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The planning phase of every construction project is entangled with multiple and occasionally conflicting
criteria which need to be optimized simultaneously. Multi-criterion decision-making (MCDM)
approaches can aid decision-makers in selecting the most appropriate solution among numerous
potential Pareto optimal solutions. An evidential reasoning (ER) approach was applied for the first time
in the context of project scheduling to identify the best Pareto solution for discrete time–cost–quality
trade-off problems (DTCQTPs). An exhaustive framework to synthesize the MCDM approaches with
multi-objective optimization techniques was also proposed. To identify all global Pareto optimal
solutions, a multi-objective genetic algorithm (MOGA) incorporating the NSGA-II procedure was
developed and tested in a highway construction project case study. The Shannon’s entropy technique
served to determine the relative weights of the objectives according to their contributions to the
uncertainty of the results obtained. A benchmark case study of DTCQTP was solved using the proposed
methodology, and the Pareto optimal solutions obtained were subsequently ranked using the ER
approach. By investigating the performance of each scheduling alternative based on multiple
criteria (e.g., time, cost, and quality), the proposed approach proved effective in raising the efficiently
of construction project scheduling.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Construction projects are frequently complicated by circum-
stances in which decision-makers need to narrow down potential
alternatives, and decide on an optimal solution, which represents
a compromise between various objectives that can often be con-
flicting. Multi-objective optimization techniques are a convenient
and accessible approach that allows for the simultaneous and
robust optimization of conflicting and often non-commensurable
objectives. In real practice, it is not advisable to arrive at a decision
which is grounded on only meeting a single criterion during the
decision-making process. This demonstrates the necessity of using
multi-criterion assessment approaches to reach a solution that sat-
isfies all the expectations of the decision-makers (DMs) with an
acceptable degree of satisfaction. Decisions made during the con-
ceptual design phase of construction engineering projects have
an influential role in the overall cost and performance of a project,
and in turn this can lead to significant savings if multi-objective
optimization is implemented (Mela, Tiainen, Heinisuo, & Baptiste,
2012).

In every construction project, one of the primary challenges is
scheduling its execution. Project scheduling problems (PSPs) are
therefore a critical part of a project’s overall success, especially in
terms of managing organizational resources (Tavana, Abtahi, &
Khalili-Damghani, 2014). Many operations research studies have
focused on PSPs, and a diverse array of optimization techniques
have been employed in an attempt to solve these problems
(Zhou, Love, Wang, Teo, & Irani, 2013). Discrete time–cost–quality
trade-off problems (DTCQTPs) are a branch of PSPs where a
project’s network of activities is represented on a node network.
While being constrained by relations to preceding/succeeding
activities, each individual activity in the project network possesses
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various execution modes. The correlation between time, cost, and
quality for each activity execution mode is expressed via a point
by point definition (Sonmez & Bettemir, 2012; Xu, Zheng, Zeng,
Wu, & Shen, 2012).

Using exact solution algorithms such as linear programming,
integer programming, and others to solve complex project schedul-
ing networks in the DTCQTPs, is both computationally costly and
time consuming. Because exact algorithms require very thorough
modeling with various equality and inequality constraints,
DTCQTPs are known as NP-hard problems (De, Dunne, Ghosh, &
Wells, 1997). Three main categories of DTCQTPs-solving
procedures can be identified: (a) exact algorithms, e.g., linear
programming, integer programming, dynamic programming, and
branch and bound algorithms, etc. (Erenguc, Ahn, & Conway,
2001; Moselhi, 1993); (b) heuristic algorithms (Vanhoucke,
Debels, & Sched, 2007); and (c) meta-heuristic algorithms (Afruzi,
Najafi, Roghanian, & Mazinani, 2014; Afshar, Kaveh, & Shoghli,
2007; Geem, 2010; Mungle, Benyoucef, Son, & Tiwari, 2013;
Tavana et al., 2014; Zhang & Xing, 2010). Numerous multi-objec-
tive optimization techniques have been used to solve DTCQTPs,
and their resultant optimal Pareto solutions have been generated,
plotted, and widely reported (El-Rayes & Kandil, 2005). However,
no attempt has been made to aid decision-makers in selecting a
solution which satisfies the objectives within an acceptable degree.
Owing to the multidisciplinary nature of scheduling problems
which are closely entwined with various non-commensurable
multiple criteria, determining which solution is the best choice
to be implemented can be a difficult task. Multiple criteria decision
making (MCDM) methods provide an efficient means for support-
ing the choice of the preferred Pareto optimum (Mela et al.,
2012). In this study, an MCDM approach was amalgamated with
multi-objective optimization methods to capitalize on the strength
of optimization methods in finding Pareto optimal solutions, and
the capability of MCDM techniques to rank them.

The aim of MCDM methods is to assist DMs in order to facilitate
the process of organizing and synthesizing the required informa-
tion in an assessment, so that DMs are satisfied and confident with
their decision (Løken, 2007). While they differ in terms of their
theoretical background, formulation, questions, and types of input
and/or output (Hobbs & Meier, 1994), MCDM methods can be
classified into three main categories (Belton & Stewart, 2002): (a)
value measurement methods; (b) goal, aspiration, and reference
level methods; and (c) outranking methods.

In the value measurement method, each alternative is given a
numerical value which indicates the solution rank in comparison
with the others. Then, in trading off between multiple criteria,
different criteria are weighted according to DM-accepted criteria.
Multi-attribute utility theory (MAUT), proposed by Keeney and
Raiffa (1976), and analytical hierarchy process (AHP), proposed
by Saaty (1980), are examples of this category. Other iterative
procedures that emphasize solutions closest to a determined goal
or aspiration level fall into the second category. These include
the technique for order performance by similarity to ideal
solution (TOPSIS) and evidential reasoning (ER). In general, these
approaches are focused on filtering the most unsuitable
alternatives during the first phase of the multi-criterion
assessment process (Løken, 2007). In the outranking methods,
the alternatives are ranked according to a pairwise comparison,
and if enough evidence exists to judge that alternative a is
preferable to alternative b, then it is said that alternative a
outranks b. ELECTRE (Roy, 1991) and PROMETHEE (Brans, Vincke,
& Mareschal, 1986) are based on this ranking approach.

ER is an MCDM approach developed in the 1990s, which han-
dles ignorance or incomplete assessments as a type of probabilistic
uncertainty, fuzziness and vagueness, and qualitative/quantitative
attributes within a unified framework. The ER approach uses belief
structures, belief matrices, and a rule/utility-based grading tech-
nique to aggregate the information. The main advantage of this
procedure is that various types of data can be consistently modeled
within a unified procedure (Yang, Wang, Xu, & Chin, 2006). Unlike
most conventional MCDM approaches, information aggregation of
various types of attributes is based on a distributed assessment
framework and evidence combination rules drawn from the Demp-
ster–Shafer theory of evidence (Shafer, 1976). Yang and Xu (2002)
designed a Windows™-based user-friendly graphical environment
intelligent decision system (IDS), which incorporates the ER
approach, and is able to model, analyze, and report results in a flex-
ible interface. Thus, in this study, the ER approach was adapted to
provide an efficient means of ranking Pareto solutions and deter-
mining the most applicable solution.

Since each method draws on different types of inputs and gen-
erates equally different outputs, no direct approach can provide a
valid comparison of MCDM methods’ relative superiority. How-
ever, the most suitable approach is one that, while provided with
a user-friendly interface, more importantly best satisfies DMs, pro-
viding them sufficient confidence to translate their decisions into
actions (Løken, 2007). Numerous study reports have enumerated
the fundamental dissimilarities between different MCDM methods,
and investigated their individual applicability (Løken, 2007; Mela
et al., 2012; Opricovic & Tzeng, 2004). In general, most studies have
avoided comparing the strength of different approaches in ranking
alternatives, and have solved particular case studies using different
MCDM approaches without making any comment on the perfor-
mance of the different methods. This is due to the limitations stem-
ming from limited test problems; any judgment needs rational
justification to make such comparisons valid (Mela et al., 2012).

