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Abstract The aim of this paper is to investigate the vendor
managed inventory (VMI) problem of a single-vendor single-
buyer supply chain system, in which the vendor is responsible
to manage the buyer’s inventory. To include an extended
applicability in real-world environments, the multiproduct
economic production quantity model with backordering under
three constraints of storage capacity, number of orders, and
available budget is considered. The nonlinear programming
model of the problem is first developed to determine the near
optimal order quantities along with the maximum backorder
levels of the products in a cycle such that the total VMI
inventory cost of the system is minimized. Then, a genetic
algorithm (GA) based heuristic is proposed to solve themodel.
Numerical examples are given to both demonstrate the appli-
cability of the proposed methodology and to fine tune the GA
parameters. At the end, the performance of the proposed GA is
compared to the one of the LINGO software using different
problem sizes. The results of the comparison study show that,
while the solutions do not differ significantly, the proposed
GA reaches near optimum solutions in significantly less
amount of CPU time.

Keywords Vendormanaged inventory .Economicproduction
quantity . Multiproduct . Limited storage . Limited budget .

Limited number of orders . Genetic algorithm

1 Introduction and literature review

Satisfying customers’ demand is one of the keys to the success
of companies. In supply-chainmanagement (SCM), a series of
organizations integrate and cooperate in order to improve the
competitive capabilities of the whole chain [10]. Business
paradigm has recently changed tremendously. Individual busi-
nesses no longer compete as solely autonomous entities, but
rather work together as a supply chain. Perhaps, this is one of
the main reasons researchers and managers pay such signifi-
cant attention to the business integration [16]. Due to global-
ization and increasing competition, increasing attention is
given to supply chain integration [27].

Since the single-vendor single-buyer supply chain problem
is the building block for wider supply chains, it has received
an increasing attention in recent years. The global supply
chain can be very complex and link-by-link understanding
of joint policies can be very useful [2]. In the single-vendor
single-buyer problem, the vendor manufactures a product in
lots and delivers the produced lot to a buyer in number of
shipments. The objective of this model is to determine the
production lot size and shipments schedule that minimize the
total cost of the vendor–buyer system [7].

One of the well-known concepts in SCM is the vendor-
managed inventory (VMI) (see, e.g., [6, 8]) and many success-
ful businesses such as Wal-Mart and JC Penney have demon-
strated the benefits of VMI [4, 9]. Within the VMI model, the
buyer provides the vendor with information on its sales and
inventory level and the vendor determine the replenishment
quantity at each period based on the information. Throughout
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the VMI model, the vendor can set up efficient replenishment
plans, while the buyer can receive appropriate amounts of
replenishment on time [14, 17]. VMI has some advantages
for both parties. Customer service levels may increase in terms
of the reliability of product availability because the vendor can
use the information collected on the inventory levels at the
buyer to better anticipate future demand [15].

Magee [18] when discussing who should have authority
over the control of inventories described an early conceptual
framework of VMI. However, interest in the concept has only
really developed during the 1990s. Dong and Xu [9] presented
an analytical model to evaluate the short- and long-term
impact of VMI on supply chain profitability by analyzing
the inventory systems of the parties involved. Yao et al. [32]
using the same assumptions as Dong and Xu’s [9] presented
an analytical model to determine how key logistics parame-
ters, most notably ordering costs and inventory carrying
charges, can affect the benefits to be derived from VMI.
However, they assumed the order quantity for the supplier
was an integer multiple of the buyer’s replenishment quantity.
Van Der Vlist et al. [31] extended the Yao et al. [32] model
along with the costs of shipments from the supplier to the
buyer. Two situations of no-VMI and VMI were modeled in
their research. Sofifard et al. [29] presented an analytical
model for a single-buyer single-supplier model to explore
the effects of collaborative supply-chain initiatives such as
VMI with the economic production quantity (EPQ) manner.

In two-echelon single-vendor multiple-buyers supply chain
model under VMImode of operation, Jasemi [13] developed a
supply chain model with single-supplier n -buyers, where he
compared the VMI system with the traditional types. He
also made a pricing system for profit sharing between
parties. Furthermore, Nachiappan and Jawahar [23] proposed
a nonlinear integer-programming model with a genetic algo-
rithm (GA) based heuristic to find the optimal sales quantity of
each buyer.

Farahani and Elahipanah [10] developed a new model for a
distribution network in a three-echelon supply chain, which
not only minimizes the total costs but also follows just-in-time
distribution purposes in order to better represent the real-world
situations. In their research, a GA was designed to find the
Pareto fronts of the large-size problem instances of the
multiobjective mixed-integer linear-programming problem.

