
; ð10Þ

where Ip(Ai,Aj|C) is the conditional mutual information defined in
(11).

IpðAi; AjjCÞ ¼
X

ai ;ai ;c

Pðai; aj; cÞlog
Pðai; ajjcÞ

PðaijcÞPðajjcÞ
: ð11Þ

The HNB method is based on the idea of creating a hidden parent for
each attribute; the influences from all of the other attributes can be
easily combined through conditional mutual information by esti-
mating the parameters from the training data. Although including
the influence of complex attributes dependencies in large datasets
is a promising idea, no previous studies have applied this model
to the intrusion detection domain.

3. Research method

Previous scholars have applied the HNB classifier model to sev-
eral datasets and have found promising results compared with the
aforementioned Naïve Bayes, SBC, NBTree, TAN and AODE methods
(Jiang et al., 2009). Based on the HNB classifier model’s good per-
formance from earlier results, we applied the model to the intru-
sion detection problem. We compared the results obtained with
the HNB classifier with those obtained with the traditional Naïve
Bayes classifier and other extended Naïve Bayes models, including
TAN, AODE, WAODE, NBTree, DTNB and the KDD’99 winner, which
were used as a common benchmark in similar studies.

Although the HNB classifier model is based on discrete features,
the KDD’99 dataset mainly consists of continuous features, which
need to be first converted to discrete features. In our experiments,
we used two leading discretization methods: entropy minimiza-
tion discretization and proportional k-interval discretization. We
included these two methods in our study because of their good
performance in the Naïve Bayes classifier method on the KDD’99
dataset (Bolon-Canedo, Sanchez-Maroo, & Alonso-Betanzos, 2009).

Finally, our research framework, as illustrated in Fig. 4, includes
a feature selection model based on the three filter methods: corre-
lation-based (CFS), consistency-based (CONS) and INTERACT fea-
ture selection methods. These approaches are leading filter-based
Research
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feature selection methods that provided good results in the Naïve
Bayes classifier method on the KDD’99 dataset (Bolon-Canedo
et al., 2009). The Bolon-Canedo study obtained impressive Naïve
Bayes classifier results by employing the combination of various
discretization and filter configurations. We incorporated and used
the best of these combination configurations in our study.
3.1. KDD Cup 1999 dataset (KDD-Cup., 1999)

Currently, there are only few public datasets like KDD’99 and
the majority of the experiments in the intrusion detection domain
performed on these datasets (Tsai, Hsu, Lin, & Lin, 2009). Since our
model is based on supervised learning methods, KDD’99 is the only
available dataset which provides labels for both training and test
sets.

The study sample was created based on the 1998 DARPA intru-
sion detection evaluation offline dataset developed by the MIT Lin-
coln laboratory. Although there are some reported limitations
(Tavallaee, Bagheri, Lu, & Ghorbani, 2009), the KDD’99 dataset
has interesting properties and is believed to present a classic chal-
lenge for the intrusion detection problem. We used this dataset in
our experiments because it is the most comprehensive dataset that
is still widely used to compare, contrast and benchmarking the
performance of intrusion detection models.

The dataset contains training data that include seven weeks of
network traffic in the form of TCP dump data consisting of approx-
imately 5 million connection records, each of which is approxi-
mately 100 bytes. The test data included two weeks of traffic,
with approximately 2 million connection records. We used the la-
beled 10% KDD’99 dataset, which was actually used as the training
dataset in the competition.

The training data contain 24 attack types, and the test data con-
tain 38 types, all of which are mapped to four basic attack classes:
probe, DoS, U2R and R2L, as shown in Table 2.

Each connection record contains 7 discrete and 34 continuous
features for a total of 41 features. Each record captures various
connection features, such as service type, protocol type and the
number of failed login attempts. Because two of these features
are constant or almost constant, they do not contribute to the clas-
sification. As shown in Table 3, the distributions of the classes are
not necessarily the same in the training and test datasets. Only
 Model
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Table 2
Mapping of the attack types on the KDD’99 dataset to the attack classes on the classifier.

