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Abstract Cooperative spectrum sensing in cognitive sensor networks has been shown to

be very effective in improving the sensing performance. Sensors in these networks are

assumed to be power re-source constrained. We propose an energy efficient cooperative

spectrum sensing, in which all sensors are not participated in spectrum sensing and some

nodes send their data to a fusion center only in order to improve the throughput of the

network. We determine the nodes which sense the spectrum and the nodes which only

contribute in data transmitting. The constraints on our problem are the global probability of

detection, global probability of false alarm and the minimum required throughput. Based

on the standard optimization techniques, the optimal conditions are obtained and a closed-

form equation is expressed to determine the priority of nodes for spectrum sensing and data

transmitting. Simulation results show that our algorithm leads to less energy consumption

and improves the throughput in different conditions.

Keywords Cognitive sensor networks � Spectrum sensing � Probability of detection �
Throughput

1 Introduction

Traditional wireless networks are regulated by fixed spectrum allocation policies to operate

in certain timeframes, over certain frequency bands, and within certain geographical

regions. This regulation results in situations in which some radio bands are overcrowded
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while other bands remain moderately or rarely occupied. In order to improve spectrum

utilization, cognitive radio (CR) technology has been proposed as a potential communi-

cation paradigm [1]. When the licensed spectrum holders (primary users) are sensed as

inactive, the secondary users can operate in the licensed spectrum, if they do not interfere

with the primary user. Since primary users should be carefully protected from interference

due to secondary users’ operation, spectrum sensing has become an essential function of

cognitive radio devices [2]. If a secondary user suffers from shadowing or heavy fading,

the sensed signal tends to be weak while the primary user is transmitting, leading to

incorrect decisions. To address these problems while maintaining sensing simplicity,

cooperative sensing schemes that fuse the sensing results of multiple secondary users, have

been proposed [3, 4]. The authors of [5] showed that cooperative sensing can reduce the

detection time of the primary user and increase the overall agility. In addition, cooperative

spectrum sensing effectively alleviates the impact of incorrect individual decisions on

throughput by exploiting the spatial diversity of the secondary users. How to choose proper

secondary users for cooperation was investigated in [6]. The authors of [7] studied the

design of sensing slot duration to maximize secondary users’ throughput under certain

constraints.

In most of the existing cooperative spectrum sensing schemes [5–[7], a fully cooper-

ative scenario is assumed: all secondary users voluntarily contribute to sensing and fuse

their detection results to a fusion center (FC) to make a final decision. According to [8], it

is not necessary for all secondary users to cooperate in the network to achieve the optimum

performance. Instead, only the secondary users with the highest signal-to-noise ratio (SNR)

received from the primary user are participated in spectrum sensing.

Another issue is the sensor nodes which are employed for spectrum sensing, operate

under limited energy budgets. Typically, they are powered through batteries, which must

be either replaced or recharged (e.g., using solar power) when depleted. For some nodes,

neither option is possible, that is, they will simply be discarded once their energy source is

depleted.

In [9], the secondary users are classified into two groups: the sensing nodes which

participate in spectrum sensing and the transmitting nodes which send their data to the FC.

However, minimizing the energy consumption is not considered for nodes.

The author in [10] proposed a sensing-throughput tradeoff problem under a cooperative

sensing scenario which is formulated to find a pair of sensing time and k value in k—out-of

N fusion rule that maximize the secondary users’ throughput subject to sufficient protection

that is provided to the primary user. In [11], minimizing energy consumption with con-

straints on the detection performance is proposed while the SNR is the same for all sensors.

However, this is not a real assumption and is only applied to simplify the problem.

In our paper, we consider a different SNR for each sensor that is according to the real

situation due to the different distance between each node and the primary user. We propose

an energy efficient cooperative spectrum sensing by determining the sensing nodes and the

sensors which participate in data transmitting. The constraint on this problem is the global

probability of detection, global probability of false alarm and the minimum required

throughput. The higher probability of detection means the less interference with the pri-

mary user transmission while the less probability of false alarm leads to higher opportunity

to use the idle channel.

