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This article presents a new evolutionary optimization approach named grey wolf optimization (GWO),
which is based on the behaviour of grey wolves, for the optimal operating strategy of economic load dis-
patch (ELD). Nonlinear characteristics of generators like ramp rate limits, valve point discontinuities and
prohibited operating zones are considered in the problem. GWO method does not require any informa-
tion about the gradient of the objective function, while searching for an optimum solution. The GWO
algorithm concept, appears to be a robust and reliable optimization algorithm is applied to the nonlinear
ELD problems. The proposed algorithm is implemented and tested on four test systems having 10, 40, 80
and 140 units. The results confirm the potential and effectiveness of the proposed algorithm compared to
various other methods available in the literature. The outcome is very encouraging and proves that the
GWO is a very effective optimization technique for solving various ELD problems.

© 2016 Elsevier Ltd. All rights reserved.

Introduction

Nowadays, the electrical power market becomes highly com-
petitive and more liberal for increasing energy demand. Economic
load dispatch (ELD) is one of the useful tools in the modern energy
management system of operation and planning. ELD plays a vital
role in maintaining the economy of the power system. Reduction
of the production cost and growth in the system reliability maxi-
mize the energy capability of thermal units through a good load
dispatch. The main goal of ELD process is to schedule the power
system control variables for sharing the total load to achieve high-
est economy of operation while satisfying all equality and inequal-
ity constraints. To achieve optimal solution of a practical ELD
problem, the realistic operation of the ELD problem should con-
sider valve point effects, ramp rate and multiple fuels. Several
derivative based approaches such as the classical optimization
methods based on Lagrangian relaxation [1], quadratic program-
ming (QP) [2], branch and bound method [3], lambda iteration
method (LIM) [4], gradient method [5], linear programming (LP)
[6], co-ordination equation [7], dynamic programming (DP) [8]
assuming monotonically increasing piecewise linear cost function,
have successfully been applied to solve ELD. However, the classical
optimization techniques are highly sensitive to staring points and
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often converge to local optimum or diverge altogether. Solutions
of ELD problem applying DP may cause the dimensions extremely
large, which requires enormous computational efforts. Due to the
presence of nonlinear characteristics such as ramp rate limits, dis-
continuous prohibited operating zones and non-smooth cost func-
tions of practical ELD problem, these methods are infeasible in
practical systems and are unable to locate the global optima solu-
tion. To solve non smooth and non convex ELD problem, Yang et al.
[9] presented an analytical method named quadratically con-
strained programming (QCP). Due to a large number of constraints
and highly nonlinear characteristics of the ELD problem, the classi-
cal calculus based methods cannot perform satisfactorily and are
trapped to local optimum. Hence, it becomes essential to overcome
these drawbacks and handle such difficulties through developing a
robust, improved and reliable technique. In the recent years, com-
plex constrained optimization problems are solved by many artifi-
cial intelligent methods such as Hopfield neural network (HNN)
[10,11] and adaptive HNN [12]. These techniques have successfully
been applied in recent years to solve non-convex, non-smooth and
non-differentiable ELD problems. However, due to excessive
numerical iterations of these methods, more reliable and fast
methods are needed.

With the development of computer technology, the population
based modern intelligent heuristic and stochastic optimization
methods such as evolutionary programming (EP) [13], hybrid evo-
lutionary programming (HEP) [14], differential evolution (DE) [15],
genetic algorithm (GA) [16], adaptive real coded GA (ARCGA) [17],
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Nomenclature

F; total fuel cost

Pg; power generation of the ith generating unit

Fi(Pg;) fuel cost function for power generation of the ith
unit

n number of generating units in the thermal
power plant

P population size

1 number of iterations

Ib lower boundary of search area

ub upper boundary of search area

a;,b;, ci, e fi fuel cost coefficients of the ith generating unit

Qik, bik, Cir, eix, i the Kth type of fuel cost coefficients of the ith

) generating unit

pg™n minimum amount of power generation of the

ith unit

pgi* maximum amount of power generation the ith
unit

Pp the total load demand

Bjj, Big, Boo loss coefficients of the line connected between
the ith and the jth bus