The application of MCDM approaches in optimization tech-
niques falls into two general domains (Chaudhuri & Deb, 2010):
(a) the use of MCDM with a given set of Pareto optimal solutions
obtained from multi-objective optimization; or (b) the integration
of MCDM into multi-objective optimization as a robust parallel
searching tool.

The latter application, implemented in the context of hybrid
energy systems (HESs), used a fuzzy TOPSIS-based decision
support system to analyze the Pareto front and find the best
solution (Perera, Attalage, Perera, & Dassanayake, 2013). Tanaka,
Watanabe, Furukawa, and Tanino (1995) proposed an interactive
genetic-algorithm-based decision support system to apply
multi-criterion optimization in selecting the best of many Pareto
solutions using a radial basis function network (RBFN). Hapke,
Jaszkiewicz, and Słowiński (1998) applied a discrete version of the
Light Beam Search (LBS) as an interactive search process seeking
the best of the project schedule amongst alternatives. In product
delivery scheduling the LBS has also been applied to minimizing
the dispersion of unloading and loading in the consignee warehouse
(Grajek, Kiciński, Bieńczak, & Zmuda-Trzebiatowski, 2014).

The second type of application has recently drawn the attention
of investigators seeking to develop a systematic approach to assist
the DM in seeking the most desirable solution within an interactive
framework to. An interactive multi-objective optimization tech-
nique, NIMBUS, requires the DM to classify objective functions into
5 different classes at the end of each iteration until an aspiration
level is met by the DM (Miettinen & Mäkelä, 1995). Kamalian,
Takagi, and Agogino (2004) combined an interactive evolutionary
computation (IEC) with existing evolutionary synthesis software
to design micro-machined resonators, employing human evalua-
tion of the final designs to evaluate the effectiveness of various
design alternatives. Chaudhuri and Deb (2010) proposed an inter-
active multi-objective optimization and decision-making system
employing evolutionary methods (I-MODE) to identify regions of
interest on the Pareto frontier and further. In this interactive
procedure, these regions were investigated until a desired level



S. Monghasemi et al. / Expert Systems with Applications 42 (2015) 3089–3104 3091
of satisfaction was attained. However, a review on the literature
shows that no attempt has ever been made to use an ER approach
to reduce the size of Pareto optimal solutions.

Decision-making is very common in various facets of engineer-
ing, and PSPs are no exception. In the few studies which have
applied MCDM methods to selecting the best Pareto solutions in
addressing PSPs, only the Pareto solutions are obtained, plotted
and reported. This was one of the issues that motivated the authors
of the present paper to apply MCDM methods in solving DTCQTP
with the goal of helping DMs select the best project schedule for
a given project. Apart from the research of Mungle et al. (2013),
in which the best solution was selected based on a fuzzy clustering
technique, no other study proposes a comprehensive framework to
integrate MCDM methods with multi-objective optimization tech-
niques to more efficiently schedule a construction project. The
present paper’s novel contributions includes a proposed DTCQTP
modeling skeleton encompassing a multi-objective genetic algo-
rithm (MOGA), modified for systematic handling of multi-criterion
assessment, along with an ER approach to rank the Pareto solu-
tions. In furtherance of demonstrating the compatibility and ability
of the proposed approach, a benchmark case study of DTCQTP is
solved, and the best Pareto solution identified.

Following a general description of the methodology with a
detailed framework, the present paper details the use of a multi-
objective genetic algorithm (MOGA) with NSGA-II procedures in
forming the Pareto sets employed in solving DTCQTP. There follows
a presentation of the Shannon entropy technique in obtaining the
associated relative normalized weights of each objective. Later,
an evidential reasoning (ER) approach is described in detail, and
the framework to integrate the MCDM approaches with multi-
objective optimization techniques, is also proposed in this section.
The modeling and formulations to solve DTCQTP are presented in
following section. In order to demonstrate the efficiency of the pro-
posed approach, a benchmark case study was solved and the global
Pareto solutions identified. The most appropriate solution with
respect to the expectations of the DMs, was derived using an ER
approach. In the same section, a comparison is made of the effi-
ciency of the results obtained through the proposed methodology
and those of Mungle et al. (2013). This comparison showed that
using the ER approach was highly effective in finding the optimal
solution. Concluding remarks and ideas for future research follow.
2. Methodology

The process of developing the proposed methodology (Fig. 1)
begins by setting up and gathering the required information
related to form the project scheduling network diagram. Further-
more, the multiple modes of each activity must be determined
considering the unavoidable constraints viz. the resource limita-
tion and the resource usage plans, technology limitations, various
construction methods, etc. Duration (time), as well as the cost
and quality of each activity can be quantified. The MOGA with
NSGA-II procedure is tailored to guide the algorithm to converge
the global Pareto optimal front. Each objective (e.g., time, cost,
and quality) will have different relative normalized weights. These
can be obtained using the Shannon’s entropy technique. In order to
relate the aforementioned objectives to the overall performance
criterion, a hierarchical structure can be developed with associated
computed weights to show how the overall performance can be
evaluated. In subsequent steps, the ER approach helps DMs evalu-
ate each alternative (Pareto solutions), assign overall utility scores
indicative of their degree of satisfaction with each alternative,
while considering all criteria simultaneously. Eventually, the Par-
eto solution with the highest corresponding utility score is selected
as the best solution.
2.1. Genetic algorithm

Various approaches have been implemented to deal with solv-
ing DTCQTP (Afshar et al., 2007; El-Rayes & Kandil, 2005; Mungle
et al., 2013; Tavana et al., 2014), but no explicit results of Pareto
solutions have been reported. Consequently, in this study, the
genetic algorithm (GA) was chosen to find the Pareto solutions.
The genetic algorithm (GA) is a stochastic search method
applicable to optimization problems which is based on biological
behavior (Wilson, 1997). In this study, one of the most popular
and widely-used metaheuristic algorithms, the multi-objective
genetic algorithm (MOGA), was used. El-Rayes and Kandil (2005)
also used MOGA to deal with a DTCQTP. Due to space limitations,
and since the MOGA procedures are widely known, the steps are
only briefly discussed below.

2.1.1. Initial population and chromosome representation
First proposed by Holland (1975), GA is a chromosome-based

evolutionary algorithm, which mimicking nature, attempts to seek
better offspring from a given evolving population during each sub-
sequent generation. The chromosome consists of cells which are
known as genes. In this paper, the position of the gene indicates
the number of the activity and the value of each gene represents
the option which is assigned for the activity execution mode.
Table 1 shows a sample chromosome with 6 activities.

The initial population of the algorithm is generated randomly,
allowing the entire range of possible solutions. The population size
is set at 300, a value selected based on preliminary model runs, but
sufficiently large to ensure convergence to the optimal solutions.
Gene values can only take values which do not violate the number
of options available for that activity (the upper limit). For example,
if activity number 3 has only 4 options, then the gene value of the
third position can be an integer in the interval of [1,4]. This repre-
sentation of the chromosome ensures that no chromosome leads to
a non-feasible solution, thus avoiding unnecessary computational
efforts and saving time.

2.1.2. Crossover and mutation operator
During each generation, similar to the natural evolutionary

process, a pair of ‘parent’ solutions is selected for breeding and
producing a pair of ‘children’. The crossover operator attempts to
reproduce a pair of ‘children’ which typically shares many of the
characteristics of its ‘parents’ (Eiben & Smith, 2003). The two point
crossover is selected as the crossover operator since it is shown to
be efficient in solving DTCQTPs (Mungle et al., 2013).

