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We propose a way of using DEA cross-efficiency evaluation in portfolio selection. While cross efficiency is
an approach developed for peer evaluation, we improve its use in portfolio selection. In addition to (aver-
age) cross-efficiency scores, we suggest to examine the variations of cross-efficiencies, and to incorporate
two statistics of cross-efficiencies into the mean-variance formulation of portfolio selection. Two benefits
are attained by our proposed approach. One is selection of portfolios well-diversified in terms of their
performance on multiple evaluation criteria, and the other is alleviation of the so-called ‘‘ganging
together’’ phenomenon of DEA cross-efficiency evaluation in portfolio selection. We apply the proposed
approach to stock portfolio selection in the Korean stock market, and demonstrate that the proposed
approach can be a promising tool for stock portfolio selection by showing that the selected portfolio
yields higher risk-adjusted returns than other benchmark portfolios for a 9-year sample period from
2002 to 2011.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Since its inception in Charnes, Cooper, and Rhodes (1978), data
envelopment analysis (DEA) has been widely utilized in many
application areas such education, banking, public services, and so
on. In particular, multi-criteria decision-making (MCDM) is one
of active fields where DEA provides a useful basis for a variety of
solution approaches (Stewart, 1996). Basically, DMUs (decision
making units) in DEA correspond to multiple alternatives in
MCDM, input and output factors in DEA correspond to multiple
performance measures in MCDM, and the notion of efficiency in
DEA corresponds to that of convex efficiency of MCDM. When
DEA is used as a MCDM technique, it can be called multi-factor per-
formance measurement model. Project selection, supplier selec-
tion, and ABC inventory classification are some popular
application areas where DEA is used as a multi-factor performance
measurement model. Especially, portfolio selection can be consid-
ered as MCDM in the sense that multiple performance measures
are typically involved in comparing alternatives (e.g., stocks, pro-
jects, products) for inclusion in a portfolio, and thus DEA can be
a viable approach to it.
One key issue in MCDM is how to aggregate multiple perfor-
mance measures into a single performance measure in a proper
manner by choosing a set of reasonable weights on multiple mea-
sures. DEA provides a way of systematic choice of weights on mul-
tiple measures where optimal weights are determined by solving
mathematical (typically linear) programs. A DEA run determines
an efficiency score for a DMU, and DEA can rank DMUs according
to their efficiency scores. A portfolio of DMUs can be selected based
on this ranking.

However, it is well known that one of shortcomings of DEA is its
too much flexibility in choosing optimal weights on input and out-
put factors. A DMU can attain a full efficiency by choosing extre-
mely high weights on some factors and extremely low weights
on other factors. Such DMUs are referred to as mavericks in Green
and Doyle (1994). This drawback may cause serious problems
especially when DEA is used under the MCDM context since it
may prevent a reasonably acceptable choice of weights for aggre-
gating multiple criteria. This problem, in turn, leads to an unrea-
sonable (unacceptable) ranking of DMUs. Several approaches
have been proposed to address this problem. Cone-ratio model
(Charnes, Cooper, Huang, & Sun, 1990) and assurance region model
(Thompson, Langemeier, Lee, Lee, & Thrall, 1990) impose restric-
tions on weights, and super-efficiency model (Andersen &
Petersen, 1993) gives a further discrimination to efficient DMUs
by performing a kind of sensitivity analysis.

Cross-efficiency evaluation, on the other hand, uses a peer-eval-
uation mode as opposed to the self-evaluation mode of
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conventional DEA models. Under cross-efficiency evaluation, mav-
ericks have a lower chance of attaining high appraisal. Due to this
desirable property, the use of cross-efficiency evaluation has been
prevalent in many DEA application areas such as project selection
(Oral, Kettani, & Lang, 1991), preference voting (Green, Doyle, &
Cook, 1996), supplier selection (Braglia & Petroni, 2000), ABC
inventory classification (Park, Bae, & Lim, 2011), and others.
Although DEA cross-efficiency evaluation has proven effective in
ranking DMUs, there still exist some problems that limit its use.
One such a well-known problem is the non-uniqueness of cross-
efficiencies. Several approaches have been developed to alleviate
this problem by introducing secondary objectives (see, e.g., Doyle
& Green, 1994; Liang, Wu, Cook, & Zhu, 2008; Lim, 2012).

A traditional use of DEA cross-efficiency evaluation in portfolio
selection is to rank DMUs in a decreasing order of cross-efficiency
scores and choose the top k DMUs where k is the desired portfolio
size. While this simple use of cross-efficiency in portfolio selection
has been reported to show significant advantages over approaches
based on the standard DEA (see the cited references above), we no-
tice its two problems, which have not been studied well and thus
are worthy of a careful investigation.

The first one is the lack of portfolio diversification3 and the second
one is the ‘‘ganging-together’’ phenomenon (Tofallis, 1996) of cross-
efficiency, which will be described in detail in Section 2. We should
point out that these are not a problem of using cross-efficiency in
general; rather a problem of its specific use in portfolio selection.