P the transmission network losses

URR;, DRR; up rate and down rate limit of the ith generating
unit

ni the number of prohibited zones of the ith
generating unit

Pgjo previous operating zone of the ith generating
unit

np population size

hybrid GA (HGA)|[ 18], particle swarm optimization (PSO) [19], anti
predatory PSO (APSO) [20], civilized swarm optimization (CSO)
[21], modified PSO (MPSO) [22], craziness based PSO (CRPSO)
[23], hybrid PSO (HPSO) [24], ant colony optimization (ACO)
[25,26], bacteria foraging optimization (BFO) [27], modified BFO
(MBFO) [28], artificial bee colony (ABC) [29], seeker optimization
algorithm (SOA) [30], chaotic ant swarm optimization (CASO)
[31], tabu search (TS) [32], harmony search algorithm (HSA) [33],
biogeography based optimization (BBO) [34,35], oppositional BBO
(OBBO) [36], and quasi oppositional BBO (QOBBO) [37] algorithms,
have been proposed for solving ELD problems. In the year of 2009,
the gravitational search algorithm (GSA), a heuristic algorithm
based on the Newtonian laws of gravity and motion, was devel-
oped by Rashedi et al. [38]. Affijulla et al. solved ELD problems
by implementing GSA [39]. Roy et al. implemented GSA [40] to
solve unit commitment problem for superior features including
stable convergence characteristic and avoids premature conver-
gence. A teaching learning based optimization (TLBO) was intro-
duced to solve combined heat and power dispatch problem [41].
Very recently, quasi oppositional TLBO (QOTLBO) [42] technique
which employed opposition based learning for TLBO initialization
and generation jumping was proposed by Roy et al. An opposition
based harmony search algorithm (OHSA) was introduced by Chat-
terjee et al. [43], where opposite numbers were utilized to improve
the convergence rate of harmony search algorithm (HSA). Krill herd
algorithm (KHA), first proposed by Gandomi and Alavi [44], was
successfully applied to solve ELD problems [45]. Dutta et al. in their
recent endeavour proposed hybrid chemical reaction optimization
(HCRO) algorithm to explore the entire search space for solutions
[46].

Recently, Barisal and Prusty [47] proposed invasive weed opti-
mization (IWO) to solve ELD problem of large scale power system.
Oppositional real coded chemical reaction optimization approach
[48] has been extensively used in electrical power systems due
to their ability to mould nonlinearity and uncertainty in practical
problems. Shanhe et al. [49] in their recent endeavour imple-
mented hybrid PSO/GSA approach to solve non-linearity based
ELD problem. A new efficient optimization technique was pro-
posed by Chen et al. [50] to solve wind based ELD problem of a
multi-area power system. Bulbul et al. [51] introduced opposi-
tional KHA approach to successfully solve ELD problem of small,
medium and large scale power systems.

However, some of these heuristic methods may have poor per-
formance on different set of problems. Some algorithms perform
local exploitation at the mature stage of the search and global
exploratory search at the early stages of the evolutionary process.

Few of the aforementioned methods have excellent global search
capabilities but, they have some limitations in their local search
ability. Some of the techniques discussed above face premature
convergence. To overcome premature convergence and speed up
the search process a more powerful method is needed.

In this research work, a newly developed meta heuristic
algorithm, named grey wolf optimization (GWO) [52], which does
not have any affinity to stick in local optimum points in the com-
plex multimodal optimization problem and which provides a more
diverse search of the solution space is proposed to solve complex
ELD problems. The GWO is based on behaviour of grey wolf [53].
The better optimum solutions with lower computation burden
can be found in GWO compared to the existing stochastic search
techniques mentioned above. The GWO is superior to these meth-
ods because (i) The GWO has better conveying mechanism and
information sharing capability; (ii) it uses random function and
considers three candidate solutions for getting better results and
converges quickly by making jump from local minima towards glo-
bal minima.

To justify the effectiveness of the proposed method, the pro-
posed GWO approach is applied to solve different test systems
with valve point effects, ramp rate limits, prohibited operating
regions, multiple fuels, etc. The performance of the solution results
are compared with those of the existing methods available in the
literature.

The rest of the paper is organized as follows: ELD problem is
formulated in Section ‘Problem formulation’. In Section ‘Grey wolf
optimization algorithm’, the original GWO algorithm is briefly
described. GWO applied to ELD problem is explained in
Section ‘Gray wolf optimization applied to ELD’. The system simu-
lation and results are provided in Section ‘Case studies and numer-
ical results’. Section ‘Conclusion’ outlines the, conclusions followed
by reference.

Problem formulation

The ELD is one of the important optimization strategies for
management of the power system. The following objective and
constraints are taken into account in the formulation of ELD
problem.

Objective function
The objective of ELD is to minimize the total fuel cost while sat-

isfying all equality and inequality constraints. The various cost
functions used in ELD problem are as follows.
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Quadratic cost function

The optimization of the ELD problem is formulated mainly in
terms of the fuel cost function expressed as the sum of a quadratic
function. This function is written as:

ZF (Pg) = > [aiPg)? + biPg) +] i=1.2.....m (1)

i=1

Cost function with valve point effect

A rippling effect is produced for the steam admission through
the valve in turbine, so it is more practical for considering the valve
point effect with the fuel cost function to incorporate flexible oper-
ational facilities. The fuel cost in terms of real power output, may
be expressed as the sum of a quadratic and a sinusoidal function
in the following form:

= Zn:Fi(Pgi)