In this paper, in order to determine the products’ near
optimal order quantities and the maximum backorder levels
in a cycle such that the total inventory costs of the VMI system
is minimized, a newmathematical model is first developed for
the single-vendor single-buyer supply chain problem. In this
problem, there are multiproducts, the EPQ model is utilized
with finite production rate, and the shortage is allowed and
backordered. The constraints are storage capacity, number of
orders, and the available budget. Since the model of the
problem becomes nonlinear, a GA-based heuristic is then

proposed to solve it. Numerical examples are presented to
demonstrate the application of the proposed methodology, to
find the significant parameters of the proposed GA, and to
tune the parameters accordingly. To do this, the backward
elimination method of the SAS 9.1 computer software
with a quadratic regression function is first used to find
the significant parameters. Then, the LINGO 8.0 software
is employed to solve the regression model and to find the
optimal value of the proposed GA parameters. Finally, the
tuned GA will be used in MATLAB 7.6.0.324 software to
find the near optimal order quantities and the maximum
backorder level of the products.

In short, the highlights of the differences of this research
with the above studies are as follow:

& Incorporating several products along with shortages to the
VMI problem

& Adding additional constraints to the VMI problem to
make it more realistic

& Proposing a new modeling to the VMI problem
& Employing a meta-heuristic algorithm to solve the new

VMI model
& Calibrating the parameters of the proposed meta-heuristic

algorithm to obtain better near optimum solutions.

The rest of the paper is organized as follows: In Section 2,
the problem is defined in more details. Section 3 is dedicated
to the mathematical formulation of the problem. The proposed
GA is developed in Section 4. The test problems, the param-
eters tuning, and the computational results are discussed in
Section 5. Finally, in Section 6, conclusions are provided and
some areas of further research are proposed.

2 The problem definition and assumptions

In a supply chain without VMI, the vendor observes consumer
demand only indirectly through the buyer’s ordering policy. In
fact, the buyer appears to be the “leader” in this relationship
and the vendor just takes the order quantity from the buyer and
makes the necessary delivery, not having any responsibility
for the production holding. Now two parties decide to adopt a
VMI system, e.g., the buyer no longer manages its inventory
system and leaves it to the vendor to determine inventory
levels, order quantities, lead times, etc. In a supply chain with
VMI, the vendor’s information system directly receives con-
sumer demand data. As a result, the vendor has now the
combined inventory with order setup and holding cost [9].
The vendor with regard to his own inventory cost that equals
to the total cost of the supply chain determines the timing and
the quantity of production in every cycle. The major differ-
ence between not using and using VMI is that the vendor
determines the buyer’s order quantity in a VMI system [32].
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The problem at hand arises from a single-buyer single-
vendor inventory control environment that uses the VMI
system. In this problem, there are several products and the
EPQ model is utilized with practical instances of finite pro-
duction rate, backorders, limited warehouse space, limited
number of orders, and limited budget. Moreover, compared
to programming cycles that can be months or year, the lead
time that is less than a day can be neglected and that the selling
prices are constant during the programming horizon. The
objective is to find the products’ order quantities and their
maximum backorder levels per cycle such that the total VMI
inventory cost is minimized while the constraints are satisfied.

In short, the following assumptions are used for the math-
ematical formulation of the problem:

(a) There is a single-vendor single-buyer supply chain based
on vendor–buyer’s perspective.

(b) There are n products.
(c) The planning horizon is infinite.
(d) For each product, shortage is allowed and backorderedbπ ≠ 0 and π ¼ 0ð Þ .
(e) Deliveries of the orders are assumed instantaneous, that

is, the lead time is zero.
(f) The selling prices of all products in the planning period

are fixed (the quantity discount is not allowed).
(g) The production rate for all products is continuous and

finite (EPQ model), where in each cycle we have TP j

(period of production) and TD j (period of idleness without

any production).
(h) The costumer’s demand rate for all products is known

and constant.
(i) The vendor’s storage capacity for all products is limited

(not more than F).
(j) The total available budget of the system is limited (not

more than X).
(k) The total number of orders for all products is limited (not

more than M ).