In order to preserve diversity within the newly generated
population one must generate a number of solutions which are
entirely different from the previous solutions. Analogous to
biological mutation, the mutation operator alters only one gene
in a chromosome to generate a non-identical ‘child’. In order to
alter the chromosomes a swap mutation operator is used to change
the values of two randomly selected genes in a chromosome (Eiben
& Smith, 2003). The upper limit for the values of the genes is the
only constraint which must be checked during the alteration of
each chromosome, otherwise non-feasible chromosomes are pro-
duced. If the value of a mutated gene violates the upper limit, it
is replaced by the maximum allowable value for that specific gene
to ensure that no ‘child’ leads to a non-feasible solution. Obviously,
since the lower limit value for all the genes is 1, there is no need to
check whether or not there is any value lower than 1.

2.1.3. Selection procedure for next generation
In multi-objective optimization problems, the selection proce-

dure is more complicated than in single-objective optimization
problems. Each Pareto-optimal solution represents a compromise
considering different objectives, such that the component of the



Fig. 1. Flowchart of the proposed methodology.
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corresponding vector of objectives cannot simultaneously be
improved (Mungle et al., 2013). Any improvement in an objective
requires at least one of the other objectives to be scarified, and
therefore a set of trade-offs exists. The improved non-dominated
sorting genetic algorithm (NSGA-II), proposed by Deb, Pratap,
Agarwal, and Meyarivan (2002), is an evolutionary algorithm used



Table 1
Structure of a chromosome.

Number of activity: 1 2 3 4 5 6
Execution mode: 3 2 4 3 2 1
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to generate sets of Pareto-optimal solutions. (Deb et al., 2002) in
solving a number of test problems showed the NSGA-II to outper-
form the Pareto Archive Evolutionary Strategy (PAES) and
strength-Pareto evolutionary algorithm (SPEA) in converging the
near true Pareto front and in maintaining diversity among the solu-
tions. Low computational requirements, an elitist approach, a par-
ameterless niching approach, and a simple constraint handling
procedure, are some of the features of NSGA-II that contribute to
its wide application in evolutionary algorithms. In the following
section, the NSGA-II procedure is explained in detail (Deb et al.,
2002).

NSGA-II uses a fast non-dominated sorting algorithm to form
non-dominated fronts F1; F2; . . . ; FR, in addition to considering a
fixed population size of N during each generation �t, which consists
of non-dominated fronts in a combined population of the parents
and offspring P�t . The next population P�tþ1 is filled starting with
solutions in F1, then F2, and so on. If k is the index of a non-
dominated front, Fk, so that jF1 [ F2 [ . . . [ Fkj 6 N and
jF1 [ F2 [ . . . [ Fk [ Fkþ1j > N then solutions from fronts
F1; F2; . . . ; Fk are placed in P�tþ1, and the remaining solutions
ðN � jP�tþ1jÞ are selected from the least crowded solutions. Let p�t

and q�t denote a pair of chromosome in �tth generation, and SP a
set of solutions that p�t dominates. Then if Q denotes the set of solu-
tions belong to (k + 1)th front, and nP and nq are the domination
counters indicating the number of solutions which dominates the
solutions p�t , and q�t , respectively; the pseudo-code of the identify-
ing the non-dominated fronts is as follows:
Fast non-dominated
sorting procedure:
For each p�t 2 P�t; set
SP = ; and nP = 0;

For each q�t 2 P�t;
If ðp�t � q�tÞ then
SP ¼ SP [ fq�tg
if p�t dominates q�t , then add q�t to the
set of solutions dominated by p�t .
Else if ðq�t � p�tÞ
then nP = nP + 1
if q�t dominates p�t , then increment the
domination counter of p�t .
If nP = 0 then
F1 ¼ F1 [ fp�tg
p�t belongs to the first front.
k = 1
 initialize the front counter.

While Fi – ;; Q = ;
 Q is used to store the members of

next front.

For each p�t 2 Fi
For each q�t 2 SP;
nP = nP � 1
If nq = 0 then
Q ¼ Q [ fq�tg
q�t belongs to the next front.
k = k + 1; Fi ¼ Q
In NSGA-II the crowding distance, I½p�t �distance is an estimation of
the density of solutions surrounding solution p�t in the population.
Finally, the crowded-comparison operator (�n) guides the selec-
tion procedure at various stages of the algorithm towards a uni-
formly spread-out Pareto-optimal solution (Konak, Coit, & Smith,
2006). More specifically, between two solutions that belong to dif-
ferent fronts, the solution within the lower front is preferred, and if
they are in the same front then the one with the lower crowding
distance is judged to be superior. Let I represents the set of all
non-dominated solutions where, jIj = l, and f max

m and f min
m denote

the maximum and minimum values of the mth objective function,
respectively. The pseudo-code of crowding distance calculation is
then:
Crowding distance assignment
procedure:
l = jIj
 number of solutions in
I.
For each p�t ; I½p�t �distance ¼ 0
 initialize the distance.

For each objective m
 sort using each

objective value and set
the distance of first
and last points equal
to infinity.
I = sort(I,m);I[1]distance = I[l]distance =1

For p�t ¼ 2 to (l � 1)
 for all remaining

points distance will be
calculated.
I½p�t �distance ¼ I½p�t �distanceþ
ðI½p�tþ1�;m � I½p�t�1�;mÞ=ðf max

m � f min
m Þ
The NSGA-II procedure after obtaining the non-dominated
fronts and crowding distances proceeds as follows:
NSGA-II procedure:
F ¼ fF1; F2; . . . ; FRg
 sort non-dominated fronts
in F.
P�tþ1 ¼ ; and k = 1

While jP�tþ1j þ jFkj 6 N
 until the parent population

is filled include kth front in
the parent population.
P�tþ1 ¼ P�tþ1 [ Fk and k = k + 1

SortðFk;�nÞ
 sort using crowded-

comparison operator.

P�tþ1 ¼ P�tþ1 [ Fk½1 to ðN � jP�tþ1jÞ�
 choose the first ðN � jP�tþ1jÞ

elements of Fk.
2.1.4. Termination criterion
In order to stop the algorithm, a termination criterion repre-

senting the maximum number of generations is selected to force
the algorithm to continuously seek superior solutions. The higher
the maximum number of generations, the more computational
effort is required; however, a very low value prevents the
algorithm to converge to the optimal solution. Thus, based on
preliminary model runs, the maximum number of generations is
set to 1000, since higher values did not contribute to improvement
of the solutions obtained.

2.2. Determining the normalized weight vector

In order to ascertain the normalized weights of the objectives,
the Shannon’s entropy technique as first proposed by Shannon
(1948) was used in the context of a mathematical model for
communication and information (Wang & Lee, 2009). Order
preference by similarity to ideal solution (TOPSIS) (Behzadian,
Khanmohammadi Otaghsara, Yazdani, & Ignatius, 2012), the
simple additive weighted (SAW) approach (Huang, Chang, Li, &
Lin, 2013), the ordered weighted averaging (OWA) method
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(Yager, 2004), and the analytical hierarchy process (AHP) (Ormerod
& Ulrich, 2013) are other representative multi-attribute weighting
approaches. In this study, weighting of the attributes was based on
the crisp values of the objectives, since, based on the aforemen-
tioned techniques, DMs’ preferences might not be sufficient and
might result in a biased judgment regarding weights. The Shan-
non’s entropy technique expresses the relative intensities of the
attribute importance based on the discrimination among data to
assess the relative weights (Zhang, Wang, & Wang, 2014). Thus,
the Shannon’s entropy can provide a more reliable assessment of
the relative weights for the objectives in the absence of the DMs’
preferences.

Shannon’s entropy is a measure of uncertainty associated with
the source of information. The information can simply be defined
as the values of the objectives. The uncertainty in information is
addressed in the Shannon’s entropy technique by using probability
theory. The underlying assumption is that an event which has a
lower probability of happening, is more likely to provide more
information by its occurrence. In this respect, an objective which
has a sharp distribution also has a lower relative importance with
respect to the objective which follows a biased-distribution over an
interval (Deng, Yeh, & Willis, 2000; Khorasani et al., 2013).