We attempt to address these issues by developing a mean-
variance (MV) framework of portfolio selection based on DEA
cross-efficiency evaluation. The basic idea is that a DMU’s simple
efficiency score and the variance of its cross-efficiencies are used
to represent the DMU’s return and risk characteristics. Subse-
quently, Markowitz’ mean-variance formulation is used to deter-
mine the DMU’s inclusion in a portfolio under consideration.

There have been several similar attempts to use information on
the variability of (cross) efficiencies in addition to averages. While
discussing relationships between MCDM and DEA, Stewart (1996)
proposes a stochastic approach in which a probability distribution
on efficiencies can be derived for each DMU, as a basis for compar-
ison, assuming a certain probability distribution on input-output
weights. Salo and Punkka (2011) develop comparative results for
ratio-based efficiency analysis based on DMUs’ relative efficiencies
over sets of feasible weights. They develop ranking intervals and
efficiency bounds, and use them for deriving dominance relations.
While these two papers pay attention to the variability of (cross)
efficiencies of DMUs, they do not consider it under the context of
portfolio selection. Consequently, they do not take into account
the effect of a DMU’s inclusion in a portfolio under consideration
in association with other DMUs already included in the portfolio.
Chen and Zhu (2011) use the bootstrap game cross-efficiency dis-
tributions to gather information regarding efficiency variations and
correlations, and they adopt the MV formulation to obtain a risk-
minimizing resource allocation portfolio. They model input-output
weights (referred to as shadow prices) as random variables and, as
a result, treat the efficiency index for a DMU as a stochastic mea-
sure. Differently from our approach, they use the DEA game
cross-efficiency model and develop a bootstrap algorithm to obtain
efficiency distributions.
3 The term ‘diversification’ in finance is used to refer to reducing specifically the
idiosyncratic risk of portfolios and the degree of diversification is usually measured by
the level of non-idiosyncratic risk. However, note that we use the term in the general
context of portfolio selections based on multiple evaluation criteria (e.g., project
portfolio selection) throughout this paper. We seek to select a portfolio whose
performance is well-diversified in terms of its performance on multiple evaluation
criteria. We add this footnote to avoid any possible misunderstanding of readers with
financial background.
As an illustration of the proposed approach, we report a case
study involving 490–557 firms listed in the Korea Exchange. Using
actual financial data from 2001 to 2009, the proposed approach is
applied, as a means of fundamental analysis, to select stocks for
inclusion in a portfolio. We demonstrate that the proposed ap-
proach can be a promising tool for stock portfolio selection by
showing that the selected portfolio yields higher risk-adjusted re-
turns than those of two stock market indices for a 9-year sample
period from 2002 to 2010. We also show that the selected portfolio
is superior to a portfolio purely based on cross-efficiency scores,
which indicates the effectiveness of the proposed use of cross-effi-
ciency evaluation under the MV framework.

The paper is organized as follows. Section 2 discusses the two
problems arising in the simple use of cross-efficiency evaluation
in portfolio selection. The development of the proposed approach
is described in Section 3, followed by the case study in Section 4.
Section 5 concludes.
2. DEA cross-efficiency evaluation

We assume that there are n DMUs with m inputs and s outputs.
DMU k (k = 1, 2, . . ., n) has a vector of inputs xk ¼ ðx1k; . . . ; xmkÞT

2 Rm
þ and a vector of outputs yk ¼ ðy1k; . . . ; yskÞ

T 2 Rs
þ. Let us present

a basic model of cross-efficiency evaluation under the following
standard input-oriented constant returns to scale (CRS) DEA model
(Charnes et al., 1978) in multiplier form:

max
Xs

r¼1

uryrk

s:t:
Xm

i¼1

v ixij �
Xs

r¼1

uryrj P 0; j ¼ 1; . . . ;n

Xm

i¼1

v ixik ¼ 1

v i;ur P e 8i; r

ð1Þ

where e is a positive non-Archimedean infinitesimal, and vi and ur

are weights on inputs and outputs, respectively, to be determined
by optimizing the model. When the above model is solved, an effi-
ciency score of DMU k and cross-efficiencies of the other DMUs
(evaluated by DMU k) are obtained together. Specifically, a cross-
efficiency of DMU l is given by

ekl ¼
Ps

r¼1u�r yrlPm
i¼1v�i xil

ð2Þ

where ⁄ denotes an optimal solution DMU k has chosen in model
(1). Collecting cross-efficiencies of all DMUs, a matrix of cross-effi-
ciencies is obtained as E = (epq), p, q = 1, . . ., n, where the lth column
e�l is the vector of cross-efficiencies of DMU l. A cross-efficiency score
of DMU l is also obtained by averaging e�l, denoted �el.