3 Mathematical model

The following notations are used to model the problem at hand:

3.1 Notations

For j =1,2,…,n , define the parameters and variables of the
model as:

Parameters

AVj The vendor’s fixed ordering cost per order of the j th
product

ABj The buyer’s fixed ordering cost per order of the j th
product

Dj The buyer’s demand rate of product j in a period
Pj The production rate of product j in each period
π The fixed backorder cost per unit (not depending

on the time)bπ The fixed backorder cost per unit per time unit
hBj The holding cost of product j per unit held in the

buyer’s store in a period (hBj=iCj)
i The fixed interest rate (rate of the holding cost that

is not dependent on the time)
Cj The buyer’s procurement cost per unit of product j
f j Space occupied by each unit of product j
F The vendor’s available storage capacity for all

products
M The total number of orders for all products in each

cycle
X The total available budget in each cycle
n The number of products

Variables

Qj The order quantity of product j in a cycle
bj The maximum backorder level of product j

in a cycle
TCVMI The total inventory costs of the VMI supply

chain
KBno VMI The buyer’s inventory cost before utilizing

the VMI system
KBVMI The buyer’s inventory cost after utilizing the

VMI system
KVno VMI The vendor’s inventory cost before VMI
KVVMI The vendor’s inventory cost after VMI

The inventory graph of the problem at hand is similar to the
one of the EPQ model and is given in Fig. 1, where TP j

denotes period of production and TD j indicates period of

idleness (without any production). In this graph, at the start
of the first cycle (time=0), both the inventory and the
backorder are assumed zero.

bj

Time

Inventory

Dj

Cycle

Pj – Dj

TPj

TDj

Fig. 1 The inventory graph of the problem (EPQ with shortage)
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3.2 The inventory cost of the non-VMI supply chain

Referring to Cardenas-Barron [3], the inventory costs of the
buyer and the vendor before implementation of the VMI
system is calculated as follows:

KBnoVMI ¼
X
j¼1

n Dj

Qj
AB j þ

bπþ hB j

2ρ jQ j
b2j−hB jb j þ

hB jρ j

2
Qj

 !
ð1Þ

KVnoVMI ¼
X
j¼1

n Dj

Qj
AV j ð2Þ

where ρ j ¼ 1 − D j

P j

� �
.

We note that the near optimal values of the order quantities
(Qj) and the backorder levels (bj) for the non-VMI chain are
determined by the buyer using Eq. (1) and there is no role for
the vendor. The total cost of the non-VMI supply chain is
obtained by summation of the inventory costs of the buyer and
the vendor. While the first term in Eq. (1) shows the ordering
cost, the other terms refer to shortage and holding costs. Note
that the ordering cost is assumed proportional to the number of
orders and that the holding and shortage costs are obtained
based on the areas under the inventory and shortage in
Fig. (1). Besides, Eq. (2) models the ordering cost involved
in vendor’s inventory.

3.3 The inventory cost the VMI supply chain

After the implementation of VMI, the inventory costs of both
the buyer and the vendor, and hence the total inventory costs
of the integrated supply chain, are calculated as follows:

KBVMI ¼ 0 ð3Þ

KVVMI ¼
X
j¼1

n Dj

Qj
AV j þ

X
j¼1

n AB jDj

Qj
þ bπþ hB j

2ρ jQ j
b2j−hB jb j þ

hB jρ j

2
Qj

 !
ð4Þ

TCVMI ¼ KBVMI þ KVVMI

¼
X
j¼1

n Dj

Qj
AV j þ AB j

� �þ bπþ hB j

2ρ jQ j
b2j−hB jb j þ

hB jρ j

2
Qj

" #
ð5Þ

Equations (3), (4), and (5) have a theoretical contribution in
a sense that after the VMI implementation, the buyer no longer
manages its inventory and leaves it to the vendor to determine
inventory levels, order quantities, and lead time. Note that the
explanations made on the derivation of the terms in Eq. (1) can
also be used for the terms in Eq. (5).

Now, the goal is to determine the values of the produc-
tion order quantities and the maximum backorder level
(determined by the vendor) in a cycle such that the total

cost of the supply chain under VMI system [given in Eq. (5)]
is minimized while the constraints are fulfilled. The con-
straints are:

1. The capacity of the vendor’s warehouse space to store the
items is limited.

2. The total number of order for all items is limited.
3. The total available budget is limited.

Incorporating the constraints, Eq. (5) becomes

Min TCVMI ¼
X
j¼1

n Dj

Qj
AV j þ AB j

� �þ bπþ hB j

2ρ jQ j
b2j−hB jb j þ

hB jρ j

2
Qj

 !

s:t: X
j¼1

n

ρ j f jQ j≤ F

X
j¼1

n Dj

Qj
≤M

X
j¼1

n

C jQj≤X

hBj ¼ iC j

ρ j ¼ 1−
Dj

P j

� �
Qj; bj≥0 ; j ¼ 1;…; n ð6Þ

In the next section, we will present an algorithm to solve
model (6).