The Shannon’s entropy parameter for the jth objective, denoted
by Ej, can be calculated by:

Ej ¼
Pn

i¼1Pij � ln Pij

ln n
; where i 2 f1;2; . . . ;ng and j 2 f1;2; . . . ;mg ð1Þ

Pij ¼
f ijPn
i¼1f ij

; where i 2 f1;2; . . . ;ng and j 2 f1;2; . . . ;mg ð2Þ

xj ¼
ð1� EjÞPm

j¼1Ej
; where

Xm

j¼1

xj ¼ 1 ð3Þ

The jth objective function of ith solution is denoted by fij, and the
linear normalization of jth objective for ith solution, Pij, is then used
to calculate the Shannon’s entropy value (Ej) of jth objective. The
number of solutions and objectives are denoted by n and m, respec-
tively. Eventually, the corresponding relative normalized weight for
jth solution indicated by xj, is obtained using Eqs. (1)–(3).
2.3. Evidential reasoning

Decision making is very common in various facets of engineer-
ing, and PSPs are no exception. Many methods have been devel-
oped and used to deal with MCDM problems: additive utility
(value) function methods (Keeney & Raiffa, 1976), outranking
methods (Guitouni, Martel, Bélanger, & Hunter, 2008), and Eviden-
tial Reasoning (ER) (Bazargan-Lari, 2014), amongst others. MCDM
is an inherently intricate bi-level dynamic process that facilitates
efficient cooperation among managers and engineers. Using MCDM
methods, DMs are able to handle their criteria and preferences
more efficiently, and furthermore the data can be easily transferred
to the engineers, thus eliminating the time-consuming and costly
iterative procedure of reviews and feedback during the planning
phase of construction. The DMs at the managerial level form the
preference structure, while scrutinizing the concomitants of select-
ing each solution constitute the engineering level (Opricovic &
Tzeng, 2004). The framework of amalgamating the MCDM
approaches with the multi-objective optimization techniques is
shown in Fig. 2. The first two stages are undertaken at the
managerial level, and the remainder at the engineering level.

The ER approach is a general approach for analyzing MCDM
problems under uncertainty. The ER approach encompasses all
the steps in the MCDM framework by using belief structures and
belief matrices. The ER methodology for information aggregation
comprises a rule-and-utility-based information transformation
technique for dealing with various types of information of both a
quantitative and qualitative nature under the necessary conditions
of utility and value equality. The ER approach for MCDM problem
analysis involves the following steps (Xu, 2012):

1. Identifying and analyzing a decision problem having multiple
and occasionally conflicting criteria.

2. Transforming various belief structures into a unified belief
structure using the rule or utility based information transfor-
mation techniques.

3. Aggregating information using the ER algorithm.
4. Generating the distributed assessment outcomes, utility scores,

or utility intervals if some information is missing. In this step,
the solution with higher utility score is preferred over the solu-
tions with lower corresponding values.

In multi-objective optimization where there exists conflict
among the objectives, the Pareto solutions can be very numerous,
and it might be tedious for DMs to finally reach a single compro-
mise solution. The output of any multi-objective optimization
algorithm is a collection of non-dominated solutions. Each non-
dominated solution satisfies the project’s objectives to a degree,
which necessitates the implementation of the MCDM approach
to select the best non-dominated solution. The MCDM problems
deal with how to rank the solutions based on multiple criteria.
Mungle et al. (2013) used a fuzzy clustering technique in order
to find a non-dominated solution representing the best scheduling
alternative. However, it has some limitations since it cannot impart
multiple criteria (e.g., qualitative and uncertain quantitative
attributes). Hence, it is believed that by using the ER approach
the non-dominated solutions can be ranked according to multiple
attributes which can provide more practical and efficient schedule
alternatives for PSPs.

In finding the best solution, a wide range of various quantitative
and qualitative criteria should be identified. These criteria can be
gathered and obtained via project stakeholders’ and managers’
expectations. One of the approaches to deal with MCDM is the
ER approach, which is able to consider various types of uncertain-
ties such as ignorance and fuzziness. In conducting surveys, some
participants might not give any answer to a specific attribute due
to not having any or little knowledge of the matter, which is
termed ‘ignorance’ in the ER approach. Different human judgments
viz. crisp/vague and complete/incomplete can be imparted into the
ER approach utilizing the belief structure. The ER approach is based
on the Dempster–Shafer theory of evidence (Shafer, 1976), and
decision theory for dealing with various types of criteria of both
a quantitative and qualitative nature in decision-making
(Bazargan-Lari, 2014). The ER approach has also been applied in
research areas such as regional hospital solid waste assessment
(Abed-Elmdoust & Kerachian, 2012), and determining the best lay-
out of water quality monitoring stations (Bazargan-Lari, 2014). In
order to implement an ER approach, the following steps must be
followed:

1. Identify and analyze the multiple assessment criteria of the
MCDM problem through exhaustive investigation from expert
negotiation, identifying stakeholders’ and DMs’ expectations
and requirements, as well as understanding DMs’ preferences
in terms of the weight associated with each criterion. Various
types of contributing attributes (e.g., quantitative, qualitative,
precise numbers, fuzziness uncertainty, belief structures and
comparison numbers) are gathered in this step. For example,
the cost of construction equipment might be precise, while
the cost of excavation might be expressed within a range. The
technical ability of a subcontractor might be expressed as a
belief structure for which it might be ‘Good’ to a degree of belief



Fig. 2. Framework outlining the amalgamation of MCDM with multi-objective optimization methods.

Very Bad Bad Moderate Good Very Good
0 0.3 0.55 0.84 1.0

Fig. 3. Utility based representation of a belief structure.
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of 34%, and simultaneously be ‘Very Good’ with a degree of
belief of 63%, which is expressed as {(Good, 0.34), (Very Good,
0.63)}. The summation of both degrees of belief is equal to
97% (0.34% + 0.63%) with 3% as ignorance. Given the lack of
knowledge regarding the technical capability of a subcontrac-
tor, some might prefer to not assess that criterion termed lack
of evidence and therefore the summation of probabilities does
not reach one.

2. Different types of belief structures should be transformed into a
unified belief structure using the rule or utility-based informa-
tion transformation technique. In this step, the belief structures
are translated; for example, the ‘Very Good’ and ‘Very Bad’ are
assigned one and zero respectively, and the other grades may/
may not be evenly distributed (Fig. 3).

3. The ER algorithm and formulation can serve to aggregate the
assessment information of the agglomeration of various types
of criteria to obtain the overall assessment of each alternative.

4. Develop the utility scores or utility intervals in the case of miss-
ing information. The utility-based ranking can judge each alter-
native overall performance considering every single criterion
simultaneously through a systematic and rational prioritizing
methodology which provides the best alternative for the sche-
dule project, and one which is favored by all the DMs since
the final acceptable solution is a trade-off between the prefer-
ences of the DMs.

The weights of each criterion can be determined through differ-
ent approaches (e.g., pairwise comparison, directly by the DMs,
Shannon’s entropy, etc.). Since the weights express the relative
importance, the normalized values are more beneficial than the
absolute values

xi ¼
WiPL
i¼1Wi

; i 2 f1;2; . . . ; Lg ð4Þ

S:T: 0 6 xi 6 1;
XL

i¼1

xi ¼ 1

The weight assigned to the ith basic criterion indicating the reflec-
tiveness to the general criterion is denoted by Wi and xi is the nor-
malized weight of ith basic criterion which is calculated using Eq.
(4). The linguistic terms such as ‘worst’, ‘good’, and so on are called
grades where the whole set of grades is H = {Hn, n = 1, 2, . . ., N}. As
demonstrated by Guo, Yang, Chin, and Wang (2007) and Wang,
Yang, and Xu (2006), the analytical format of the ER algorithm
can calculate the combined degree of beliefs bn of the nth grade,
where n 2 {1, 2, . . ., N} and bH represents the incompleteness
assessment of the whole set of H. Different from the recursive
format of the ER approach, the analytical format is preferred since
it does not require any iteration to evaluate the multiple attributes,



Fig. 4. Transferring each attribute to belief structure.