Class Attacks in the training data Additional attacks in the testing data

Probe Ipsweep, Nmap, Portsweep, Satan Mscan, Saint
DOS Back, Land, Neptune, Pod, Smurf, Teardrop Apache2, Mailbomb, Processtable, Udpstorm
U2R Buffer_overflow, Loadmodule, Perl, Rootkit Httptunnel, Ps, Worm, Xterm
R2L Ftp_write, Guess_passwd, Imap, Multihop, Phf, Spy, Warezclient, Warezmaster Named, Sendmail, Snmpgetattack, Snmpguess, Sqlattack, Xlock, Xsnoop

Table 3
Characteristics of the KDD’99 dataset.

Class 10% KDD training data
distributions

10% KDD test data
distributions

Normal 19.69% 19.48%
Probe 0.83% 1.34%
DoS 79.24% 73.90%
U2R 0.01% 0.07%
R2L 0.23% 5.20%

Table 4
Features selected with the given discretization algorithms.

EMD PKID

CFS dst_bytes, service,
logged_in, dst_bytes,
count, logged_in,
srv_diff_host_rate, srv_diff_host_rate,
dst_host_srv_diff_host_rate dst_host_srv_diff_host_rate

CONS duration, duration,
service, service,
src_bytes, src_bytes,
count, dst_host_count,
dst_host_srv_count, dst_host_same_srv_rate,
dst_host_same_srv_rate, dst_host_srv_serror_rate
dst_host_diff_srv_rate

INTERACT service, service,
src_bytes, src_bytes,
dst_bytes, dst_bytes,
num_access_files, logged_in,
count, count,
srv_diff_host_rate, srv_diff_host_rate,
dst_host_srv_diff_host_rate dst_host_count
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approximately 20% of the records are categorized as normal
connections.

In addition to the possible interdependence between some fea-
tures, the high data dimensionality of the dataset due to its large
feature set poses a significant challenge to any data mining model.
Feature selection and dimension reduction are common data min-
ing approaches in large datasets. The dataset’s continuous features
also result in difficulties for many data mining models, including
HNB and other Naïve Bayes models. Discretization is commonly
used to convert continuous features into their discrete counter-
parts. Furthermore, discretization improves the performance of
classifier models on large datasets (Liu, Hussain, Tan, & Dash,
2002), including the KDD’99 dataset (Bolon-Canedo et al., 2009).

3.2. Discretization methods

Discretization is the process of converting the continuous do-
main of a feature into a nominal domain with a finite number of
values. Front-end discretization might be necessary for some clas-
sifiers if their algorithms cannot handle continuous features by de-
sign. Additionally, earlier studies showed that discretization
improves the accuracy of classifiers, including Naïve Bayes classifi-
ers, especially in larger datasets (Liu et al., 2002). Numerous stud-
ies have examined discretization methods in the last two decades
to determine how continuous values should be grouped, how cut
points should be positioned on the continuous scale and how many
intervals should be used to generate datasets (Dougherty, Kohavi,
& Sahami, 1995; Fayyad & Irani, 1993; Liu et al., 2002; Yang,
2002). In this study, we explain and use two leading discretization
methods: entropy minimization discretization and proportional k-
interval discretization. These two methods are selected because of
their performance on large datasets, particularly the KDD’99 data-
set (Bolon-Canedo et al., 2009; Bolón-Canedo, Sánchez-Maroño, &
Alonso-Betanzos, 2011).

3.2.1. Entropy Minimization Discretization (EMD)
Relies on the minimum entropy heuristic required to discretize

continuous features. The method selects a cut point for discretiza-
tion based on the class entropy of the candidate partitions; this cut
point is then recursively applied to the created intervals until the
stopping condition, which is based on the minimum description
length (MDL) method, is reached (Fayyad & Irani, 1993).