_Z[ (Pg)* + bi(Pg;) + ¢; + ; x ‘sin(f (Pgmlrl Pg,-))H

(2)

Multiple fuel cost functions

Moreover, thermal generating units may supply multiple types
of fuel from different fuel sources. Each dispatching unit operates
on multiple fuel sources depending upon the load and suitability
of power generation. The objective is to find a suitable fuel for each
generating unit in order to minimize the total fuel cost while sat-
isfying different constraints including power balance and genera-
tion limits. Both multiple fuel options and valve point effects
should be considered to obtain a realistic and more accurate ELD
solution that is mathematically represented in (3) is given below.

an (Pg;)* + b (Pg;) + ¢ +

e x sin (f,1 X (Pg""" Pg,-)))
ai(Pg;)” + bia(Pg;) + Cip + leiz x sin(fy, x (Pg;, — Pgy))|
‘1ik(Pgi)2 + b (Pg;) + Cix + en x sin(fy x (Pgy — Pg;))|

Fi(Pg;) =

Constraints

Generation capacity constraints

The active power generation of each thermal power unit must
be less than or equal to the maximum power permitted and also
be greater than or equal to the minimum power permitted on that
specified unit and it may mathematically be expressed as:

< Pg; < Pg™ (4)

min

Pg;

Power balance constraints

The total power generation by the thermal units must be equal
to the total power demanded by the load and the total transmis-
sion loss. Thus, the equality constraint may be mathematically for-
mulated as:

n
> Pei
i=1

The transmission loss of the system is calculated using power
flow coefficients by the Kron’s loss formula or the B coefficient
formula:

=Pp+P (5)
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ZZPg,ByPg] + ZonPg, + Boo

i=1 j=1

Prohibited operating zone

The generating units might have prohibited operating zone(s) in
the input-output curve of generator due to presence of physical
operation such as vibration in its shift bearing, some faults in the
generating units or their accessories, like boiler and feed pumps.
Each generating unit must avoid operation in those prohibited
zones. In practical operation, the feasible operating zone of the
ith unit can be expressed as follows:

min

Pg;™" < Pg;
Pg;; 4 < Pg;

< Pgj;y
< Pg;;
Pg;; < Pg; < Pg™™

j=2.3,...ni-1

Ramp rate constraints
For successful operation, the operating range of each generat-
ing unit is restricted by its ramp rate limits by imposing the
units to operate repeatedly between two adjacent specific oper-
ation zones. The power output Pg;, by the ith generator in cer-
tain interval may not exceed that of previous interval Pg;, by
more than a certain amount URR;, the up ramp rate limit and
neither may it be less than that of the previous interval by more
than the amount DRR;, the down ramp rate limit of the ith gen-
erator. This constraint may mathematically be expressed as
follows:
max (Pg?’i", Pg;, — DRR,-) < Pg; < min (Pg™, Pg;y —

URR;) (8)

Grey wolf optimization algorithm

Grey wolf optimization (GWO) is a new population based meta-
heuristic algorithm proposed by Mirjalili et al. in 2014 [52]. The
method imitates the hunting behaviour and social hierarchy of
grey wolves. The leadership hierarchy in GWO algorithm [52,53]
is defined as alpha, beta, delta and omega. The problem is to define
the cost efficient level of habitat protection that satisfies a feasibil-
ity constraint for a sensitive wildlife population. The viability con-
straint requires a high probability of attaining a population size
target. The alpha, beta, and delta estimate the victim position
and update their positions randomly around the victim. The final
position would be in a position within a circle which is defined
by the positions of alpha, beta, and delta in the search space.

On the basis of behaviour of grey wolves, GWO is implemented
where a specific number of grey wolves in a pack moves through a
multi dimensional search space to look for prey. In this optimiza-
tion algorithm, the positions of grey wolves are considered as dif-
ferent position variables and the distances of the prey from the
grey wolves determine the fitness value of the objective function.
In GWO, the individual grey wolf adjusts its position and moves
to the better position. The GWO saves the best solutions obtained
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through the course of iterations. The goal of this algorithm is to
reach to the prey by the shortest possible route. The movement
of each individual is influenced by four processes, namely

(i) Searching for prey (exploration)
(ii) Encircling prey
(iii) Hunting
(iv) Attacking prey (exploitation)

These operators are briefly explained and mathematically
expressed in the following subsection.

Searching for prey (exploration)

The grey wolves diverge from each other position for searching
a victim. Make use of AM with random values to compel the search

agent to diverge from the victim. The component CM provides ran-
dom weights for searching prey in the search space. Hence explo-

ration through AM and CM permits this algorithm to globally

search the area. CM vector also presents the effect of obstacles to
impending the prey.