Table 2
A stepwise example showing the procedures in ER evaluation.

The ER approach evaluation of a solution with corresponding values for the
attributes as follows:

Attributes: Time (day) Cost ($) Quality (%)
Values: 125 139,000 70.40

Step 1. Determine the worst and best possible values for the attributes
(e.g., time, cost, and quality)

Time (day) Cost ($) Quality (%)

Best: 104 112,500 96.43
Worst: 135 171,980 65.50

Step 2. Assign normalized weights for each attribute.
Attributes: Time Cost Quality

xi: 0.3128 0.3806 0.3048

Step 3. Calculate the belief structure for each attribute as shown in Fig. 4.
The x-axis indicates the grades e.g., ‘Worst’, ‘Poor’, ‘Average’,
‘Good’, ‘Best’ and the corresponding values for each attribute. The
quality of 94% lies between ‘Good’ and ‘Best’ grades with the
quality values of 88.7% and 96.43%, respectively. This attribute
belongs to ‘Best’ grade with 68% belief, and with 32% degree of
belief belongs to grade ‘Good’. The same procedure is done for the
time and cost attributes. The belief structures for each attribute
are as below:
Belief structures of the attributes
Grades: Worst Poor Average Good Best

Time 0 84 16 0 0
Cost 0 0 78 22 0
Quality 0 0 0 32 68

Step 4. Calculate the combined degree of belief bn based on Eq. (5). Since
there is no incomplete assessment bH = 0
Grades: Worst Poor Average Good Best
bn: 0.0 0.244 0.377 0.186 0.193

Step 5. Calculate the utility scores according to Eq. (5)

umax ¼ umin ¼ uave ¼ 0:402

The average utility score indicates that the solution satisfies DMs to an extent
of 40.2% when considering all the attributes simultaneously
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thus providing greater flexibility for optimization and evaluation
(Yang et al., 2006). bn and bH can be calculated using Eqs. (5) and
(6), respectively:

bn ¼
QL

i¼1 1�xi
PN

j¼1;j–nbi;j

� �
�
QL

i¼1 1�xi
PN

j¼1bi;j

� �

PN
n¼1

QL
i¼1 1�xi

PN
j¼1;j–nbi;j

� �
�ðN�1Þ

QL
i¼1 1�xi

PN
j¼1bi;j

� �
�
QL

i¼1ð1�xiÞ

ð5Þ

bH ¼
QL

i¼1 1�xi
PN

j¼1bi;j

� �
�
QL

i¼1ð1�xiÞ
PN

n¼1

QL
i¼1 1�xi

PN
j¼1;j–nbi;j

� �
�ðN�1Þ

QL
i¼1 1�xi

PN
j¼1bi;j

� �
�
QL

i¼1ð1�xiÞ

ð6Þ

The degree of belief of ith basic criterion for the jth grade is denoted
by bi,j and N is the number of grades of set H. In order to rank the
alternatives, one must translate the combined degrees of belief
and the incomplete assessment (bn and bH) into one single utility
score. Hence, it is necessary to generate numerical values
equivalent to the belief structure:

umax ¼
XN�1

n¼1

bnuðHnÞ þ ðbn þ bHÞuðHNÞ ð7Þ

umin ¼ ðb1 þ bHÞuðH1Þ þ
XN

n¼2

bnuðHnÞ ð8Þ

uave ¼
umax þ umin

2
ð9Þ

where umax, umin, and uave are the maximum, minimum, and the
average utility score, such that u(Hn) is a function showing the util-
ity score of the nth grade. For example, if n = 5, and all the grades
are spaced equally in the interval of [0,1], then u(Hn) =
{0,0.25,0.5,0.75,1}. From Eqs. (7) and (8) it is clear that if there is
no incomplete assessment (bH = 0), all three cases of maximum,
minimum, and average utility scores are exactly the same and can
be determined as:

umax ¼ umin ¼ uave ¼
XN

n¼1

bn � uðHnÞ ð10Þ

In Table 2, a stepwise procedure to evaluate a given solution is
solved in order to illustrate the underlying idea of the ER in more
detail.

3. Modeling formulation and interpretation

The cost component for each activity can be an agglomeration
of various factors which are required to complete the activities
successfully. Generally, direct and indirect costs are the two main
elements that constitute the overall cost of each activity. The direct
cost is the overall cost spent directly in order to successfully
accomplish the activities, and is directly related to the execution
phase. The direct cost of jth option of ith activity is denoted by
~cij. The cost might also consist of indirect costs ð~CdÞ, which origi-
nate from the managerial cost of a construction organization and
any other indirect costs which can be measured in cost per day.
In this study, the indirect cost is assumed to be a fixed amount,
and its amount varies with project duration. Different types of con-
struction contracting methods may also impose other types of
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costs, namely, tardiness penalty ð~CpÞ and incentive cost ð~CinÞ, both
of which can be measured in cost per day. For any delay occurring
in total project time in comparison with the DMs’ desired time ð~TdÞ,
the main contractor(s) might be charged a tardiness fine on a daily
basis, usually at a fixed price per day. In contrast, for any early
completion, they might be rewarded for each day of this early com-
pletion period.

A thorough model to solve the DTCQTP can be expressed as:

Minimize f 1 ¼max
8p2P
f~T1; ~T2; . . . ; ~Tng ð11Þ

Minimize f 2 ¼
XN

i¼1

~cij þ f 1 � ~Cd þ �uðf 1 � ~TdÞ � ð~Td � f 1Þ � ~Cp

þ �uð~Td � f 1Þ � ð~Td � f 1Þ:~Cin ð12Þ
Maximize f 3 ¼ aQmin þ ð1� aÞQ ave ð13Þ
Q min ¼ minf~qij : xij ¼ 1g ð14Þ

Q ave ¼
PN

i¼1

Pm
j¼1qij � xij

N
ð15Þ

If all paths of the network is the set of P = {pjp = 1, 2, . . ., n}, and ip is
the ith activity on path p, and np is the number of activities on path
p, then the total implementation time of pth path ð~TpÞ is the
summation of the durations of all the activities on path p, which
can be mathematically calculated as ~Tp ¼

Pnp

ip
~tij. The first

objective function (f1) refers to the total project duration which is
obtained by considering the maximum implementation time,
~T ¼ f~T1; ~T2; . . . ; ~Tng, where ~T represents all paths of the project net-
work (Eq. (11)). The second objective function (f2) represents the
total project cost which is the summation of each activity cost
ð~cijÞ denoting the direct cost. It is later added to the indirect cost cal-
culated by multiplying the fixed cost of the indirect cost ð~CdÞ with
the project duration (f1). Other cost components such as the project
tardiness penalty and incentive costs are also considered. The unit
step function, �uðxÞ, is either one or zero for non-negative and
negative values of x, respectively. Then, the total project cost can
be mathematically computed as shown in Eq. (12). xij is the index
variable of ith activity when performed in jth option. If xij = 1 then
the jth option for ith activity is selected and when xij = 0 it means
that the jth option of ith activity is not selected. The next objective
function (f3) estimates the project quality through Eq. (13). If the
quality of the ith activity of jth option is shown by ~qij the estimation
of the project overall quality is a linear relationship between the
minimum quality of all the selected alternatives (Qmin), which is cal-
culated according to Eq. (14), and the average quality of all the cho-
sen alternatives (Qave) which is calculated using Eq. (15). A higher
value of a means a greater emphasis on the fact that the quality
of no activity in the schedule is too low, while a lower value ensures
that the overall project quality is aimed at not lying too far away
from the average quality (Qave). Using the a parameter ensures that
Fig. 5. Eighteen activities on node network (A
the third objective (f3) represents a close estimation of the overall
project quality since only the average value might not be a good
measurement of the total obtainable project quality. Therefore, if
an activity with a very low quality is selected, it lowers f3 more sig-
nificantly than in the case where only average value is considered,
thus automatically, throughout the optimization algorithm, an
attempt is made so that not only the average quality is at a high
standard, but also no activity with a very poor quality is to be
selected. Using the step function one ensures that either the tardi-
ness penalty or the incentive cost is added to the total cost. It must
be noted that the total cost is from the viewpoint of the project’s
main contractor and that of the owner, meaning that incentive
and tardiness costs are summed negatively and positively with
the total cost, respectively. If we consider the cost from the owner’s
viewpoint, then the incentive cost would be negative but the
tardiness cost would be positive. To take into account all the
expenditures in relation to the project the first case is considered
(i.e., the contractors’ viewpoint), which is the more common
approach in DTCQTPs.
4. Implementation of the proposed model