3.2.2. Proportional k-Interval discretization (PKID)
Tunes the interval size and interval number proportional to the

number of training instances to find an appropriate trade-off be-
tween the granularity of the intervals and the expected accuracy
of the probability estimation. The trade-off can also be observed
as a trade-off between discretization bias and variance. Equal
weights are given initially to bias and variance by creating square
root of n intervals with square root of n instances in each interval,
where n is the number of instances for a continuous feature. As n
increases, both the number and size of the intervals increase; thus,
discretization can decrease both the bias and variance of the prob-
ability estimation (Yang & Webb, 2001).
3.3. Experiments and results

Using the framework given in Fig. 4, we obtained the results for
the KDD’99 multiclass classification with four attack problems by
using simulation experiments with configurations consisting of a
combination of 2 discretization methods, 3 feature selection meth-
ods and 7 classifiers: NB, TAN, AODE, WAODE, DTNB, NBTree, and
HNB. In total, 42 model combinations were tested using the Weka
tool (Witten, Frank, & Hall, 2011). A two-tailed t-test with a 95%
confidence level is used to compare the models in our study.

Consistent with our framework, we applied supervised Discret-
ize method for EMD discretization and unsupervised PKI discretize
method for PKI discretization to all continuous attributes of the
10% KDD’99 dataset while using the Weka Tool with the default
values. The default value is used for the equal frequency in PKI dis-
cretization, where the number of bins is equal to the square root of
the number of values.

As shown in Table 4, we used the combination of features and
discretization based on the Bolon-Canedo study (Bolon-Canedo
et al., 2009).

After the discretization and feature selection steps, we build our
classifier models for NB, TAN, AODE, WAODE, DTNB, NBTree, and
HNB by using the preprocessed combinations of our dataset. We
applied a 10-fold cross-validation to accurately reflect the given
training data used to build the classifier models. The training data



Table 6
Validation results for the overall classifier performance ranked by accuracy.

Model Accuracy Error rate Cost%

WAODE_EMD_CONS 0.9996 0.0004 0.0009
NBtree_EMD_CONS 0.9994 0.0006 0.0012
AODE_EMD_CONS 0.9994 0.0006 0.0013
HNB_EMD_CONS 0.9993 0.0007 0.0013
TAN_EMD_CONS 0.9993 0.0007 0.0014
NBtree_EMD_INT 0.9988 0.0012 0.0022
WAODE_EMD_INT 0.9988 0.0012 0.0022
TAN_EMD_INT 0.9988 0.0012 0.0022
HNB_EMD_INT 0.9987 0.0013 0.0023
AODE_EMD_INT 0.9986 0.0014 0.0027
WAODE_PKI_INT 0.9986 0.0014 0.0024
TAN_PKI_INT 0.9986 0.0014 0.0028
HNB_PKI_INT 0.9983 0.0017 0.0030

Table 7
Test results for the overall classifier performance ranked by accuracy.

Model Accuracy Error rate Cost%

HNB_PKI_INT 0.9372 0.0628 0.2224
KDD’99 Winner 0.9271 0.0729 0.2331
AODE_EMD_INT 0.9269 0.0731 0.2336
NB_EMD_INT 0.9262 0.0738 0.2254
TAN_PKI_CONS 0.9259 0.0741 0.2393
AODE_PKI_CONS 0.9259 0.0741 0.2429
HNB_EMD_CONS 0.9254 0.0746 0.2393
WAODE_EMD_INT 0.9242 0.0758 0.2389
TAN_EMD_INT 0.9241 0.0759 0.2390
DTNB_PKI_CONS 0.9239 0.0761 0.2410
NB_PKI_INT 0.9230 0.0770 0.2443
WAODE_EMD_CONS 0.9230 0.0770 0.2454
WAODE_PKI_INT 0.9227 0.0773 0.2477

Table 5
KDD’99 contest cost matrix.