4 A solution algorithm

The formulation given in Eq. (6) is a nonlinear-programming
model. The nonlinear programming characteristic causes the
model to be adequately hard to solve by exact methods [11].
Accordingly, a meta-heuristic search algorithm is needed to
solve the model.

Over the last 30 years, there has been a growing interest in
problem solving systems based on the principles of evolution
and heredity. One type of evolutionary systems is the GA; a
random evolutionary search algorithm that mimics the
principles of natural genetics. GA, introduced by Holland
[12], works differently compared to the classical search

1 2 n…

Q …[Q1 Q1 Qn

b …[b1 b1 bn

]

]

Fig. 2 A typical chromosome
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and optimization methods. Due to its broad applicabili-
ty, ease of use, and global perspective, GA has been
increasingly applied to various search and optimization
problems.

Recently, GA has been receiving great attention, and it has
successfully been applied to other problems in the supply
chain environment (see, for example, [5,24–26,30]). Since
genetic algorithm has been successful in solving models sim-
ilar to the model in Eq. (6) [11], it will be utilized to solve it in
the following subsections.

4.1 GA algorithm in general and initial conditions

In general, a real-coded GA algorithm works in the following
steps:

1. Initialization

1-1. Parameter setting (the probabilities of crossover and
mutation operations, PC,Pm, stopping criterion,
population size, selection strategy, crossover oper-
ator, mutation operator, and number of generation)

1-2. Initialize population (randomly)
2. Fitness evaluation

Repeat
3. Individual selection for mating pool (size of mating pool=

population size)
4. Crossover operation (for each consecutive pair apply

crossover with probability PC). We use the roulette wheel
selection for this operation.

5. Mutate children (for each new generation apply mutation
with probability Pm)

6. Replace the current population by the resulting mating
pool

7. Fitness evaluation (determining the minimum of the total
cost of the VMI supply chain) until a stopping criterion is
met.

Furthermore, the required initial information to start the
GA is:

1. Population size: It is the number of the chromosomes
or scenarios that we will keep in each generation, denoted
by NC.

2. Crossover rate: This is the probability of performing a
crossover in the GA method, denoted by PC.

3. Mutation rate: This is the probability of performing mu-
tation in the GA method denoted by Pm.

4.2 Chromosome

GA is known as a problem-independent approach; however,
the chromosome representation is one of the critical issues
when applying it to optimization problems.

178 250 138 955 208          178 250 146 326 489

565 148 146 326 489           565 148 138 955 208

Parents offspingFig. 3 An example of the
crossover operation

[(827) 250 318 (595) 208]

[(595) 250 318 (827) 208]

before

after

Fig. 4 An example of the swapping mutation operation

Table 1 The input data for the test problems

Item(j) Dj Pj AV j AB j

Cj f j

1 420 430 1 3 13 3

2 360 360 2 2 30 2

3 540 550 3 1 23 3

4 390 400 5 4 6 1

5 480 480 2 2 13 4

6 510 530 4 2 20 3

7 530 535 1 3 16 2

8 380 385 2 1 10 1

9 430 435 3 4 6 3

10 580 585 4 2 26 4

11 420 430 1 3 13 3

12 360 360 2 2 30 2

13 540 550 3 1 23 3

14 390 400 5 4 6 1

15 480 490 2 2 13 4

16 510 530 4 2 20 3

17 530 535 1 3 16 2

18 380 390 2 1 10 1

19 430 440 3 4 6 3

20 580 590 4 2 26 4

F ¼ 100; 000;M ¼ 60;X ¼ 470; 000; i ¼ 0:3;π ¼ 0; bπ ¼ 3
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In the proposed GA method, a matrix of two rows and n
columns represents a chromosome. The elements of the first
row show the order quantities of the products and the elements
of the second row indicate the maximum backorder levels
of the products. Figure 2 shows the general form of a
chromosome.

4.3 Evaluation

In a GA method, as soon as a chromosome is generat-
ed, a fitness value is needed to be assigned for it. In an
optimization problem, the fitness value is determined by
evaluating the objective function based on the given
elements of the chromosome. Since there are limits on
the storage capacity, total number of orders, and budget
in the model of the problem given in Eq. (6), some
generated chromosomes may not be feasible. In order to
control infeasible solutions, although there are different ways
such as the penalty policy [11], since the solution for model
(6) requires a large-size population, in this research, an
infeasible chromosomewill be removed from the pool as soon
as generated.