Basically, DEA allows each DMU to choose the most favorable
weights on its own, by which the DMU reveals its strong and weak
points (relative to its peers) that it should emphasize and/or deem-
phasize in order to maximize its (relative) efficiency score. The
strong and weak points are manifested in endogenously model-
determined optimal weights with higher (lower) weights on
measures associated with the strong (weak) points. Under the
standard DEA model, each DMU needs not consider other sets of
weights possibly chosen by its competing peers since it is evalu-
ated using only its own weights. While this mechanism is valid
under the context of efficiency evaluation itself, it is not appropri-
ate when we use DEA for portfolio selection under the context of
MCDM where weights on performance measures are determined
exogenously, may not stay the same over time, and can vary
significantly according to changing environment surrounding the



Fig. 1. Portfolio selection (data set 1).
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evaluation context. In this regard, each DMU is exposed to the risk
of change in weights, and this needs to be considered more seri-
ously when we use DEA for portfolio selection. This consideration,
in turn, justifies incorporating a peer evaluation mode into the
standard DEA model, and cross-efficiency evaluation is one of such
endeavors.

Under cross-efficiency evaluation, all-round players (DMUs) are
highly ranked since their performance is at least moderately good
on all measures. They are relatively robust to the risk of change in
weights and the variances of their cross-efficiencies are relatively
small. On the other hand, those DMUs are lowly ranked which
perform well on only a subset of measures. They are vulnerable
to the risk of change in weights in the sense that their evaluation
deteriorates when lower (higher) weights are imposed on the
favorable (unfavorable) subset of measures. This results in large
variances of cross-efficiencies. Mavericks represent an extreme
case and the variances of their cross-efficiencies are very likely to
be significantly large. If a DMU has a lower variance of cross-effi-
ciencies, it is likely to attain a higher cross-efficiency score. Here
we note that the variance of a DMU’s cross-efficiencies indicates
the risk of change in weights involved in performance evaluation
of the DMU.

Due to the reason described above, cross-efficiency evaluation
helps select a portfolio where each selected DMU is relatively ro-
bust to the risk of change in weights. However, we notice two
problems arising in the simple use of cross-efficiency evaluation
in portfolio selection, which are (1) the lack of portfolio diversifica-
tion and (2) the ganging-together phenomenon of cross-efficiency.
We now demonstrate each of the two problems.

Firstly, let us see the problem of the lack of portfolio diversifica-
tion. While DEA cross-efficiency evaluation is effective for prevent-
ing mavericks from being selected in a portfolio, it is likely to
choose only all-round players (DMUs whose performance is at
least moderately good on all measures) and exclude those DMUs
whose performance is good on only a subset of measures. This
leads to selection of a specialized portfolio which comprises similar
DMUs and therefore lacks diversification. We illustrate this phe-
nomenon using an example whose data set is given in Table 1
and plotted in Fig. 1. Since the output data are the same for all
DMUs, the data points can be plotted in the input space. If we
select a portfolio of size 7 (about 30% of the population size) based
on cross-efficiency scores, 7 DMUs (DMUs 18, 14, 20, 16, 15, 10 and
Table 1
Data set 1: efficiency and cross-efficiency scores.

DMU x1 x2 y Efficiency score Cross-efficiency score Rank

1 5 4 1 0.846154 0.750776 11
2 6 5 1 0.6875 0.612769 19
3 4 5 1 0.838462 0.737136 12
4 8 5 1 0.611111 0.529195 22
5 5 6 1 0.685535 0.603653 20
6 8 3 1 0.8 0.65958 17
7 4.4 4.4 1 0.854232 0.759057 9
8 2.6 8 1 0.82 0.637516 18
9 3.4 8 1 0.706897 0.585274 21
10 3.6 4.4 1 0.942907 0.829672 6
11 2 7 1 1 0.756939 10
12 3 7 1 0.803922 0.66701 16
13 3 5.6 1 0.883306 0.771001 7
14 2.6 5 1 1 0.872922 2
15 4 4 1 0.939655 0.834963 5
16 5 3.2 1 0.964912 0.837327 4
17 6 4 1 0.785714 0.684375 15
18 4 3.5 1 1 0.896282 1
19 7 3 1 0.846154 0.714126 13
20 6 2.5 1 1 0.84287 3
21 8 2 1 1 0.767346 8
22 9 2 1 1 0.710605 14
13 in a decreasing order of cross-efficiency scores) are chosen for
inclusion in the portfolio, which are indicated by black circles. As
illustrated in Fig. 1, we can see that the selected DMUs are rela-
tively similar (in the sense that they have relatively similar factor
levels) and clustered around the central position, which makes
the selected portfolio not well-diversified in terms its performance
on the multiple input-output factors and thus vulnerable to the
risk of change in weights on the two inputs.