For solving our problem, we use the convex optimization method. After obtaining the

optimality conditions based on Karush–Kuhn–Tucker (KKT) conditions, an iterative

algorithm is proposed to search the sensing nodes for spectrum sensing and the data

transmitting nodes in order to improve throughput.
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The rest of the paper is organized as follows. In Sect. 2, we describe the system model

and obtain the global probability of detection and the global probability of false alarm for

our problem. Expression of the sensor selection problem is also derived in this section. In

Sect. 3, we analyze how to solve the problem using the analytical algorithms. In Sect. 4,

our algorithms for selection of sensing and transmitting nodes are proposed. In sub-section

A, the ellipsoid search method is stated for solving the problem. We present numerical and

simulation results to show the energy savings obtained by the proposed scheme in Sect. 5.

Conclusions are drawn in Sect. 6.

2 System Model

In a cognitive radio system, when the sensors are sensing the channel, the sampled received

signal of the nodes has two hypotheses. When the primary user is present denoted by H1

and when the primary user is inactive denoted by H0. Then the received signal at the jth

sensor, rj[k], can be written as

rj k½ � ¼
hjs k½ � þ nj k½ � if H1

nj k½ � if H0

�
ð1Þ

hj is the channel gain between the primary user and the jth sensor which is defined as

follows

hj ¼ 10
�Lj
20 � gj ð2Þ

where gj is a complex Gaussian random process with zero mean and unit variance

accounting for Raleigh fading and Lj has two components

Lj ¼ 20 log
dpj4pfc

C

� �
þ nj ð3Þ

where the first part is path loss component based on free space path loss (FPL) model

which involves dpj that is the distance of the jth node from primary user, fc is the carrier

frequency that is denoted to be 2.4 GHz and C is the speed of light. The second part is a

real Gaussian random variable with zero mean and standard deviation 3 according to large

scale log-normal shadowing [12].

s[k] is the signal of the primary user which is assumed to be deterministic while nj[k] is

a Gaussian (i.i.d) random noise with zero mean and variance r2n. We assume d is the

sensing time and fs is the sampling frequency of the received signal from the primary user.

d and fs are the same for all sensors. d is a multiple of 1/fs thus, the number of samples is

dfs. N cognitive sensors and a fusion center (FC) is considered in our paper as it is shown in

Fig. 1. The energy detector is used to sense the licensed spectrum. Therefore, we have

Ej ¼
Xdfs
k¼1

rj½k�2?H1

H0
e :

Dj ¼ 0 ifH0

Dj ¼ 1 ifH1

�
ð4Þ

where rj[k] are the samples of the received power. Ej is the test statics and e is the energy

detection threshold. Dj = 0 shows the channel is idle while Dj = 1 determines the activity

of the channel. Under H0, Ej is a random variable whose probability density function (PDF)

is a central Chi square distribution with 2dfs degrees of freedom and under H1, Ej has a

Throughput Improvement in Energy-Efficient Cooperative…

123



non-central Chi square distribution with 2dfs degrees of freedom and a non-centrality

parameter 2cj, where cj is the SNR for the jth sensor, respectively. Then, the probability of

false alarm for the jth sensor is given by [9]

Pfj ¼ P Ej [ 2 jH0

� �
¼

C dfs; 22
� �
C dfsð Þ ð5Þ

where C(a, b) is the incomplete gamma function given by C a; bð Þ ¼
R1
b

ta�1e�tdt and

C(a) is the gamma function. The probability of detection for each node is stated as follows

[9]

Pdj ¼ P Ej [ ejH1

� �
¼ Qdfs

ffiffiffiffiffiffi
2cj

q
;
ffiffiffiffi
2

p� 	
ð6Þ

where Qm(a, b) is the generalized Marcum Q-function, Qm a; bð Þ ¼ 1
am�1

R1
b

tme�
t2þa2

2

� �

Im�1 atð Þdt, in which Im�1 �ð Þ is the modified Bessel function of the first kind and order

m - 1.