4.4 Initial population

In this stage, a collection of chromosomes is randomly
generated.

4.5 Crossover

In a crossover operation, it is necessary to mate pairs of
chromosomes to create offspring. We perform this by
selecting a pair of chromosomes from the generation randomly
with probability PC. There are many different types of cross-
over operators such as one-, two-, multiple-point, uniform,
linear, blend, or simulated binary codes. In this research, based
on a pilot study using trial and error, the following one-point
crossover has been found the most effective operator:

(a) Choose a random point
(b) Split parents at the selected crossover point
(c) Create children by exchanging tails

Figure 3 shows a graphical representation of the crossover
operation for the order quantity row of the chromosome

Table 2 The initial results for small-size test problems by GA

Index of test
problems

PC Pm NC n Fitness
(minimum)

1 0.45 0.005 70 3 6,519.47

2 0.49 0.009 80 3 6,340.51

3 0.52 0.013 90 3 6,152.14

4 0.56 0.017 100 3 5,338.34

5 0.59 0.021 110 3 8,627.28

6 0.63 0.025 120 3 7,206.43

7 0.66 0.029 130 3 7,188.82

8 0.70 0.033 140 3 6,422.51

9 0.73 0.037 150 3 7,311.14

10 0.77 0.041 160 3 8,830.32

11 0.80 0.045 170 3 6,913.98

12 0.84 0.049 180 3 8,158.60

13 0.45 0.005 70 5 5,585.51

14 0.49 0.009 80 5 8,081.41

15 0.52 0.013 90 5 7,482.84

16 0.56 0.017 100 5 7,938.98

17 0.59 0.021 110 5 5,472.17

18 0.63 0.025 120 5 6,198.48

18 0.66 0.029 130 5 7,593.73

20 0.70 0.033 140 5 7,807.91

21 0.73 0.037 150 5 5,941.89

22 0.77 0.041 160 5 6,751.67

23 0.80 0.045 170 5 7,471.12

24 0.84 0.049 180 5 6,463.37

Table 3 The initial results for medium-size test problems by GA

Index of test
problems

PC Pm NC n Fitness
(minimum)

1 0.45 0.005 70 8 10,585.76

2 0.49 0.009 80 8 13,463.06

3 0.52 0.013 90 8 10,087.05

4 0.56 0.017 100 8 8,984.82

5 0.59 0.021 110 8 12,098.35

6 0.63 0.025 120 8 9,420.12

7 0.66 0.029 130 8 19,109.75

8 0.70 0.033 140 8 11,325.97

9 0.73 0.037 150 8 10,350.13

10 0.77 0.041 160 8 17,159.48

11 0.80 0.045 170 8 20,131.62

12 0.84 0.049 180 8 19,319.53

13 0.45 0.005 70 10 10,168.09

14 0.49 0.009 80 10 17,258.73

15 0.52 0.013 90 10 18,998.75

16 0.56 0.017 100 10 19,076.90

17 0.59 0.021 110 10 10,132.49

18 0.63 0.025 120 10 16,532.39

18 0.66 0.029 130 10 16,796.93

20 0.70 0.033 140 10 9,504.57

21 0.73 0.037 150 10 26,325.27

22 0.77 0.041 160 10 16,738.38

23 0.80 0.045 170 10 14,947.45

24 0.84 0.049 180 10 22,029.88
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matrix when n =5. The exchanged tails in the offspring
are shown in parentheses. A similar crossover operator
can be depicted for the maximum backorder level as
well.

4.6 Mutation

Mutation is the second operation in the GA methods for
exploring new solutions. In this operation, a chromosome of
the generation is first randomly selected, and then is used
for the mutation. While there are other types of mutation
like the random mutation [19], in this research, the swap
operator, in which the places of two randomly selected
genes are exchanged, is used [1]. Figure 4 shows a
graphical representation of the mutation operation by
swapping when n =5. The randomly selected genes are
shown within parentheses.

4.7 Chromosome selection

In genetic algorithm, the selection operator is used to guide
the search process towards more promising regions in a

search space. In this research, the roulette wheel procedure
is employed to select the chromosomes, in which better
solutions get higher chance to become parents of the next
generation solutions. This selection is based on the fitness
value of each chromosome. We select NC chromosomes
among the parents and offspring with the best fitness
values.

4.8 Stopping criterion

The last step in the methodology is to check if the method
has found a solution that is good enough to meet the
user’s expectations. Stopping criteria is a set of conditions
such that when the method satisfies them, a good solution
is obtained. In this research, we stop after 600 generations.
We note that the number of generations depends on the
problem size.