We now turn to the problem of the ganging together phenom-
enon of cross-efficiency evaluation. As Tofallis (1996) demon-
strated, if two DMUs have similar factor levels, they will employ
similar weights and effectively raise each other’s cross-efficiency
score when these weights are applied to the other DMUs. If none
of the remaining DMUs have similar factor levels, they will be dis-
advantaged because they will be isolated in the cross-efficiency
evaluation. As a result, one or both of the two similar DMUs may
turn out to be the winner simply because they effectively give
‘‘high votes’’ to each other. If a DMU’s factor levels are very differ-
ent from those of the other DMUs, it stands a much lower chance of
winning. This phenomenon is aggravated as the distribution of
DMUs’ locations is skewed. It, again, leads to selection of a special-
ized portfolio which consists of relatively similar DMUs and in turn
lacks diversification. Table 2 and Fig. 2 illustrate this phenomenon.
If we select a portfolio of size 7 (about 30% of the population size)
based on cross-efficiency scores, 7 DMUs (DMUs 11, 14, 18, 8, 13, 5
and 12 in a decreasing order of cross-efficiency scores) are chosen
for inclusion in the portfolio, which are indicated by black circles in
Fig. 2. Those DMUs that are located in the (upper left) more densely
populated area employ similar weights and therefore effectively
contribute to higher cross-efficiency scores of the 7 selected DMUs.

The above examples illustrate that the simple use of cross-
efficiency score in portfolio selection per se can result in poorly-
diversified portfolios in terms of their performance on multiple
input-output factors. This motivates our development of a MV
framework of portfolio selection based on DEA cross-efficiency
evaluation, which will be detailed in the subsequent section.
3. A MV framework of portfolio selection based on cross-
efficiency evaluation

As demonstrated in the previous section, while the simple use
of cross-efficiency evaluation in portfolio selection effectively
considers the risk of change in weights for individual DMUs
selected in a portfolio, it fails to consider the risk for the portfolio
overall. The overall risk of change in weights for a portfolio com-



Table 2
Data set 2: efficiency and cross-efficiency scores.

DMU x1 x2 y Efficiency score Cross-efficiency score Rank

1 2.6 11 1 0.769231 0.599744 18
2 3.2 11 1 0.632184 0.543619 22
3 2.4 10 1 0.833333 0.654985 12
4 3.4 10 1 0.654762 0.554932 21
5 2 9 1 1 0.754659 6
6 2.8 9 1 0.753425 0.643476 13
7 3.4 9 1 0.696203 0.585808 19
8 2 8 1 1 0.80311 4
9 2.8 8 1 0.808824 0.684006 11
10 3.4 8 1 0.743243 0.621806 15
11 2 7 1 1 0.861609 1
12 2.8 7 1 0.873016 0.732319 7
13 3 6 1 0.916667 0.763748 5
14 3 5 1 1 0.833429 2
15 4 5 1 0.863636 0.712305 9
16 5 4 1 0.846154 0.685121 10
17 6 4 1 0.785714 0.61168 16
18 4 3.5 1 1 0.826784 3
19 7 3 1 0.846154 0.611407 17
20 6 2.5 1 1 0.719933 8
21 8 2 1 1 0.633504 14
22 9 2 1 1 0.583496 20

Fig. 2. Portfolio selection (data set 2).

4 We obtained financial data from KIS-VALUE III that is compatible to the U.S.
Compustat database and annual return data from Data Guide Pro that is compatible to
the CRSP (Center for Research in Security Prices) U.S. stock database.

5 We exclude firms with missing values for the financial measures denoted input
and output factors in Table 3. However, we include ones with missing stock return
data in the sample to avoid exposing the study to both survivorship and look-ahead
bias, as concerned by a reviewer of the earlier version of this paper. Although the
reason for the unavailability of stock return data is various, we assume that those
firms were delisted from the stock exchange and the stock returns are all –100% in the
corresponding year.
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prises two parts: individual DMU risk and inter-DMUs risk. The for-
mer is represented by the variance of cross-efficiencies of each
individual DMU included in a portfolio, and the latter is repre-
sented by the covariance between each pair of DMUs. The simple
use of cross-efficiency evaluation effectively reduces individual
DMU risk but fails to consider inter-DMUs risk. To address this is-
sue, we develop a MV framework of portfolio selection based on
cross-efficiency evaluation as follows.

For a DMU l, the return and risk characteristics are defined as its
cross-efficiency score �el ¼ 1

n

Pn
k¼1ekl and the variance of its

cross-efficiencies r2
l ¼ 1

n

Pn
k¼1ðekl � �elÞ2, respectively. Similarly, for

a portfolio X with individual DMUs being weighted using a weight
vector w 2 Rn

þ where
Pn

i¼1wi ¼ 1, the return and risk characteris-
tics are defined as EX ¼ wT�e� and VX ¼ wTRw where R is the covari-
ance matrix of cross-efficiencies whose (k, l)th element is the
covariance between DMU k’s cross-efficiencies (e�k) and DMU l’s
cross-efficiencies (e�l) denoted rkl. An optimal portfolio X⁄ with
an optimal weight vector w⁄ is determined by solving the following
quadratic optimization model:
min VX

s:t: EX P ð1� cÞEb
X

eTw ¼ 1
w P 0;

ð3Þ

where c is the return-risk trade-off parameter, Eb
X is the maximum

portfolio return achievable, and e is a vector of appropriate dimen-
sion whose elements are all one. Note that Eb

X can be determined by
maximizing EX under the constraints of eTw = 1 and w P 0.