To verify and demonstrate the efficacy of the proposed model to
integrate the ER approach into DTCQTPs, a highway construction
project activity network consisting of 18 activities, first proposed
by Feng, Liu, and Burns (1997), was adapted. The activity on the
node network diagram of the case study is illustrated in Fig. 5.
Mungle et al. (2013) modified the data to account for the quality
associated with each of the options of the activities. The
corresponding time, cost, and quality for each mode of the
activities are listed in Table 3. The indirect cost is assumed to
be 50$ per day with the due date being taken as 121 days. The
incentive reward and the tardiness penalty are $120/day and
$200/day, respectively. The relative importance, a, between
Qmin and Qave is taken as 0.4 which ensures that no activity in the
schedule is preferred that has a quality lower than the average
quality of all the selected options for the activities.

In DTCQTPs where each activity can be executed in several
modes, the solution space increases exponentially for medium
and large size problems (Tavana et al., 2014). In this case example,
each activity possesses approximately 3.4 alternatives, leading to
3.6 billion possible activity schedules for the entire project. Hence,
a tailored MOGA was developed in order to have the capacity to
converge on near true optimal solutions among the large number
of potential solutions for the project schedule. Furthermore, a pro-
posed model was enabled to select the best solution among
numerous Pareto solutions via the ER approach. The novelty of
employing an ER approach in a MCDM problem of DTCQTP also
provides more practical solutions.
NN) representation of the case example.



Table 3
Data of the 18 activities of the network case example.

Activity number Preceding activities Options-(time (day), cost ($))

1 2 3 4 5

1 – (14,2400) (15,2150) (16,1900) (21,1500) (24,1200)
2 – (15,3000) (18,2400) (20,1800) (23,1500) (25,1000)
3 – (15,4500) (22,4000) (33,3200) – –
4 – (12,45,000) (16,35,000) (20,30,000) – –
5 1 (22,20,000) (24,17,500) (28,15,000) (30,10,000) –
6 1 (14,40,000) (18,32,000) (24,18,000) – –
7 5 (9,30,000) (15,24,000) (18,22,000) – –
8 6 (14,220) (15,215) (16,200) (21,208) (24,120)
9 6 (15,300) (18,240) (20,180) (23,150) (25,100)
10 2,6 (15,450) (220,400) (33,320) – –
11 7,8 (12,450) (16,350) (20,300) – –
12 5,9,10 (22,2000) (24,1750) (28,1500) (30,1000) –
13 3 (14,4000) (18,3200) (24,1800) – –
14 4,10 (9,3000) (15,2400) (18,2200) – –
15 12 (16,3500) – – – –
16 13,14 (20,3000) (22,2000) (24,1750) (28,1500) (30,1000)
17 11,14,15 (14,4000) (18,3200) (24,1800) – –
18 16,17 (9,3000) (15,2400) (18,2200) – –
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The proposed MOGA algorithm with a fuzzy based clustering
technique to solve DTCQTPs was coded in MATLAB R2013a. The
algorithm parameters are set as follows: nPop = 300 with Genera-
tion = 1000, Pc = 0.9, Pm = 0.1. The mean program running time,
without any attempt to improve the computational time, was
15.3 min on a personal computer (Intel Core i5-3230 M with CPU
2.6 GHz with 4 GB memory), which is an acceptable time in com-
parison with the solution space consisting of almost 3.6 billion
possible scenarios, and only searching 0.0081% of the total number
of potential solutions to obtain the Pareto solutions.

The proposed algorithm was able to find the same Pareto solu-
tions in 16 optimization trials out of the total 20 that were per-
formed; this implies that the proposed approach is able to attain
the same global Pareto optimal solutions with 80% accuracy. In
the remaining four trials, the Pareto solutions were in a maximum
of three points which were not global optimum points. This arose
due to the stochastic nature of the proposed approach. However, in
comparison with the low percentage of search space and signifi-
cant solution space, the accuracy of the algorithm is noteworthy.

In every 16 runs of the algorithm, exactly 105 Pareto solutions
were identified; due to space limitations they are plotted in two
sub-figures (a and b) of Fig. 6. To simplify reading the data from
the figures the Pareto solutions are initially sorted according to
the time objective, and the solutions with identical time objectives
are then sorted with respect to the cost objective. Fig. 6(a) shows
the cost objective vs. time of the project, while in Fig. 6(b) the same
Pareto solutions are shown in terms of quality vs. objective. The
Pareto solutions obtained for the 18 activity network benchmark
case study of DTCQTP are provided in Table A.1 (Appendix A),
and the utility scores of each solution for each objective, are also
listed there. This can be used for future research studies.

The corresponding weights of each objective were calculated
using Shannon’s entropy technique (see Section 2.2). The fact that
the cost objective has the highest normalized weight with 38.06%,
and time and quality have almost the same weights with 31.28%
and 30.48%, respectively (Table 4), indicates that the cost objective
has a greater contribution to the uncertainty associated with the
obtained results and as a result a higher weight is assigned to this
attribute.

The Pareto solutions obtained can now be ranked according to
their overall performance, denoting the degree to which each
alternative is acceptable when considering all the criteria simulta-
neously. In order to assess the overall performance of each
solution, one must provide a hierarchical structure to relate the
time, cost, and quality attributes with their associated normalized
weights to the overall performance criterion (Fig. 7). The solutions
are then ranked according to the utility scores obtained for the
overall performance. The 23rd Pareto solution possesses the high-
est utility score (64.67%; Fig. 8), which denotes that this alternative
for scheduling the project satisfies the overall performance consid-
ering all the objectives simultaneously within 64.67%. However,
this may not be sufficient for a final decision to select the best solu-
tion, since each solution needs to be investigated to identify its
weak and strong points regarding each objective. In fact, the ER
approach has the capacity to provide DMs with a transparent view
of the performance of each objective in each criterion. Therefore, in
the following steps of selecting the best solution, one must more
deeply investigate the solutions.

Among the Pareto solutions, the 2nd, 23rd, 37th, and 71st
solutions were selected to show how the overall assessment is
done. The corresponding utility scores with respect to each objec-
tive in addition to the overall performance of each solution are
plotted in Fig. 9, where it can be seen that the 23rd solution
has the highest utility score in both time and quality objectives
with 100% and 97.96%, respectively. However, the cost objective
of this solution has the lowest performance in being only 4.2%
cost objective. Hence, the 23rd solution might not be desirable
to be implemented since its performance with respect to the cost
objective is extremely low. On the other hand, the 71st solution
has an overall utility score of 40.11%, which is also quite low to
be selected, and the 37th solution does not have an acceptable
performance in terms of the cost objective (with only 10.34%
for the utility score) either. With a thorough investigation, the
DMs can select the most appropriate solution with a similar
approach in an iterative attempt to obtain the solution that fits
well with the DMs’ expectations (e.g., additional data can be
gathered to modify the weights of the objectives). This procedure
can be continued in order to arrive at a consensus on a Pareto
solution to be selected.