Normal Probe DoS U2R R2L

Normal 0 1 2 2 2
Probe 1 0 2 2 2
DoS 2 1 0 2 2
U2R 3 2 2 0 2
R2L 4 2 2 2 0

Table 8
Test results for the denial of service (DoS) Classifier performance ranked by accuracy.

Model Accuracy Error rate

HNB_PKI_INT 0.9960 0.0040
TAN_PKI_CONS 0.9757 0.0243
DTNB_PKI_CONS 0.9751 0.0249
AODE_PKI_CONS 0.9750 0.0250
HNB_EMD_CONS 0.9744 0.0256
DTNB_EMD_CFS 0.9735 0.0265
TAN_EMD_INT 0.9733 0.0267
AODE_EMD_INT 0.9733 0.0267
WAODE_EMD_INT 0.9732 0.0268
HNB_EMD_CFS 0.9727 0.0273
WAODE_EMD_CFS 0.9725 0.0275
AODE_EMD_CFS 0.9725 0.0275
TAN_PKI_INT 0.9724 0.0276
NBtree_EMD_CFS 0.9724 0.0276
HNB_PKI_CFS 0.9723 0.0277
WAODE_PKI_INT 0.9722 0.0278
TAN_EMD_CFS 0.9721 0.0279
AODE_PKI_INT 0.9717 0.0283
DTNB_PKI_INT 0.9716 0.0284
NB_EMD_INT 0.9713 0.0287
KDD’99 Winner 0.9712 0.0288
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are randomly divided into 10 subsets of equal size. In each itera-
tion, one of the subsets is used for testing, and the remaining sets
are used to train the classifier. In 10 iterations, each subset is used
for testing at least once. The cross-validation estimate of the accu-
racy is the mean of the estimates collected from each iteration.
Ten-fold cross-validation is extensively used and is considered
accurate in similar studies with large datasets. The validation re-
sults based solely on the training data are provided in Table 6.
We then applied the classifier models built from the training data
to the test data. The results based on the test data are provided in
Table 7.

We used accuracy and the error rate as performance measures
in our multiclass classifier study. Accuracy is the fraction of cor-
rectly classified instances, and the error rate is the fraction of mis-
classified instances in a dataset. These two measures effectively
summarize the overall performance by considering all of the clas-
ses and generalizing the classifier performance in terms of the con-
vergence behaviors (Japkowicz & Shah, 2011). With the interest of
the space, only the results of the top-performing models in our
experiments are provided on our article.

We also used cost-based evaluation, which was the primary
goal and evaluation method in the KDD’99 contest (Elkan, 2000).
Cost indicates the average cost of the misclassified connection
and is calculated with the Eq. (12) where Mij is the number of sam-
ples in class i that are misclassified as class j, Cij is the correspond-
ing cost in the cost matrix provided in Table 5 and N is the total
number of instances. The cost comparisons of the evaluated mod-
els are provided in Table 7.

Cost ¼ 1
N

RMij � Cij ð12Þ

The winner of the KDD’99 contest achieved an accuracy rate of
0.9271, an error rate of 0.0729, and an average cost of 0.2331 on
the test dataset (Elkan, 2000; Sabhnani & Serpen, 2003). According
to the confusion matrix of the winner entry given in the Elkan study
(Elkan, 2000), the winner predicted the DoS class with an accuracy
rate of 0.9712 and an error rate of 0.0288.

Our validation results indicate that the models based on entro-
py minimization discretization and consistency-based feature
selection methods perform better, while the results of the HNB
model show that HNB is one of the leading models in terms of per-
formance, as shown in Table 6. The best validation result is ob-
tained with the WAODE model. Because the class distributions
on the KDD’99 dataset differ in the training and test data and the
validation results only rely on the training data, these findings will
not be sufficient for measuring the performance of the classifica-
tion models.

The test results given in Table 7 provide a better indication of
the class prediction performance because the test data are inde-
pendent from the training data. Based on these test results, the
best model is an HNB model (specifically, the HNB model with pro-
portional k-Interval discretization and INTERACT feature selection
methods in all three of the performance categories). The result
for this model is also better than that for the KDD’99 winner, which
is commonly accepted as a benchmark in similar studies.