Model (3) minimizes the portfolio risk (with respect to change
in DEA multipliers) while imposing a lower bound on the portfolio
return. Note that VX ¼ wTRw ¼

Pn
k¼1w2

kr2
kþ
Pn

k¼1

Pn
l¼1;l–kwk wlrkl,

which is a weighted sum of the variance of each individual DMU’s
cross-efficiencies (

Pn
k¼1w2

kr2
k ) and the covariance of each pair of

DMUs’ cross-efficiencies (
Pn

k¼1

Pn
l¼1;l–kwkwlrkl). As demonstrated

in Section 2, the simple use of cross-efficiency evaluation for port-
folio selection can effectively reduce the first part, but it fails to
consider the second part. In contrast, our approach based on model
(3) can collectively reduce the two parts.

Now we apply the above-described model to the two example
data sets introduced in the previous section to show its effective-
ness. Fig. 3 compares two portfolios selected from the data set 1;
the left one is a portfolio selected based on the simple use of
cross-efficiency evaluation (repeating Fig. 1), and the right one is
a portfolio selected using the proposed approach with the value
of the return-risk trade-off parameter (c) set to 2%. We can visually
confirm that the portfolio based on our approach is more diversi-
fied in terms of its performance on the two input factors. This
can also be confirmed numerically by looking at EX and VX for each
portfolio; the portfolio on the right have significantly smaller var-
iance (0.91 ? 0.64, 29.7% reduction) with slight decrease in return
(5.89 ? 5.80, 1.5% reduction). Similarly, Fig. 4 compares two port-
folios selected from the data set 2; the left one repeats Fig. 2, and
the right one is by our proposed approach with the value of c set to
4%. It again shows that the proposed approach results in a more
diversified portfolio with 59.1% reduction in variance while 4.8%
reduction in return. In addition, by comparing between Figs. 3
and 4, we also observe that a relatively larger decrease in VX can
be achieved with a larger value of the return-risk trade-off param-
eter c.
4. An application to stock portfolio selection in the Korean
stock market

As an illustration of the proposed approach, we report a case
study involving 490–557 firms listed in the Korea Exchange. Using
actual financial data from 2001 to 2009, we apply the proposed ap-
proach, as a means of fundamental analysis, to select stocks for
inclusion in a portfolio. To form the sample, we check the com-
pleteness of the financial statements data as well as monthly stock
return information4 and include only those firms without missing
values in the sample.5 We exclude non-December year end firms
from the sample to control the timing effect of financial information
on stock returns. We also leave financial institutions out since their



Fig. 3. MV portfolio for data set 1.

Fig. 4. MV portfolio for data set 2.
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accounting standards and regulations are far different from other
industries.

4.1. Input and output factors

Following Edirisinghe and Zhang (2007) and Edirisinghe and
Zhang (2008), we employ a range of performance perspectives
indicating profitability, asset utilization, liquidity, leverage, and
growth.6 For each of these performance perspectives, we compute
a set of financial metrics based on the raw financial data available
from the annual financial statements. This selection process results
in a total of 16 financial metrics for each firm, as presented in Table 3.
6 They also include valuation perspective which is concerned with how well a
firm’s performance is perceived in the stock markets. However, we exclude it from
our consideration since they show that it does not offer a significant predictive power
for stock returns in their case study. Furthermore, from the standpoint of DEA, it is not
clear if valuation perspective (unlike the other five perspectives) works as inputs or
outputs in a firm’s operational process. As indicated by a reviewer of the earlier
version of the paper, valuation-related financial metrics might add value in predicting
stock returns as evidenced by other studies (see e.g., Pätäri, Leivo, and Honkapuro
(2012)), but we do not pursue that possibility and focus on showing how the
proposed portfolio selection model performs under the input-output selection of
Edirisinghe and Zhang (2007) and Edirisinghe and Zhang (2008).
See Edirisinghe and Zhang (2007) for a description of these financial
metrics.

We categorize profitability and growth perspectives as outputs
because revenue or income generation is a major objective crite-
rion for a firm. On the other hand, we categorize asset utilization,
liquidity, and leverage perspectives as inputs because they are rel-
evant to the planning and operational strategies of a firm. We se-
lect a set of inputs and outputs from financial metrics derived
from raw financial data disclosed in financial statements of listed
firms in the Korea Exchange. That is, we choose financial metrics
that are generally used in the accounting practice to measure
financial performance as inputs and outputs of our DEA model.
4.2. DEA MV cross-efficiency model

Since both the inputs and outputs selected in our case study can
have negative values, it is not appropriate to use radial DEA models
and/or CRS models. For example, when CRS models are used, data
translation required for ensuring positivity changes the efficient
frontier. Also, when radial input (output)-oriented models are
used, input (output) data translation changes efficiency scores
even though the efficiency classification is persevered. Since our



Table 3
Inputs and outputs.