Table 4 The initial results for large-size test problems by GA

Index of test
problems

PC Pm NC n Fitness
(minimum)

1 0.45 0.005 70 17 22,200.67

2 0.49 0.009 80 17 20,594.46

3 0.52 0.013 90 17 30,476.86

4 0.56 0.017 100 17 22,342.36

5 0.59 0.021 110 17 39,177.78

6 0.63 0.025 120 17 25,021.81

7 0.66 0.029 130 17 31,293.48

8 0.70 0.033 140 17 16,103.66

9 0.73 0.037 150 17 17,275.84

10 0.77 0.041 160 17 18,559.15

11 0.80 0.045 170 17 26,800.53

12 0.84 0.049 180 17 35,142.35

13 0.45 0.005 70 20 26,738.04

14 0.49 0.009 80 20 29,971.93

15 0.52 0.013 90 20 21,559.58

16 0.56 0.017 100 20 67,837.56

17 0.59 0.021 110 20 39,581.15

18 0.63 0.025 120 20 22,249.81

18 0.66 0.029 130 20 14,725.20

20 0.70 0.033 140 20 35,413.43

21 0.73 0.037 150 20 40,720.66

22 0.77 0.041 160 20 20,989.57

23 0.80 0.045 170 20 42,879.01

24 0.84 0.049 180 20 61,013.43

Table 5 Summarized GA output for three problem sizes (the minimum
fitness values)

PC Pm NC n Fitness

Small 0.56 0.017 100 3 5,338.34

0.59 0.021 110 5 5,472.17

Medium 0.56 0.017 100 8 8,984.82

0.70 0.033 140 10 9,504.57

Large 0.70 0.033 140 17 16,103.66

0.66 0.029 130 20 14,725.20

Table 6 Summarized SAS output (backward elimination) for three prob-
lem sizes

Size of problems Variable Estimate

Small (n =3 and 5) Intercept −605,707
x1 1,485,775

x4 148,509

x1x2 −5,949,2635
x1x4 −359,969
x2x3 205,026

x1x2x4 1,435,0216

x2x3x4 −49,368
Medium (n =8 and 10) Intercept 3,558.13261

x1x4 1,974.95182

Large (n=17 and 20) Intercept −30,633
x4 −31,898
x1x4 84,055

x1x2x4 −1,694,569
x1x2x3x4 4,748.21409
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5 Numerical examples

In order to demonstrate the application of the proposed
methodology and to study its performances, some numeri-
cal examples as test problems are given in this section.
Based on the size and hence the required computer CPU time,
these examples are classified into three categories of small,
medium, and large. The input data of the numerical examples
for small (n=3 and 5 products), medium (n=8 and 10 products),
and large-size (n=17 and 20 products) test problems are given
in Table 1. For all products of these problems bπ and π are
assumed 3 and 0, respectively. Furthermore, the total available
budget is 470,000, the total available warehouse space is
100,000, a maximum of 60 orders can be placed, and the interest
rate for holding the items is 0.3.

The GA to solve Eq. 6 was coded in MATLAB 7.6.0.324
software. All the test problems are solved on a Pentium 4
computer with 512 MB RAM and 2.40 GHz CPU. Prior to
GA implementation to obtain near optimum solutions,
its parameters are first calibrated. Similar to Pasandideh
et al. [25, 26], the empirical optimization of tuning GA
parameters of this research is made of two main steps.
First, a significant relationship between the fitness func-
tion and the GA parameters is estimated using a regres-
sion approach. Second, the optimal values of the param-
eters are found by solving a constrained optimization
model that involves the estimated relationship. The con-
straints are simply the lower and the upper bounds of
the parameters.

The steps involved in solving the numerical examples
based on Eq. (6) are as follows:

& Obtain an initial solution using the MATLAB software
& Find the significant GA parameters using the backward

elimination regression algorithm by SAS software
& Determine the near optimal values of the GA parameters

using the NLP routine of the LINGO software
& Obtain near optimal solutions of Qj and b j by the

parameter-tuned GA using the MATLAB software.

5.1 Obtaining an initial solution

The initial results for small, medium, and large-size test prob-
lems are summarized in Tables 2, 3, and 4, respectively.
Table 5 shows the summarized output for the three problem
classes, where NC denotes the number of chromosomes and
the fitness function values are recorded as the minimum
fitness obtained by 10 times running of the developed GA.