These results are consistent with the earlier study on the HNB,
where the HNB exhibited a remarkable performance in comparison
with traditional and other extended Naïve Bayes methods using
other datasets (Jiang et al., 2009).

According to the test results shown in Table 8, the model that
provides a better overall performance is also better at detecting de-
nial-of-services (DoS) attacks than the traditional and extended
Naïve Bayes methods and the KDD’99 winner.

We also compared the best results obtained in our experiments
with the comparable results from earlier studies on intrusion
detection, as shown in Table 9. We used the results obtained using



Table 9
Comparison of the overall classifier performance sorted by accuracy.

Model Accuracy Error rate

HNB_PKI_INT 0.9372 0.0628
JRip (Nguyen & Choi, 2008) 0.9230 0.0770
NBTree (Nguyen & Choi, 2008) 0.9228 0.0772
LBk (Nguyen & Choi, 2008) 0.9222 0.0778
SVM (Ambwani 2003) 0.9218 0.0803
J48 (Nguyen & Choi, 2008) 0.9206 0.0794
MLP (Nguyen & Choi, 2008) 0.9203 0.0797
Decision Table (Nguyen & Choi, 2008) 0.9166 0.0834
SMO (Nguyen & Choi, 2008) 0.9165 0.0835
BayesNet (Nguyen & Choi, 2008) 0.9062 0.0938
OneR (Nguyen & Choi, 2008) 0.8931 0.1069
Naïve Bayes (Nguyen & Choi, 2008) 0.7832 0.2168
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the state-of-the-art support vector machine (SVM) from the
(Ambwani, 2003) and the results obtained using various leading
methods, such as J48 (C4.5 decision tree version 8), JRip (Ripper),
multilayer perceptron (MLP), sequential minimal optimization
(SMO) and the lazy classifier (LBk) from the (Nguyen & Choi,
2008) study. Both of these studies used the KDD’99 dataset labeled
with four attack categories. Based on the results of these two stud-
ies, our best model, the HNB model with proportional k-Interval
discretization and INTERACT feature selection methods, has better
predictive accuracy.

Consistent with the findings of the earlier Bolon-Canedo study
(Bolon-Canedo et al., 2009), our results based on the experiments
using all of the instances of the 10% KDD’99 dataset and the feature
set consists of as few as 7 out of 41 features, as shown in Table 4.
Our model provides a competitive advantage in that it provides
better predictive performance while significantly reducing the fea-
ture set used in the intrusion detection dataset.
4. Conclusion

In this paper, we explained the need to apply data mining meth-
ods to network events to classify network attack events. We sum-
marized the results of earlier studies and explored the earlier
models on the performance improvement of the Naïve Bayes model
in data mining and introduced the HNB model as a solution to the
intrusion detection problem. We augmented the Naïve Bayes and
structurally extended Naïve Bayes methods with the leading dis-
cretization and feature selection methods to increase the accuracy
and decrease the resource requirements of intrusion detection prob-
lem. We compared the performance of the Naïve Bayes and leading
extended Naïve Bayes approaches with the new HNB approach as an
intrusion detection system. The results of our experimental study,
which uses the KDD’99 dataset, show that the Hidden Naïve Bayes
multiclass classification model augmented with various discretiza-
tion and feature selection methods exhibits better overall results in
terms of detection accuracy, error rate and misclassification cost
than the traditional Naïve Bayes model, the leading extended Naïve
Bayes models and the KDD’99 winner. The results also indicate that
our model significantly improves the detection of denial-of-service
attacks compared with the other models.

Considering its simplicity and its advantage over the Naïve
Bayes model’s conditional independence assumption, hidden Naïve
Bayes is a promising model for datasets with dependent attributes,
such as the KDD’99 intrusion detection dataset.
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