Type Measure Aspect

Inputs Receivable turnover Asset utilization
Inventory turnover
Asset turnover

Current ratio Liquidity
Quick ratio
Debt to equity ratio

Leverage ratio Leverage
Solvency ratio-I
Solvency ratio-II

Outputs Return on equity Profitability
Return on assets
Net profit margin
Earnings per Share (EPS)

Revenue growth rate Growth
Net income growth rate
Earnings per share growth rate

7 See code #5: Flexible tax rate for stock transaction.
8 See code #94: Range of taxation for the capital gain.

366 S. Lim et al. / European Journal of Operational Research 236 (2014) 361–368
model directly uses efficiency scores to rank DMUs, we must avoid
changes in efficiency scores. As pointed out by Pastor and Ruiz
(2007), additive VRS DEA models are a possible alternative for
dealing with negative data in both inputs and outputs. Among var-
ious additive DEA models, we use the additive VRS DEA model with
a range-adjusted inefficiency measure (Cooper, Park, & Pastor,
1999) because it has several desirable properties over the others
such as inclusiveness, unit invariance, and translation invariance.

Following is the additive model with a range-adjusted measure
(RAM) of inefficiency:

min � 1
mþ s

ðR�s� þ RþsþÞ

s:t: Xkþ s� ¼ xk;

Yk� sþ ¼ yk;

eTk ¼ 1;
k; s�; sþ P 0;

ð4Þ

where X ¼ ðxijÞ 2 Rn�m and Y ¼ ðyrjÞ 2 Rn�s denote the input and
output data matrices, respectively, in which each column repre-
sents one of DMUs and each row represents the level of one of fac-
tors of the corresponding DMU. R� and R+ are defined as:

R� ¼ 1
R�1

;
1

R�2
; . . . ;

1
R�m

� �
; Rþ ¼ 1

Rþ1
;

1
Rþ2

; . . . ;
1

Rþs

� �
;

R�i ¼ max
j¼1;...;n

fxijg � min
j¼1;...;n

fxijg; i ¼ 1; . . . ;m;

Rþi ¼ max
j¼1;...;n

fyrjg � min
j¼1;...;n

fyrjg; r ¼ 1; . . . ; s:

The dual program to model (4) is as follows:

max ed
k ¼ pyk � qxk þ n

s:t: pY � qX þ ne 6 0;

p P
1

mþ s
Rþ; q P

1
mþ s

R�:

ð5Þ

We use the following economic interpretation of model (5). The
output and input weight vectors p and q indicate the price of out-
puts and the cost of inputs, respectively, as discussed in Banker
and Maindiratta (1988) and Scheel (2001). Based on their interpre-
tation, we regard pyk and qxk as revenue and costs, respectively, in-
curred from the operations of DMU k. Consequently, ed

k is termed as
the n-adjusted profit that DMU k attains when the price-cost vector
(p, q) is used. The n - adjustment is used to make the highest profit
among DMUs be equal to zero with an optimal choice of price-cost
vector for the DMU under evaluation; i.e., maxj p⁄yj � q⁄xj + n⁄e = 0,
where ⁄ denotes an optimal solution to the model for the DMU un-
der evaluation.

DMU k is efficient if and only if there exists a positive price-cost
vector (p, q) such that pyk � qxk P pyl � qxl for every observed
DMU l. Let ðp�k; q�kÞ and n�k be an optimal price-cost vector and an
optimal adjustment value for DMU k. An optimal n�k� adjusted
profit of DMU k is p�kyk � q�kxk þ n�k, which is denoted e�kk. In addition,
a n�k� adjusted profit of DMU l using an optimal price-cost vector
that DMU k has chosen in model (5) is p�kyl � q�kxl þ n�k, which is
denoted e�kl. Notice that e�kk and e�kl correspond to the concepts of
simple efficiency and cross-efficiency in conventional DEA cross-
efficiency evaluation. Also note that the higher profit, the better
or more efficient a DMU is. We now define the profit vector of
DMU k as follows:

Pk ¼ ðe�1k; e
�
2k; . . . ; e�kk; . . . ; e�nkÞ

T

where e�lk is an n�l� adjusted profit of DMU k using an optimal price-
cost vector that DMU l has chosen in model (5). Two statistical
properties of Pk can be calculated: the average Pk ¼ 1

n

Pn
l¼1e�lk and

the variance r2
k ¼ 1

n

Pn
l¼1ðe�lk � �PkÞ

2
.

Consider a portfolio X with individual DMUs being weighted
using a weight vector w. The return and risk characteristics of
the portfolio are defined as EX ¼ wTP� and VX = wTRw where R is
the covariance matrix whose (k, l)th element is the covariance be-
tween Pk and Pl. An optimal portfolio X⁄with an optimal weight w⁄

can be determined by solving model (3) presented in Section 3.
Note that the normalization constraint, eTw = 1 and w P 0, can be
replaced by a cardinality constraint, eTw = S and wi e {0, 1} "i,
where S is the portfolio size, which is employed in our case study.