The sensing nodes sense the spectrum and send their results to the FC to make a final

decision using a fusion rule. In our paper, OR rule combines the local decision of the

nodes. Therefore, the final probability of detection and the final probability of false alarm

are written as follows

Pd ¼ 1�
YN
j¼1

1� Pdj

� �
ð7Þ

Pf ¼ 1�
YN
j¼1

1� Pfj

� �
ð8Þ

According to [13], qj is considered as an assignment index for each sensor to show

that the node senses the spectrum or not. Therefore, (7) and (8) are modified and we

have

Fig. 1 Cooperative spectrum sensing and data transmitting configuration
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Pd ¼ 1�
YN
j¼1

1� qjPdj

� �
ð9Þ

Pf ¼ 1�
YN
j¼1

1� qjPfj

� �
ð10Þ

qj can be 0 or 1. ‘1’ indicates that the node participates for sensing while ‘0’ denotes not

sensing the spectrum.

Here, some nodes sense the spectrum while the other nodes may transmit their data and

some nodes will be idle. Therefore, the total energy consumption can be obtained as

CT ¼
XN
j¼1

qj Csj þ Ctj

� �
þ fj Ctj

� �
ð11Þ

where fj is the assignment index for transmitting sensors and fj 2 {0, 1}. It is noticed that

one node cannot sense the spectrum and transmit data simultaneously.Csj is the energy

consumption for sensing which is the same for all sensors and Ctj is the energy con-

sumption for sending the results or data to the FC. Ctj is used to derive the radio electronics

and the power amplification. It should be noted that the power attenuation depends on the

distance between the transmitter and receiver, and in order to satisfy a given receiver

sensitivity level, power amplification will be required, then Ctj is as follows [11]

Ctj dj
� �

¼ Ct�elec þ eampd
2
j ð12Þ

where Ct-elec is the transmitter electronics energy and eamp is the required amplification

and dj is the distance between the jth node and FC.

The instantaneous transmission rate of the jth sensor, denoted by r0,j for the case of the

absence of the primary user (H0) and by r1,j for the case of the presence of the primary user

(H1) is given by [14]

r0;j ¼ log2 1þ Ps;j

r2n

� �
ð13Þ

r1;j ¼ log2 1þ Ps;j

r2n þ Pp;j

� �
ð14Þ

where Ps,j is the received power at the FC from the jth transmitter sensor while Pp,j is the

power that the FC receives from the primary user. However, the fact is that spectrum

sensing is not a perfect function. This is due to the limitations of the spectrum sensing

techniques and the nature of wireless communications that include phenomena such as

shadowing and fading. Therefore, the primary user could either be miss-detected or a false

alarm may occur. As a result, two different cases can be distinguished regarding the

sensing decision (present or absent) and the actual status of the primary user (active or

idle). Therefore, the total average throughput can be formulated as

T ¼
XN
j¼1

fj PðH0Þ 1� Pf

� �
r0;j þ P H1ð Þ 1� Pdð Þr1;j

� �
ð15Þ
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where P(H0) denotes the probability that the primary user is idle while P(H1) denotes the

probability that the primary user is active. In order to find the minimum total energy

consumption, we define the following problem

min
qj;fj

CT ¼
PN
j¼1

qj Csj þ Ctj

� �
þ fj Ctj

� �
s:t: Pf � a
Pd �b
T � th

qj 2 0; 1f g 8j
fj 2 0; 1f g 8j
qjfj ¼ 0

ð16Þ

where th is the minimum required total throughput for the network. The last constraint

shows that one sensor cannot be the sensing node and transmitting node simultaneously.

The maximum number of sensing nodes can be obtained using (10) because Pf is an

increasing function of qj and it is independent from fj. Therefore, we have

n� ln 1� að Þ
ln 1� Pfj

� � ¼ M ð17Þ

whereM is the maximum number of sensing nodes and n ¼
PN

j¼1 qj is the number of nodes

participating in spectrum sensing.

3 Problem Analysis

One solution for (16) is an exhaustive search algorithm. In this algorithm, all possible n

candidates for sensing and N - n candidates for data transmitting are tested and the state

that minimizes the energy consumption while satisfies the constraints is selected as the

optimum solution. But this algorithm has the high complexity with the order of O(N!).