Encircling prey

The alpha, beta and delta estimate the position of the three best
wolves and other wolves updates their positions using the posi-
tions of these three best wolves. Encircling behaviour can be repre-

sented by DM. The expected boundary is mathematically
represented by the following equations:

DM = |CM - XB(t) — X(t) (9)

X(t+1) = XP(t) — AM - DM (10)

Here t indicates the current iteration, AM and CM are coefficient
vectors, XB(t) is the position vector of prey, X(t) represents the posi-

tion vector of a grey wolf. r1 and r2 are random vectors in [0,1]. d is
linearly decreased from 2 to 0.

AM=2xdxrl—id (11)
CM=2xr12 (12)
Hunting

Conservation of regional habitat connectivity has the potential
to facilitate recovery of the grey wolf. After encircling, alpha wolf
guides for hunting. Later, the delta and beta wolves join in hunting.
It is tough to predict about the optimum location of prey. The hunt-
ing behaviour of grey wolf, based on the position of alpha, beta,
gamma (candidate solution) wolf can be represented by

DM, = ]cMa - XB,(t) +>?( (13)
DM, = |CM; - XPy(t) + X| (14)
DM, = ‘cm -XPBy(t) +>?‘ (15)

Finally, the position of various category of wolves are modified as
follows:

X1 = X, — AM1-DM, (16)

X = X, — AM2 - DM, (17)
Xy = Xy —AM3 - DM, (18)

— — —
= Xa+Xp+Xa

X(t+1)= 3 (19)

Attacking prey (exploitation)

The grey wolves stop the hunting by attacking the prey when it

stop moving. It depends on the value of @ AM is a random value in
the interval [—-2a,2a]. In GWO, search agents update their positions
based on the location of alpha, beta, delta wolves mentioned in
hunting phase and attack towards the prey.

The GWO algorithm can be summarized as follows:

Step 1: Number of grey wolves or search agents is considered as
population size.

Step 2: Initialize the position vectors of search agents for search-
ing and encircling the prey in upper and lower boundary area of
grey wolves. Maximum number of iterations is also initialized.
Step 3: Evaluate the fitness values of individual solution. Each
fitness value represents the distance of the prey from the indi-
vidual wolf. Based on the fitness value, three best wolves are
identified as o, 8 and § categories of wolves. To achieve the
prey, the hunting behaviour of various categories of grey wolf
are modified using (13)-(15).

Step 4: Update the position of search agents using (16)-(20).
Step 5: Repeat steps 3-4 until they reach to the prey.

Step 6: The termination is done when a specified number of iter-
ations are met.

Grey wolf optimization applied to ELD

The different steps of GWO algorithm for solving ELD problems
are described below.

Step 1: Active power generation of all the generating units
except the last unit is initialized randomly within their lower
and upper real power operating limits, i.e., each component
must satisfy generator capacity constraints. The quantity of
active power generation of the last unit is evaluated using (5)
and tested whether it gratifies the inequality constraint or
not. The infeasible solutions are reinitialized. Numerous initial
solution sets are generated depending upon the population size.
The position of different search agents (grey wolves) are repre-
sented through reasonable solution set (control variables).
Depending upon the initial search agents (grey wolves) position
matrix is created as given below:

rpl 1 1 1 7

PL. Pl .., Pi .. Pl

2 2 2 2

P2 Py, ., P o P

pP— .i.. , ..i. 1 (20)

PL. P, ..., Py .. P

p p p p
| Ps Pl PEo, PR

Step 2: Evaluate fitness of each solution of current population
using (1)-(3). Each fitness value represents the distance of the
individual wolf from the prey.

Step 3: Sort the population from best to worst. The best, second
best and third best solutions respectively, represent the posi-
tions of o, p and § categories of wolves.
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GWO solution of ELD for test system 1 (10 unit with multiple fuels, valve point and
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ment in the solution. In this paper, the ending criterion is the
maximum number of iterations for which most of the grey

wolves or search agents are idle.

Case studies and numerical results

In this article, to evaluate the effectiveness of the recently
developed GWO algorithm, it is implemented to solve various non-
linear, complex ELD problems considering multiple fuels, transmis-
sion losses, prohibited operating zones and ramp rate limits.
MATLAB 7.1 Software is used to simulate ELD problems and tested
on 2 GHz Pentium IV, 1 GB RAM personal computer. The popula-
tion size and the maximum iteration number are taken as 50 and

Generator pgmin Pg"* Generation Fuel
number (MW) (MW) (MW) type

1 100 250 213.4586 2

2 50 230 209.7310 1

3 200 500 332.0088 2

4 99 265 238.0269 3

5 190 490 269.1404 1

6 85 265 238.1609 3

7 200 500 280.6101 1

8 99 265 237.8926 3

9 130 440 414.5851 3
10 200 490 266.3856 1
Total fuel cost ($/h) 605.6263

Step 4: Modify the position of each search agents using the
searching prey, encircling prey, hunting and attacking prey con-
cepts. The position of each search agent represents a potential
solution comprised of active power generation of ELD problem.
Step 5: Check whether the operating limits of the active power
of all generating units except last unit are violated or not. If any
power generation is less than the minimum level, it is made
equal to minimum value. Similarly, if it is greater than the max-
imum level, it is assigned its maximum value. Subsequently,
last unit of the power generation is evaluated using (5) and
whether it satisfies all the inequality constraints or not is
checked. The infeasible solutions are exchanged by the best fea-
sible solutions.