4.3. Portfolio selection strategy

We consider a buy-and-hold strategy, wherein the current year’s
optimal stock portfolio is selected by solving the model using the
prior year’s financial metrics and this portfolio is maintained dur-
ing an investment horizon of 1 year. Whenever we start a new
investment horizon, we revise the stock portfolio (a new set of
stocks is selected) according to the model solution using the prior
year’s financial metrics. Each investment horizon is ranged from
April of the current year to March of the next year, because all re-
quired yearly financial information of December year end firms is
publicly available to the equity market in March.

For each investment horizon, we fix the portfolio size S at 30 with
each stock selected being equally weighted. More specifically, at the
beginning of each investment horizon, 30 stocks are selected for
inclusion in a portfolio according to an optimal solution of model
(3) with the normalization constraint, eTw = 1 and w P 0, being re-
placed by a cardinality constraint, eTw = 30 and wi e {0, 1} "i. Once a
portfolio selected at the beginning of an investment horizon, the
same dollar amount is invested on each stock in the portfolio and
no further transaction is made until the end of the horizon when
the portfolio is changed. This means that transaction costs are in-
curred only at both ends of each investment horizon. Actually, stock
transaction tax law in Korea7 stipulates only 0.15% of stock transac-
tion tax over trading volume which is applied only to the seller. More-
over, individual income tax law8 rules out taxation for capital gain
from stock transaction of listed companies by individual investors
(non-blockholder) with less than 3% of outstanding share of each
company. Brokerage commissions levied range from 0.015% to 0.5%
of trading volume. These facts imply that our findings will not be sig-
nificantly altered even if we consider transaction costs. Nevertheless,



Table 4
Annual excess returns (%).

Period KOSPI200 KOSPI50 MV Cross Pure Cross

2002 �44.93 �44.87 �35.23 �37.08
2003 65.88 66.11 132.68 129.44
2004 3.48 0.18 63.50 52.43
2005 36.95 34.66 66.18 60.67
2006 1.63 0.48 5.62 �0.55
2007 10.79 5.40 26.12 10.95
2008 �33.13 �32.51 �28.92 �35.94
2009 37.08 38.06 34.65 39.76
2010 22.14 19.32 13.30 11.61

(Geometric) average annual excess return 5.59 4.25 21.84 16.32
Annualized volatility 22.80 22.24 28.50 27.79
Sharpe ratio 0.2452 0.1912 0.7661 0.5872

The highest buy and hold excess return of each year and the highest Sharpe ratio are indicated in bold face.

Table 5
Ledoit-Wolf test with Sharpe ratios.

Null hypothesis Test statistic p-value

Sharpe ratio (MV Cross) = Sharpe ratio (KOSPI50) 2.259 0.0242
Sharpe ratio (Pure Cross) = Sharpe ratio (KOSPI50) 1.617 0.1100
Sharpe ratio (MV Cross) = Sharpe ratio (Pure Cross) 1.689 0.0994

9 We report only the annual excess returns in Table 4, but the monthly excess
return data are available from the corresponding author upon request.
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we actually take transaction costs into consideration when comput-
ing monthly returns, assuming that all stock series included in each
portfolio are liquidated at the end of each investment horizon. Specif-
ically, we apply 0.26% (average of 0.015% and 0.5%) brokerage com-
missions of trading volume in our test, along with 0.15% of stock
transaction tax over trading volume in liquidation.

We set the risk-return trade-off parameter c to 2% for the pur-
pose of illustration of our proposed approach, and we do not ex-
plore other choices in this paper though it would be worthwhile
as a further research to examine the sensitivity of portfolio perfor-
mance with respect to the parameter choice.

4.4. Portfolio performance

We examine the 9-year performance of the portfolio (labeled
‘MV Cross’) and compare it to those of two market indices, KOS-
PI200 and KOSPI50 over the test period from 2002 to 2010. The
KOSPI is the index of all common stocks traded in the Stock Market
Division of the Korea Exchange. It is the representative stock mar-
ket index of South Korea, compatible to the Dow Jones Industrial
Average or S&P 500 in the U.S. The KOSPI200 constituents are the
top 200 firms of the Stock Market Division in terms of market value
regardless of industry. The KOSPI200 index is important because it
is listed on futures and option markets and is one of the most ac-
tively traded indexes in the capital markets. Similarly, the KOSPI50
consists of the top 50 firms which are reselected regularly at delib-
eration date for KOSPI200 constituent stocks.

Besides, we compare the performance of the portfolio with that
of a portfolio selected simply based on cross-efficiency scores (la-
beled ‘Pure Cross’). The ‘Pure Cross’ portfolio is formed using the
traditional use of DEA cross-efficiency evaluation in portfolio selec-
tion (as contrasted with the proposed approach), in which firms
are ranked in a decreasing order of their cross-efficiency scores
and the top 30 firms are chosen. The intent of this comparison is
to show that the proposed approach (implemented in the ‘MV
Cross’ portfolio) can possibly provide added value over Edirisinghe
and Zhang (2007) and Edirisinghe and Zhang (2008)’s. Note that, in
their approach, a firm is considered investment-worthy if its pre-
dicted relative financial strength indicator value (represented by
its simple efficiency score) is higher than a certain pre-determined
value.