5.2 Finding the significant GA parameters

Applied researchers frequently use automated variable selec-
tion methods to identify significant independent predictors of
an outcome or for developing parsimonious regressionmodels
[20]. Several methods may be used in selecting the appropri-
ate subset of variables for a regression model involving mul-
tiple independent variables. In these methods, the lengthy and
cumbersome procedure of utilizing the “all possible regres-
sions” is usually avoided. Instead, stepwise-type procedures
are followed, which involve evaluating a small subset of
regression models by adding, deleting, or simultaneously
adding and deleting regressors one at a time [22]. These
methods are known as forward selection, backward

Table 7 The results of solving the regression functions by LINGO

The size of problems GA parameters and variable Optimal value

Small (n =3 and 5) x1 0.8500000

x2 0.5000000E−01
x3 70.00000

x4 3.000000

Medium (n =8 and 10) x1 0.4500000

x2 0.5000000E−02
x3 70.00000

x4 8.000000

Large (n=17 and 20) x1 0.4500000

x2 0.5000000E−01
x3 70.00000

x4 20.00000

Table 8 The near optimal results
for small-size problems by GA PC Pm NC n Qj bj Fitness CPU t

0.85 0.05 70 3 202.98, 829.28, 202.98 13.51, 20.26, 15.76 2,223.48 22.71

Table 9 The near optimal results for medium-size problems by GA

PC Pm NC n Qj bj Fitness CPU
t

0.45 0.005 70 8 402.14, 822.60,
240.19,
822.60,
809.16,
105.52,
402.14,
434.17

14.41, 16.46,
17.49,
13.38,
12.35,
18.52,
18.18,
13.03

5,383.45 24.08
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elimination, and stepwise regression methods, respectively.
The backward elimination algorithm is often less adversely
affected by correlations among the regressors than are other
methods [22]. The forward selection method is generally
used to provide initial screening of a large number of
independent and important variables, especially when
multicollinearity is considered as a potential problem.
Whereas when modest-sized set of independent variables
are used backward elimination procedure is more effi-
cient and helps to fine tune the model and may result in
overall high R 2 value [28].

In this research, the GA parameters are PC, Pm, and NC,
which are represented by x1, x2, and x3 for convenience. More-
over, since the number of products (n) affects both the quality of
the near optimum solution and the required CPU time, another
variable (x4 for convenience) is considered in finding the near
optimal solution. Then, the backward elimination procedure of
the SAS 9.1 software using a quadratic regression model was
employed to find the significant parameters of the GA method.
A sample of the quadratic regression function along with the
variables used in the problems (by Lingo software) is as follows.

The quadratic regression function is:

The SAS variables are:

Where Y denote the estimated fitness function and β i

(i =0–19) denotes the estimated coefficients, respectively.
The initial results of GA (Tables 2, 3, and 4) were used as

input data for the SAS software. After running the backward
elimination procedure for each test problem sizes, significant
GA parameters were determined and are summarized in

Table 6. Based on the results of this table, the estimated
regression functions are

Y small ¼ −605; 707þ 1; 485; 775x1þ 148; 509x4

−59; 492; 635x1x2−359; 969x1x4þ 205; 026x2x3

þ 14; 350; 216x1x2x4−49; 368x2x3x4

ð8Þ

Ymedium ¼ 3; 558:13261þ 1; 974:95182x1x4 ð9Þ

Y large ¼ −30; 633−31; 898x4 þ 84; 055x1x4

−1; 694; 569x1x2x4þ 4; 748:21409x1x2x3x4

ð10Þ

where Y small, Ymedium, and Y large denote the estimated fitness
functions of the small, the medium, and the large-size prob-
lems, respectively.

5.3 Determining the optimal values of the GA parameters

The decision variables of the optimization models in Eqs. (8),
(9), and (10) are the parameters of GA. In a typical GA
procedure, the ranges of the parameters are usually as-
sumed to be 0.45≤x1≤0.85, 0.005≤x2≤0.05, and 70≤x3≤

Table 10 The near optimal results
for large-size problems by GA PC Pm NC n Qj bj Fitness CPU t

0.45 0.05 70 20 479.68, 627.16, 329.75,
329.75, 1,839.90,
329.75, 479.68, 329.75,
1,186.73, 798.91, 798.91,
627.16, 1,275.02, 329.75,
1,979.50, 479.68,
1,401.77, 627.16, 627.16,
479.68

21.95, 28.71, 30.40, 20.26,
21.39, 27.02, 29.83,
24.21, 24.21, 32.65,
23.64, 30.40, 27.02,
21.95, 29.83, 28.71,
21.39, 20.26, 23.64,
32.65

11,982.71 44.23

ð7Þ
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180 [21]. Besides, x4 takes various ranges for different
problem sizes. Based on these ranges, the LINGO 8.0
software is employed to solve the regression functions
given in Eqs. (8), (9), and (10). The models along with
the results for small, medium, and large-size problems
along with the optimal values of the GA parameters are
summarized in Table 7.