Step 6: Go to Step 2 until termination criteria is met. The GWO is
stopped executing when the maximum number of iterations
(generations) is reached or there is no noteworthy improve-

Table 2

100 respectively for the test systems under consideration.

The four sets of experiments are conducted and the simulation
results of the proposed method are compared with various existing
methods.

Test Case 1: Initially, 10-unit system with multiple fuels and
valve point loading effect is considered.

Test Case 2: Secondly, 40-unit system with transmission losses
including valve point loading effect is considered.

Test Case 3: Thirdly, 80-unit system with nonlinearities of valve
point loading effect and prohibited operating zones is
considered.

Test Case 4: Finally, prohibited operating zones and ramp rate
limits including valve point loading effect in the 140-unit ELD
problem are considered.

Test Case 1

A 10-unit system with multiple fuel is considered as test system
1 but transmission loss is not considered in power balance

Statistical comparison on non-smooth 10 unit-generator suit with multiple fuels (Pp = 2700).

Algorithms Mean cost ($/h) Best cost ($/h) Worst cost ($/h) Standard deviation Average simulation time (s)
FAPSO [55] 624.2782 624.2189 624.2951 NA NA
NAPSO [55] 623.6335 623.62170 627.4237 NA NA
PSO-LRS [17] 625.7887 624.2297 628.3214 NA 88
IGA-MU [17] 627.6087 624.5178 630.8705 NA 7.25
NPSO-LRS [17] 624.9985 624.1273 626.9981 NA 52
NPSO [17] 625.2180 624.1624 623.67543 NA 35
PSO [54] 624.5054 624.3045 625.9252 NA 39
GA [54] 624.7419 624.5050 624.8169 NA NA
TSA [54] 635.0623 624.3078 624.8285 NA NA
ARCGA [17] 623.8431 623.8281 623.8550 NA NA
KHA [45] 605.8043 605.7582 605.9426 NA NA
GWO 605.6818 605.6263 605.7937 1.02 2.36
660 T T T T T T T
650 -
)
=640 - e
&
2
O
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§
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5 620 -
<
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Fig. 1. Convergence characteristic of generation cost using GWO for 10-unit system.
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Table 3
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Best solution for test system-2 with a demand of 10,500 MW (40-unit with loss and valve point loading effects).

Unit no. Generation (MW)
GA-API [57] SDE [56] TLBO [42] QOTLBO [42] KHA [45] GWO
1 114 110.06 114 114.0000 114.0000 114.0000
2 114 112.41 114 114.0000 114.0000 114.0000
3 120 120.00 120 107.8221 120.0000 120.0000
4 190 188.72 182.4448 190.0000 190.0000 181.0490
5 97 85.91 90.6923 88.3702 88.5944 87.8351
6 140 140.00 140 140.0000 105.5166 140.0000
7 300 250.19 300 300.0000 300.0000 300.0000
8 300 290.68 296.0682 300.0000 300.0000 300.0000
9 300 300.00 288.8518 300.0000 300.0000 300.0000
10 205.25 282.01 281.9520 211.2071 280.6777 279.9786
11 226.30 180.82 238.1293 317.2766 243.5399 243.6274
12 204.72 168.74 251.0120 163.7603 168.8017 94.1436
13 346.48 469.96 483.1175 481.5709 484.1198 484.4562
14 434.32 484.17 481.9042 480.5462 484.1662 484.2306
15 431.34 487.73 488.2883 483.7683 485.2375 484.2463
16 440.22 482.30 396.3448 480.2998 485.0698 484.0333
17 500 499.64 494.2577 489.2488 489.4539 489.6295
18 500 411.32 408.3826 489.5524 489.3035 489.3228
19 550 51047 510.5206 512.5482 510.7127 511.4616
20 550 542.04 521.2217 514.2914 511.3040 511.4932
21 550 544.81 540.5700 527.0877 524.4678 523.4767
22 550 550.00 522.1852 530.1025 535.5799 547.6868
23 550 550.00 526.1804 524.2912 523.3795 523.3738
24 550 528.16 521.1967 524.6512 523.15527 523.1350
25 550 524.16 525.8010 525.0586 524.1916 523.3472
26 550 539.10 526.0022 524.4654 523.5453 523.3578
27 11.44 10.00 13.0804 10.8929 10.1245 10.0678
28 11.56 10.37 11.0397 17.4312 10.1815 10.6337
29 11.42 10.00 12.9373 12.7839 10.0229 10.5181
30 97 96.10 89.7412 88.8119 87.8154 87.8029
31 190 185.85 190.0000 190.0000 190.0000 190.0000
32 190 189.54 190.0000 190.0000 190.0000 190.0000
33 190 189.96 190.0000 190.0000 190.0000 190.0000
34 200 199.90 200.0000 200.0000 200.0000 200.0000
35 200 196.25 200.0000 168.0873 164.9199 200.0000
36 200 185.85 164.7435 165.5072 164.9787 164.8334
37 110 109.72 110.0000 110.0000 110.0000 110.0000
38 110 110.00 110.0000 110.0000 110.0000 110.0000
39 110 95.71 110.0000 110.0000 110.0000 110.0000
40 550 532.47 547.9677 511.5313 512.06775 511.5471
TC ($/h) 139864.96 138157.46 137814.17 137329.86 136670.37 136446.85
TL (MW) 1045.06 974.43 1002.63 1008.96 978.9251 973.2875
Table 4