Table 4 shows the annual excess return of each portfolio (or in-
dex) by each investment horizon. As a proxy for the risk-free re-
turn, we use 3-year maturity local currency denominated Korean
Treasury bond rates, which range from 3.72% to 5.78% per year
over the sample period. The highest buy and hold excess return
of each year is indicated in bold face. What is remarkable is that,
during 9 years, the ‘MV Cross’ portfolio yields the highest excess
return for 7 years while KOSPI50, KOSPI200, and the ‘Pure Cross’
do for 0, 1, and 1 year, respectively. As a result, the ‘MV Cross’ port-
folio attains the highest (geometric) average annual excess return
21.84%, which is fairly higher than those of KOSPI50 (4.25%), KOS-
PI200 (5.59%) and the ‘Pure Cross’ portfolio (16.32%).

We calculate the Sharpe ratio to examine the risk-adjusted per-
formance of the portfolios, which is defined as the (geometric)
average annual excess return of a portfolio over the risk-free return
divided by the annualized volatility of the excess return. As can be
found at the bottom of Table 4, the ‘MV Cross’ portfolio attains the
highest Sharpe ratio (0.7661), which is about 4 and 1.3 times high-
er than those of KOSPI50 (0.1912) and the ‘Pure Cross’ portfolio
(0.5872), respectively.

To test whether the difference of two Sharpe ratios is statisti-
cally significant, we apply the HAC inference and the studentized
circular block bootstrap based on Ledoit and Wolf (2008). The
advantage of using the Ledoit-Wolf test is the consideration of
skewness, kurtosis and autocorrelation effects in statistical perfor-
mance comparisons based on the Sharpe ratio. Three two-sided
hypotheses are formulated to be tested using the Ledoit-Wolf pro-
cedure as follows:

H0 (MV Cross vs. KOSPI50):
Sharpe ratio (MV Cross) � Sharpe ratio (KOSPI50) = 0
H0 (Pure Cross vs. KOSPI50):
Sharpe ratio (Pure Cross) � Sharpe ratio (KOSPI50) = 0
H0 (MV Cross vs. Pure Cross):
Sharpe ratio (MV Cross) � Sharpe ratio (Pure Cross) = 0

The reason why we choose KOSPI50 instead of KOSPI200 for
comparison is that it has a closer breadth dimension to the pro-
posed portfolio.

We use the MATLAB implementation of Wolf (2009) for the test
with the input data of pairs of monthly excess returns9. Table 5
summarizes the test statistics obtained from the code using the
default parameter setting. As shown in the table, at the significance
level of 5%, H0 (MV Cross vs. KOSPI50) is rejected (p-value: 0.0242)
indicating that the ‘MV Cross’ portfolio’s Sharpe ratio is significantly
greater than that of KOSPI50. On the other hand, H0 (Pure Cross vs.
KOSPI50) is accepted (p-value: 0.1100) indicating that the
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corresponding two Sharpe ratios are not significantly different. Note
that while H0 (MV Cross vs. Pure Cross) is accepted with the p-value
of 0.0994, it can be rejected when we turn to one-sided hypothesis
testing indicating that the Sharpe ratio of the ‘MV Cross’ is (margin-
ally) significantly greater than that of the ‘Pure Cross’. Taken to-
gether, these findings support our claim that the ‘MV Cross’
outperforms the ‘Pure Cross’ as well as the benchmark market index.

The results above demonstrate that the proposed approach can
be a promising tool for stock portfolio selection as a means of fun-
damental analysis. Our results also show that the MV cross-effi-
ciency approach is more effective than the one based on the
simple use of cross-efficiency scores at least for this particular
application. Overall, our findings consistently support the effec-
tiveness of our approach.

5. Concluding remarks

The current paper has developed a new way of using DEA cross-
efficiency evaluation in portfolio selection under the MV frame-
work. This development is motivated by the observation that the
traditional simple use of cross-efficiency scores in portfolio selec-
tion per se suffers from the problem of ill-diversification of result-
ing portfolios. This poor diversification problem is exacerbated due
to the ganging-together phenomenon of DEA cross-efficiency eval-
uation. We have found that this issue arises because the simple use
of cross-efficiency evaluation in portfolio selection fails to consider
inter-DMUs risk involved in a portfolio with respect to change in
weights (DEA multipliers) although it can effectively reduce indi-
vidual DMU risk. We have addressed this issue by incorporating
DEA cross-efficiency evaluation into the MV framework where
these two types of risk are collectively considered.

We have illustrated the proposed approach by applying it to
stock portfolio selection in the Korean stock market and showed
that the selected portfolio yielded higher risk-adjusted returns
over other benchmark portfolios for the 9-year sample period.
While this case study empirically supports the effectiveness of
the proposed approach for stock portfolio selection, it should be
noted that it is only for the purpose of illustration of the proposed
approach. We need to perform a more thorough investigation with
a wider range of data and various choices of parameter values (S
and c) to fully justify its use for financial applications. Considering
the current paper is primarily for a theoretical model development,
we would like to leave this subject as a future (more application-
oriented) research topic.
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