The ER approach facilitates the procedure of investigating the
overall performance of each solution by providing more details of
the solution performance with respect to each objective. The
preconception of DMs about the performance of each solution
gives more confidence to the DMs to implement their chosen pro-
ject schedule, and thus more efficiently manage organizational
resources.



Fig. 6. Pareto solutions of the benchmark example.

Table 4
Normalized weights of the objectives obtained from Shannon’s entropy technique.

Objectives: Time Cost Quality

Normalized weights: 0.3128 0.3806 0.3048

Fig. 7. One level hierarchical structure of overall performance assessment criteria.

Fig. 8. Overall performance utility
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As mentioned earlier, the ER approach is able to provide DMs
with informative output data indicating the weak points of each
alternative at any desired level. In this study, we divided the
overall performance into five grades viz ‘worst’, ‘poor’, ‘average’,
‘good’, and ‘best’, which are equally spaced in the interval [0,1].
These five grades can be used to reflect the combined belief
degree bn (Fig. 10). On this basis, the overall performance of
the 23rd solution is believed to belong to the ‘best’ grade with
a degree of 61.56%. On the other hand, the 23rd solution has
the highest degree of belief of the ‘worst’ grade with 30.22%, in
comparison with the 2nd, 37th, and 71st solutions with degrees
of belief for the ‘worst’ grade of 0.0%, 22.81% and 15.17%, respec-
tively. As a result, the DMs might decide not to select the 23rd
solution as the best solution although it has the highest utility
score. In this case, the DMs can apply improvement strategies
to better the performance of the 23rd solution or start investigat-
ing another solution. Figs. 9 and 10 show it to be more advisable
to implement the 2nd solution since it has an acceptable utility
assessment of each solution.



Fig. 9. Utility scores for 2nd, 23rd, 37th, and 71st Pareto solutions with respect to each objective.

Fig. 10. Combined degrees of belief (bn) for 2nd, 23rd,37th, and 71st Pareto solutions with respect to the overall performance.

Table 5
Best solutions according to Mungle et al. (2013) and the ER approach.

Solution number Attributes

Time (days) Cost ($) Quality (%)

24a 108 124,110 70.734
2 104 168,480 85.667
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score with respect to the overall performance (61.19%), and its
combined degrees of belief are high in terms of the ‘average’
and ‘best’ grades (53.55% and 27.64%, respectively) with a zero
value for the ‘worst’ grade. Since there is no incomplete assess-
ment, bH = 0.

To summarize, the ER approach is highly efficient in identify-
ing the performance of each alternative, and it enables the DMs
to form a transparent and rational judgment about the best alter-
native. Using the ER approach in construction project scheduling
provides more efficient management strategies, and the DMs can
be more confident about their selected alternative since the DMs
have a clear understanding of the performance of each alterna-
tive. In the present case study, we observed that although the
23rd solution had the highest utility score, it was not advisable
to select it as the best solution since it has a very high degree
of belief in the ‘worst’ grade. With further investigation, the
2nd solution was chosen to be more rational and practicable for
the DMs.
6 106 153,120 83.233
13 105 143,345 78.634

Worst value 123 168,480 69.600
Best value 104 111,355 86.234

a Best compromise solution according to Mungle et al. (2013).
4.1. Comparing the results with the literature

Mungle et al. (2013) identified 25 solutions for the same bench-
mark problem using fuzzy clustering-based optimization using
MOGA, and the best compromise solution was also identified. In
order to demonstrate that the currently proposed methodology
can generate more efficient schedules for construction projects,
the reported results from Mungle et al. (2013) were ranked based
on the ER approach. The weights of the attributes were assumed to
be equal in order to make the comparison valid. The best
solution identified by Mungle et al. (2013), the three solutions with
highest utility score using the ER approach, along with their
respective attribute values are presented in Table 5. The worst



Fig. 11. Performance comparison of the selected solutions from Mungle et al. (2013).
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and best possible values are from the data reported in Mungle et al.
(2013).

Using the ER approach the performance of the solutions listed
in Table 5 are illustrated in Fig. 11. The 24th solution has the
worst overall performance with only 57%, in comparison with
2nd, 6th, 13th solutions with corresponding overall performance
of 70%, 67%, and 63% respectively. It must be noted that with
almost 7% performance in the quality attribute, the 24th solution
is too low to be accepted as the best solution: although the objec-
tives of time and cost are satisfied within 79% and 78%, respec-
tively, the low quality of the solution would result in inefficient
planning. With respect to the aim of trade-off, a solution which
establishes a compromise between time, cost, and quality is more
preferable. Thus, the 2nd solution with zero performance in cost
attribute, since it has the highest cost, is rejected as a best solu-
tion for the same reason as the 24th solution. Comparing the
remaining solutions, the 13th solution is a better trade-off
between the objectives, since the objectives are simultaneously
satisfied within an acceptable degree, whereas the 6th solution
has very low performance in terms of cost objective, with only
27%. As shown the ER approach provides a transparent and pan-
oramic view of the performances of the alternatives, and the DMs
are able to find the weak and strong points of each alternative.
Consequently, the 13th solution is a better and more efficient
alternative based on the assessments that were provided through
the ER approach.
5. Conclusion

In this paper, and for the first time, in addition to solving
the DTCQTP, an exhaustive framework to rank the obtained Par-
eto solutions was proposed and tested. A multi-objective
genetic algorithm (MOGA) with NSGA-II procedure was tailored
to solve DTCQTP, and it was then utilized to solve an 18 activ-
ity network benchmark case study from the literature. The glo-
bal optimal Pareto solutions were ranked using the ER approach
using the weights obtained from Shannon’s entropy technique.
The results indicated that the ER approach is more efficient in
ranking the Pareto solutions when compared to the results of
Mungle et al. (2013). The proposed approach of this research
study enables the DMs to know the performance of each
solution with a transparent view with respect to each attribute,
and consequently decide on an optimal solution with more
confidence. A detailed framework to integrate MCDM methods
into multi-objective optimization techniques was proposed in
order to consider all the influential criteria which facilitate
the process of reaching a consensus regarding a chosen
solution. The authors believe that the proposed methodology
in applying the MCDM approach (i.e., the ER approach) can
generate more practical solutions in terms of project scheduling.
It is expected that the proposed approach can assist industry,
project managers, and researchers in the planning phase of
construction projects.

The ER approach has the ability to deal with various types of
criteria (e.g., quantitative/qualitative, certain/ambiguity/random-
ness, and complete/incomplete). Furthermore, the ER approach
provides a transparent and panoramic view of the performances
of the alternatives, and the DMs are able to find the weak points
of each alternative, and if necessary improvement strategies can
then be applied to better an alternative performance. Given these
reasons, the ER approach is more powerful than other existing
MCDMs method in providing informative outcomes. In this
respect, some further applications of ER should be made beyond
DTCQTPs, such as in various decision analysis applications, assess-
ment and evaluation of multiple alternatives in the field (e.g.,
environmental impact assessment), organizational self-assess-
ment, efficient subcontracting plans in bidding and evaluation
processes, etc.

In terms of future studies based on this research, the
authors plan to expand the usage of the proposed method
by designing a knowledge-based system to help automate
the process of ranking, analyzing, and searching for a best
solution. The highly efficient performance in solving DTCQTPs
obtained using the ER approach provided the authors of this
paper with the aspiration of developing a computer system
to emulate the decision-making ability of DMs using the ER
approach. Another idea is to establish approaches that can
help construction contractors and decision-makers to develop
more efficient subcontracting plans during the bidding process
via the development of multiple criteria assessment proce-
dures. This would be useful because the bidding and evalua-
tion process of a construction project can be a tedious and
time-consuming process with no well-established criteria and
approaches.
Appendix A

See Tabel A.1.