Comparison of statistical results of various methods for test system-2 (40-unit with loss and valve-point loading effects).

Methods Best cost ($/h) Mean cost ($/h) Worst cost ($/h) Standard deviation Average simulation time (s)
GA-API [57] 139864.96 NA NA NA NA

SDE [56] 138157.46 NA NA NA NA

TLBO [42] 137814.17 NA NA NA 483

QOTLBO [42] 137329.86 NA NA NA 4.58

KHA [45] 136670.37 136671.24 136671.86 NA NA

GWO 136446.85 136463.96 136492.07 0.098 427

constraint. The coefficients of fuel cost functions we have consid-
ered are provided in [24]. In this test system, the load demand is
taken as 2700 MW. Table 1 shows the optimal generation schedul-
ing, fuel type and fuel cost achieved by GWO for Test Case 1. The
superiority of the proposed method is evident from its ability to
satisfy all constraints and produce feasible results.

As GWO technique is stochastic simulation method so random-
ness in the simulation result is comprehensible. ELD is a real time
problem, thus it is desirable that each run of the program should
reach close to optimum solution. Fifty independent trials are exe-
cuted to observe changes in the solutions. Since the GWO always
accepts the better results, it is expected that the solution should

always improve and this may lead to robust result of this problem.
To verify the robustness of the proposed GWO method, the statis-
tical results of the best, mean and worst cost obtained by GWO
over the 50 trial runs are compared with the results of PSO [54],
GA [54], TSA [54], PSO-LRS [17], IGA-MU [17], NPSO-LRS [17], NPSO
[17], ARCGA [17], FAPSO [55], NAPSO [55] and KHA [45]. The com-
parative statistical results are summarized in Table 2. The statisti-
cal results show that the best, worst and mean cost produced by
GWO is least compared with other methods emphasizing its better
solution quality. Moreover, it is observed from Table 2 that average
simulation time of the proposed GWO approach is significantly less
than that of other algorithms discussed in this manuscript. Hence,
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Best solution for test system-3 with a demand of 21,000 MW (80-unit without loss).
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Unit no Generation (MW) Unit no Generation (MW) Unit no Generation (MW) Unit no Generation (MW)
1 110.8188 21 523.2794 41 110.7998 61 523.2794
2 110.7994 22 523.2794 42 110.7998 62 523.2794
3 97.3859 23 523.2794 43 97.3996 63 523.2793
4 179.7327 24 523.2794 44 179.7331 64 523.2793
5 87.7998 25 523.2792 45 87.7999 65 523.2793
6 140.0000 26 523.2797 46 140.0000 66 523.2793
7 259.5978 27 10.0000 47 259.5995 67 10.0000
8 284.6013 28 10.0000 48 284.5992 68 10.0000
9 284.5978 29 10.0000 49 284.6003 69 10.0000

10 130.0000 30 87.8006 50 130.0000 70 87.7998

11 94.0000 31 190.0000 51 94.0000 71 190.0000

12 94.0000 32 190.0000 52 94.0000 72 190.0000

13 214.7612 33 190.0000 53 214.7598 73 190.0000

14 394.2778 34 164.7999 54 394.2790 74 164.7998

15 394.2808 35 194.3976 55 394.2794 75 194.3954

16 394.2775 36 200.0000 56 394.2794 76 200.0000

17 489.2801 37 110.0000 57 489.2795 77 110.0000

18 489.2792 38 110.0000 58 489.2801 78 110.0000

19 511.2794 39 110.0000 59 511.2788 79 110.0000

20 511.2794 40 511.2793 60 511.2798 80 511.2792

TC ($/h) 242825.4799

Table 6

Comparison of statistical results of various methods for test system-3 (80-unit without loss).