5.4 The near optimal solution

The parameter-tunedGA of Section 5.3 is used to find the near
optimal values of the order quantities and the maximum
backorder levels of the products in different test problems.
For example, regarding what was derived in Table 7, the near
optimal results for small-, medium-, and large-size problems
using the MATLAB software are presented in Tables 8, 9 and
10, respectively. In order to increase the probability of finding
a good near optimum solution, the product units are as-
sumed to take continuous values. As a result, in Tables 8,
9, and 10, the near optimal values of the order quantity

(Qj) and the maximum backorder level (bj) are fractional.
In this table, “CPU t” denotes the CPU time of solving the
problem in second. In this case, the decision maker can
either use mathematical approach or take managerial opinion
to change them into integers for practical usages. Figures 5, 6,
and 7 show the trend of the fitness value optimization of the
parameter-tuned GA for small-, medium-, and large-size prob-
lems, respectively.

5.4.1 The difference in fitness value (cost saving)

To examine the percentage of the fitness value reduction (cost
savings) obtained by the implementation of the parameter
tuning process of Section 5.4 define

Cost saving percentage ¼ TCinitial−TCtuned

TCinitial
� 100 ð11Þ

where TCinitial denotes the near optimal total inventory cost
obtained by the untuned GA (Table 5) and TCtuned shows the

Fig. 5 The trend of the fitness
value optimization for small-size
problems

Fig. 6 The trend of the fitness
value optimization for medium-
size problems
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near optimal total inventory cost of the parameter-tuned GA
(Table 10). Then, based on the results of Tables 5 and 10, for
large-size problems, we have

Cost saving large sizeð Þ ¼ 14; 725:20−11; 982:71
14; 725:20

� 100 ¼ 18:62%

ð12Þ

In other words, the proposed fine-tuning process results in
18.62 % reduction in the total inventory cost of the VMI
supply chain.

5.5 Justification of the obtained results

To compare the efficiency of the proposedGA in terms of both
the fitness function value and CPU time of execution, the
models are solved by the LINGO software as well. In each
problem, 24 instances of small, medium, and large are solved
by the two methods and the average of fitness value and CPU
time are obtained. The results that are summarized in Table 11
show that the proposed GA is more efficient than the LINGO
software. More specifically, while both procedures obtain the
solutions with almost the same quality, GA requires less CPU
time.

6 Conclusions and future research

In this research, the VMI system of a single-buyer single-
vendor supply chain, in which there are several products, the
EPQ model with finite production rate is considered, shortage
is allowed in backorder case, there are limited warehouse
spaces, limited budget, and limited number of orders, was first
modeled and shown to be of a nonlinear programming type.
The objective was to determine the order quantities and the
maximum backorder levels of the products such that the total
VMI inventory cost of the supply chain is minimized and the
constraints are satisfied. A GA-based heuristic was then pro-
posed to solve the developedmodel. Next, numerical examples
were presented to demonstrate the application of the proposed
methodology, to find the significant parameters of the pro-
posed GA, and to find the optimal values of the significant
parameters. Finally, the parameter-tuned GAwas run to obtain
the near optimal values of the decision variables. The results of
the numerical example on large-size test problems showed that
an impressive cost savings was obtained by tuning the param-
eters of the proposed GA. Furthermore, to justify the quality of
the obtained results by proposed GA, some problem instances
were also solved by the LINGO software. The results of the
comparison study (GAwith LOINGO) showed that, while the
proposed method finds solutions very close to optimum, it
requires much less CPU time.

For future researches in this area, we recommend the
following:

(a) In addition to the storage capacity, total number of orders,
and total available budget limitations, we may consider
other constraints such as service rates.

(b) Other search-heuristic algorithms such as simulated an-
nealing may also be employed to solve the nonlinear
programming model of the problem. In this regards, a
comparison study may be conducted to assess the effec-
tiveness of the proposed GA.

(c) Instead of backorder assumption, one may consider the
lost sale, too.

d) Some other assumptions such as nonzero lead-time can be
incorporated to the problem at hand.

(e) There may be quantity discounts on the selling prices of
the products.

(f) A multi-echelon supply chain in the context of VMI may
be of interest to be investigated.
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