Table A.1
All the Pareto solutions obtained for the 18 activity network benchmark case example of DTCQTP.

# Objectives Utility scores in terms of

Time (day) Cost ($) Quality (%) Overall performance (%) Time (%) Cost (%) Quality (%)

1 104 147,230 81.70 61.16 100.00 41.61 52.38
2 104 148,080 82.17 61.19 100.00 40.18 53.90
3 104 148,525 82.83 61.62 100.00 39.43 56.03
4 104 150,980 84.33 61.77 100.00 35.31 60.88
5 104 152,480 84.60 61.16 100.00 32.78 61.75
6 104 152,480 84.60 61.16 100.00 32.78 61.75
7 104 153,480 84.87 60.82 100.00 31.10 62.63
8 104 153,480 84.87 60.82 100.00 31.10 62.63
9 104 155,130 85.93 60.83 100.00 28.33 66.05
10 104 155,380 86.20 60.93 100.00 27.91 66.93
11 104 155,980 86.57 60.90 100.00 26.90 68.12
12 104 156,980 86.83 60.50 100.00 25.22 68.96
13 104 156,980 86.83 60.50 100.00 25.22 68.96
14 104 158,480 87.10 59.73 100.00 22.70 69.84
15 104 159,480 87.37 59.30 100.00 21.02 70.71
16 104 159,480 87.37 59.30 100.00 21.02 70.71
17 104 161,980 87.60 57.80 100.00 16.81 71.45
18 104 164,530 87.77 56.21 100.00 12.53 72.00
19 104 164,530 87.77 56.21 100.00 12.53 72.00
20 104 165,980 88.60 56.00 100.00 10.09 74.68
21 104 167,280 90.17 57.65 100.00 7.90 79.76
22 104 168,480 93.93 62.65 100.00 5.88 91.92
23 104 169,480 95.80 64.67 100.00 4.20 97.96
24 104 171,980 96.43 64.02 100.00 0.00 100.00
25 104 171,980 96.43 64.02 100.00 0.00 100.00
26 105 145,880 78.77 58.34 96.77 43.88 42.90
27 105 146,550 80.67 59.64 96.77 42.75 49.05
28 105 155,900 86.23 59.84 96.77 27.03 67.02
29 105 165,300 87.90 55.14 96.77 11.23 72.42
30 105 167,795 90.43 56.86 96.77 7.04 80.60
31 105 169,400 94.27 61.30 96.77 4.34 93.02
32 106 145,800 78.63 57.39 93.55 44.01 42.45
33 106 145,800 78.63 57.39 93.55 44.01 42.45
34 106 145,815 78.90 57.62 93.55 43.99 43.32
35 106 154,365 84.87 58.65 93.55 29.61 62.63
36 106 166,865 89.03 54.71 93.55 8.60 76.08
37 107 165,830 88.13 53.75 90.32 10.34 73.17
38 107 168,330 92.67 57.51 90.32 6.14 87.84
39 108 140,160 81.33 61.52 87.10 53.50 51.18
40 108 140,760 81.53 61.28 87.10 52.49 51.83
41 108 141,210 82.60 62.15 87.10 51.73 55.29
42 108 141,810 82.80 61.90 87.10 50.72 55.93
43 108 142,060 83.07 62.02 87.10 50.30 56.81
44 108 142,660 83.43 62.07 87.10 49.29 57.97
45 108 143,660 83.70 61.87 87.10 47.61 58.84
46 108 143,660 83.70 61.87 87.10 47.61 58.84
47 108 145,160 83.97 61.38 87.10 45.09 59.72
48 108 145,160 83.97 61.38 87.10 45.09 59.72
49 108 149,060 85.83 61.28 87.10 38.53 65.73
50 108 151,160 86.47 60.73 87.10 35.00 67.80
51 108 157,810 86.93 57.08 87.10 23.82 69.29
52 108 157,810 86.93 57.08 87.10 23.82 69.29
53 108 158,660 87.57 57.19 87.10 22.39 71.35
54 108 159,660 87.83 56.82 87.10 20.71 72.20
55 108 161,160 88.10 56.13 87.10 18.19 73.07
56 108 161,160 88.10 56.13 87.10 18.19 73.07
57 108 162,160 88.37 55.77 87.10 16.51 73.94
58 109 139,230 80.03 60.45 83.87 55.06 46.98
59 109 139,230 80.03 60.45 83.87 55.06 46.98
60 109 139,480 80.30 60.42 83.87 54.64 47.85
61 110 138,480 78.00 58.89 80.65 56.32 40.41
62 110 147,045 84.23 59.08 80.65 41.92 60.56
63 113 138,455 77.57 55.82 70.97 56.36 39.02
64 113 138,555 78.37 56.30 70.97 56.20 41.61
65 114 138,360 77.17 54.53 67.74 56.52 37.73
66 114 138,375 77.43 54.71 67.74 56.50 38.57
67 128 125,690 68.13 40.05 22.58 77.82 8.50
68 128 126,405 69.10 40.29 22.58 76.62 11.64
69 128 126,405 69.10 40.29 22.58 76.62 11.64
70 128 127,205 69.70 40.21 22.58 75.28 13.58
71 128 127,05 69.83 40.11 22.58 74.77 14.00
72 128 128,005 70.40 40.21 22.58 73.93 15.84
73 128 128,605 70.60 39.97 22.58 72.92 16.49
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Table A.1 (continued)

# Objectives Utility scores in terms of

Time (day) Cost ($) Quality (%) Overall performance (%) Time (%) Cost (%) Quality (%)

74 128 128,605 70.60 39.97 22.58 72.92 16.49
75 128 129,405 70.83 39.63 22.58 71.58 17.23
76 128 130,005 71.03 39.39 22.58 70.57 17.88
77 128 132,005 71.33 38.35 22.58 67.21 18.85
78 128 134,105 72.00 37.53 22.58 63.68 21.02
79 128 134,755 72.07 37.18 22.58 62.58 21.24
80 128 135,005 72.33 37.22 22.58 62.16 22.08
81 128 136,405 72.43 36.43 22.58 59.81 22.41
82 128 137,005 72.63 36.20 22.58 58.80 23.05
83 128 137,005 72.63 36.20 22.58 58.80 23.05
84 129 125,148 66.83 38.01 19.35 78.74 4.30
85 129 125,148 66.83 38.01 19.35 78.74 4.30
86 134 114,705 69.13 40.99 3.23 96.29 11.74
87 134 116,105 70.03 41.37 3.23 93.94 14.65
88 134 116,905 70.27 41.20 3.23 92.59 15.42
89 134 116,905 70.27 41.20 3.23 92.59 15.42
90 134 117,505 70.47 41.09 3.23 91.59 16.07
91 134 118,905 70.57 40.33 3.23 89.23 16.39
92 134 119,505 70.77 40.22 3.23 88.22 17.04
93 134 121,905 70.80 38.70 3.23 84.19 17.14
94 134 121,905 70.80 38.70 3.23 84.19 17.14
95 134 122,505 71.00 38.59 3.23 83.18 17.78
96 134 123,605 71.10 38.01 3.23 81.33 18.11
97 134 123,605 71.10 38.01 3.23 81.33 18.11
98 134 124,405 71.33 37.81 3.23 79.98 18.85
99 134 125,005 71.53 37.70 3.23 78.98 19.50
100 134 129,505 71.80 35.10 3.23 71.41 20.37
101 134 131,155 71.87 34.11 3.23 68.64 20.59
102 135 112,500 65.50 35.98 0.00 100.00 0.00
103 135 112,500 65.50 35.98 0.00 100.00 0.00
104 135 112,580 65.97 36.58 0.00 99.87 1.52
105 135 113,640 67.23 37.71 0.00 98.08 5.59
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