Methods Best cost ($/h) Mean cost ($/h) Worst cost ($/h) Standard deviation Average simulation time (s)
NPSO [55] 2428441172 NA NA NA NA
FAPSO [55] 244273.5429 NA NA NA NA
PSO [55] 249248.3751 NA NA NA NA
GWO 242825.4799 242829.8192 242837.1303 0.093 5.27
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Table 7
Best solution for test system-4 with a demand of 49,342 MW (140-unit without loss).

Unit no Generation (MW) Unit no Generation (MW) Unit no Generation (MW)
SDE [56] GWO SDE [56] GWO SDE [56] GWO
1 116.1654 119.0000 48 250.0000 250.0000 95 978.0000 978.0000
2 189.0000 189.0000 49 250.0000 250.0000 96 682.0000 682.0000
3 190.0000 190.0000 50 250.0000 250.0000 97 720.0000 720.0000
4 190.0000 190.0000 51 165.0000 165.0000 98 718.0000 718.0000
5 168.5398 168.5397 52 165.0000 165.0000 99 720.0000 720.0000
6 190.0000 190.0000 53 165.0000 165.0000 100 964.0000 964.0000
7 490.0000 490.0000 54 165.0000 165.0000 101 958.0000 958.0000
8 490.0000 490.0000 55 180.0000 180.0000 102 1007.0000 1007.0000
9 496.0000 496.0000 56 180.0000 180.0000 103 1006.0000 1006.0000
10 496.0000 496.0000 57 103.0000 103.0000 104 1013.0000 1013.0000
11 496.0000 496.0000 58 198.0000 198.0000 105 1020.0000 1020.0000
12 496.0000 496.0000 59 312.0000 312.0000 106 954.0000 954.0000
13 506.0000 506.0000 60 281.8008 282.8903 107 952.0000 952.0000
14 509.0000 509.0000 61 163.0000 163.0000 108 1006.0000 1006.0000
15 506.0000 506.0000 62 95.0000 95.0000 109 1013.0000 1013.0000
16 505.0000 505.0000 63 160.0001 160.8840 110 1021.0000 1021.0000
17 506.0000 506.0000 64 160.0000 160.0000 111 1015.0000 1015.0000
18 506.0000 506.0000 65 490.0000 490.0000 112 94.0000 94.0000
19 505.0000 505.0000 66 196.0001 196.2621 113 94.0000 94.0000
20 505.0000 505.0000 67 490.0000 490.0000 114 94.0000 94.0000
21 505.0000 505.0000 68 489.9999 489.6013 115 244.0000 244.0000
22 505.0000 505.0000 69 130.0000 130.0000 116 244.0000 244.0000
23 505.0000 505.0000 70 234.7198 234.7006 117 244.0000 244.0000
24 505.0000 505.0000 71 137.0000 137.0000 118 95.0000 95.0000
25 537.0000 537.0000 72 325.4956 325.8216 119 95.0000 95.0000
26 537.0000 537.0000 73 195.0000 195.0000 120 116.0000 116.0000
27 549.0000 549.0000 74 175.0000 175.3892 121 175.0000 175.0000
28 549.0000 549.0000 75 175.0000 175.0000 122 2.0000 2.0000
29 501.0000 501.0000 76 175.0001 175.9936 123 4.0000 4.0000
30 501.0000 501.0000 77 175.0000 175.4087 124 15.0000 15.0000
31 506.0000 506.0000 78 330.0000 330.0000 125 9.0000 9.0000
32 506.0000 506.0000 79 531.0000 531.0000 126 12.0000 12.0000
33 506.0000 506.0000 80 531.0000 531.0000 127 10.0000 10.0000
34 506.0000 506.0000 81 368.6177 366.4013 128 112.0000 112.0000
35 500.0000 500.0000 82 56.0000 56.0000 129 4.0000 4.0000
36 500.0000 500.0000 83 115.0000 115.0000 130 5.0000 5.0000
37 241.0000 241.0000 84 115.0000 115.0000 131 5.0000 5.0000
38 241.0000 241.0000 85 115.0000 115.0000 132 50.0000 50.0000
39 774.0000 774.0000 86 207.0000 207.0000 133 5.5666 5.0000
40 769.0000 769.0000 87 207.0000 207.0000 134 43.3363 42.0000
41 3.0000 3.0000 88 175.0000 175.0000 135 43.1223 42.0000
42 3.0000 3.0000 89 175.0000 175.0000 136 41.0000 41.0000
43 249.9989 250.0000 90 175.0000 175.0000 137 17.0000 17.0000
44 247.1855 249.9988 91 175.0000 175.0000 138 12.7652 17.0000
45 250 250.0000 92 580.0000 580.0000 139 8.1120 7.0000
46 250 250.0000 93 645.0000 645.0000 140 27.1470 26.1302
47 242.2959 249.9785 94 984.0000 984.0000 TC($/h) 1560146.95 1559953.18
Table 8
Comparison of statistical results of various methods for test system-4 (140-unit without loss).
Methods Best cost ($/h) Mean cost ($/h) Worst cost ($/h) Standard deviation Average simulation time (s)
SDE [56] 1560236.85 NA NA NA NA
GWO 1559953.18 1560132.93 1560228.40 1.024 8.93

it may be concluded that the GWO method is computationally
more efficient than the other methods. Convergence characteristic
of the GWO for this test system is presented in Fig. 1.