Therefore, we search for the algorithms with lower complexity. Since qj and fj are discrete
parameters, (16) is NP-complete. Therefore, in order to transform the problem to more

tractable form, qj and fj are considered as continuous parameters between ‘0’and ‘1’. After

solving the problem, qj and fj are mapped to discrete space again. Now, we rewrite the

problem as follows

min
qj;fj

CT ¼
PN
j¼1

qj Csj þ Ctj

� �
þ fj Ctj

� �

s:t:
PN
j¼1

qj �M ð18� 1Þ

Pd �b ð18� 2Þ
T � th ð18� 3Þ
qj 2 0; 1½ � 8j
fj 2 0; 1½ � 8j
qjfj ¼ 0

In fact, we search the feasible points which satisfy the constraints in the problem. The

set of all feasible points is called the feasible set or the constraint set. Now, we should find
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the algorithms that obtain the minimum objective function in their feasible set. Also, it is

noticed that, sometimes, the feasible set is empty; i.e., there is no answer for the problem.

In the problem above, the objective function and the constraints except (18-2) are convex

with respect to qj. Although (18) is not a standard convex optimization problem, we can

still exploit the convex optimization methods to find qjs. Therefore, the Lagrangian

function and Karush–Kuhn–Tucker (KKT) conditions are considered to determine the

priority of the nodes for spectrum sensing and transmitting data. So, we have [15]

L ¼
XN
j¼1

qj Csj þ Ctj

� �
þ fj Ctj

� �
� l T � thð Þ � k Pd � bð Þ þ g

XN
j¼1

qj �M

 !
ð19Þ

g, k and l are the Lagrangian multipliers for (18-1), (18-2) and (18-3) constraints,

respectively. We remove the last constraint in (18), but in node selection, we take into

account that one node cannot sense and send data, simultaneously. From KKT conditions,

we have

oL

oqj
¼ Cs þ Ctj

� �
þ g� kPdj ¼ 0 8j 2 0; 1; 2; . . .;Nf g ð20Þ

and

oL

ofj
¼ �l P H0ð Þ 1� Pf

� �
r0;j þ P H1ð Þ 1� Pdð Þr1;j

� �
þ Ctj ¼ 0 8j 2 0; 1; 2; . . .;Nf g ð21Þ

According to (20) and (21), the priority of the nodes for spectrum sensing and data

transmitting is determined according to the following formulas

Cost s jð Þ ¼ Cs þ Ctj � kPdj ð22Þ

Cost t jð Þ ¼ �l P H0ð Þ 1� Pf

� �
r0;j þ P H1ð Þ 1� Pdð Þr1;j

� �
þ Ctj ð23Þ

Proof See ‘‘Appendix’’.

Therefore, the nodes with less cost function according to (22) and (23) have the higher

priority for spectrum sensing and data transmitting, respectively. Also, complimentary

slackness conditions imply that [15]

kðpd � bÞ ¼ 0 ! k ¼ 0; Pd [ b
k 6¼ 0; Pd ¼ b

�
ð24� 1Þ
ð24� 2Þ

g
P

qj �M
� �

¼ 0 ! g ¼ 0;
P

qj\M

g 6¼ 0;
P

qj ¼ M

�
ð24� 3Þ
ð24� 4Þ

lðT � thÞ ¼ 0 ! l ¼ 0; T[ th

l 6¼ 0; T ¼ th

�
ð24� 5Þ
ð24� 6Þ

8>>>>>><
>>>>>>:

It can be proved that (24-2) is the optimal condition, because, Pd, Pf and CT are the

increasing functions of qjs. Therefore, if (24-1) becomes the optimal condition, qjs can be

decreased so that Pd = b is satisfied. Under this reduction, there are smaller Pf and CT

which leads to more desirable answer. Therefore, k = 0 is the true condition in (24-2). In

addition, T = th is the optimal condition, because CT is an increasing function of fjs.
Therefore, reducing fj leads us to the minimum energy consumption while the minimum

required throughput is obtained. Each of (24-3) and (24-4) can be optimal given the
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problem condition. According to the problem, if less sensing nodes satisfy the detection

performance, then (24-3) is the optimal condition, otherwise, (24-4) is true.