Test Case 2

To verify the validity of the method for medium size ELD prob-
lem, a slightly complicated power system with forty thermal
power units is considered. The transmission loss is taken into con-
sideration for this test system. The total load demand is considered
as 10,500 MW. To validate the proposed GWO based approach, its
simulation results for this test system is compared with the results
of SDE [56], GA-API [57], TLBO [42], QOTLBO [42] and KHA [45].

The best solutions, optimal generation scheduling and comparison
with other optimization methods in the literature are summarized
in Table 3. It can be observed from Table 3 that the proposed tech-
nique provides significantly better results in comparison with the
previously developed techniques. Hence, it may be concluded that
the GWO optimization is computationally more well organized
than the other methods in terms of quality of solution.

Moreover, the results of the proposed GWO method are com-
pared in terms of minimum cost, mean cost and maximum cost
over 50 runs with the results of GA-API [57], SDE [56], TLBO [42],
QOTLBO [42] and KHA [45]. The statistical results of the aforemen-
tioned methods, presented in Table 4, are directly quoted from
their respective references. It can be observed that the solution
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Fig. 4. Convergence characteristic of generation cost using GWO for 140-unit system.

obtained from the proposed method is better than other tech-
niques reported in the literature. Convergence characteristic of
the GWO approach for 40-generator test case is depicted in Fig. 2.

Test Case 3

In order to validate the feasibility of the proposed GWO method
for the EED problems, it is employed on a relatively large system
consisting of 80 generating units. The load demand used in the
simulations is 21,000 MW. In order to judge the efficacy of the pro-
posed in nonlinear environment, the valve-point effect and prohib-
ited operating zones are considered. However, to keep the test
system intact, the transmission loss is not taken into consideration
in this case. The full system data are taken from [55]. Table 5 illus-
trates the optimal generation schedule of 80 generating units and
fuel cost obtained using the proposed GWO method. The simula-
tion results clearly suggest that GWO produces feasible solutions.
To judge the superiority and robustness, the statistical results
obtained by the proposed GWO algorithm are compared with those
obtained by PSO [55], NPSO [55] and FAPSO [55]. The statistical
results of the aforesaid methods are illustrated in Table 6. The com-
parative results show that the proposed GWO method outperforms
the other techniques. The convergence characteristic of fuel cost
obtained by the proposed GWO technique is shown in Fig. 3. The
graph shows that the proposed method smoothly converges to
the optimal solution.

Test Case 4

To explore the opportunity of the GWO to the large scale power
system, experiments are conducted on the Korean power system
[56]. This system is a large and complicated system having 140
generating units each having valve point loading effects, ramp rate
limits and some units having prohibited operating zones. The total
load demand is set to 49,342 MW. The transmission loss of this test
system is neglected. The system data including fuel cost coeffi-
cients are adopted from [56,58]. The optimal economic dispatch
scheme achieved by the proposed GWO algorithm along with
SDE [56] is shown in Table 7. It is clear that for this large and com-
plex system, GWO efficiently converges in the vicinity of the opti-
mal solution with full constraint satisfaction. It is also clear that
the algorithm proposed by this paper can lower the fuel cost effec-
tively as compared to SDE.

The statistical results of the proposed GWO approach are com-
piled in Table 8. The statistical results signify the robustness and
superiority of the GWO algorithm compared to existing SDE
approach. The nature of convergence characteristic of the proposed

GWO for this test system is shown in Fig. 4. This figure shows that
the GWO takes few iterations to reach near the optimal solution
and there is almost no deviation after 45 iterations in fuel cost. It
shows that the proposed GWO method can quickly reach to the
optimal solution. Results obtained by the proposed method are
encouraging and suitable for the practical systems.

Conclusion

In this work, an efficient and comparatively new algorithm
named GWO is proposed to solve the ELD problem taking the valve
point loading effects, multiple fuel, prohibited operating zone,
ramp rate limits into consideration. Four case studies are employed
to demonstrate the applicability of the GWO method. The benefit
of the proposed GWO is that it does not impose any convexity lim-
itations on the generating unit characteristics. Numerical results
show that the GWO method has superior features, advantages over
other algorithms in terms of robustness, less computational efforts,
avoids premature convergence, simple applicability and stable
convergence characteristic. Although, the proposed algorithm is
applied to solve ELD problems in the current study, it seems from
its unique feature that GWO has the potential to solve many other
optimization problems in the field of power system planning and
operation.
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