4 Proposed Algorithms for Sensing Nodes Selection and Data
Transmitting Nodes

In this section, we propose two algorithms to minimize the energy consumption while

satisfying the detection performance and the minimum required throughput constraints by

determining the sensing nodes and the data transmitting sensors. We need the algorithms to

search the solutions which can satisfy the optimality conditions [(20)-(24-6)]. In fact, the

priority of nodes for spectrum sensing and data transmitting are determined according to

(22) and (23). Since one node cannot sense and transmit data simultaneously, therefore,

there is a competition between the sensing node selection and the transmitting node

selection. Based on this competition, we propose two algorithms:

• Minimizing energy and satisfying the minimum throughput algorithm (MESMTA): In

this algorithm, we use an iterative algorithm to find the sensing nodes and transmitting

nodes which minimize the energy consumption and satisfy the throughput constraint. In

each iteration which l and k are updated, the sensing nodes are selected first based on

(22) and then according to (23), the nodes for data transmitting are obtained. The

iterative algorithm is the ellipsoid search method, one of the best methods in the two

dimension search [15].

• Satisfying the minimum throughput and minimizing energy algorithm (SMTMEA):

This algorithm is similar to MESMTA; the difference is that, at first, the transmitting

nodes are selected based on (23) so that the throughput constraint is satisfied, then, the

sensing nodes are determined until the probability of detection constraint is maintained.

4.1 The Ellipsoid Search Method

In order to satisfy (24-1)–(24-6), the optimal values of k and l are chosen to fulfill the (18-

2) and (18-3), respectively. For this purpose, we use ellipsoid method. In fact, if there is

any answer in the corresponding area, the ellipsoid method can find it. The complexity

order of this method is O(N). Note that L(l, k, g) in (19) is convex and a gradient-type

search is guaranteed to converge to the global optimum. However, the main difficulty is

that, L(l, k, g) is not necessarily differentiable. Thus, it does not always have a gradient

and it is possible to search according to subgradient. The vector g is the subgradient of L(l,
k, g) at optimum k and l, if the following condition is satisfied [15, 16],

L l; k0; gð Þ; L l0; k; gð Þ� L l; k; gð Þ; L l; k; gð Þ½ � þ gT

 


k0 � kð Þ; l0 � lð Þ� 8k0; l0 ð25Þ

Ellipsoid method is a simple algorithm to find query points. Therefore, this iterative

algorithm is one of the best candidates for multi-dimensional search. The details of this

algorithm can be found in [15].

We use this algorithm to find the optimal sensing and data transmitting nodes. For

MESMTA algorithm, in each iteration for updating l and k, the cost function in (22) is

computed for each sensor and sorted in ascending order. Therefore, the nodes with the

lowest cost functions are selected for spectrum sensing until the detection performance

constraint is satisfied. Note that the number of selecting nodes is less than M. After sensing
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nodes selection, from the remaining nodes, the sensors with minimum cost function in (23)

are determined for data transmitting until the throughput constraint is maintained. Then,

total energy consumption is obtained. Note that l and k are updated by the ellipsoid search

method. The pseudo code for this algorithm is shown below:

5 Numerical and Simulation Results

For simulation, a sensor network in which the number of sensors varies from five to fifty

nodes is considered. Sensor nodes are distributed randomly with uniform distribution in the

square field with the length of 1000 m. FC is located in the center of the square. Primary

user is located randomly in this square. Simulation results are shown for a = 0.1 and

b = 0.9. th = 2 is set as the threshold for the total throughput while the detection threshold

is the coefficient of the noise power. The channel model between FC and each node is

similar to (2). Considering the fact that the typical circuit power consumption of ZigBee is

approximately 40 mW, the energy consumed for listening is approximately 40 nJ. The

processing energy related to the signal processing part in the transmit mode for a data rate

of 250 kb/s, a voltage of 2.1 V, and current of 17.4 mA is approximately 150 nJ/bit. Since

we use one bit per decision, the sensing energy of each cognitive sensor is Cs = 190 nJ

[17, 18]. Assuming a data rate of 250 kb/s and a transmit power of 20 mW, Ct-elec = 80 nJ.

The eamp to satisfy a receiver sensitivity of -90 dBm is 40.4 pJ/m2. Simulation results are
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averaged over 1000 independent simulation runs. The proposed algorithms are compared

with the following algorithms in simulation:

• MPDA & MEA algorithms combination: Maximum probability of detection (MPDA)

is the algorithm in which, sensors are sorted according to their Pdjs in descending order.

Therefore, the nodes with the maximum Pdj are selected for spectrum sensing, so that

the number of selected nodes is less than M and Pd [ b constraint is satisfied.

However, Minimum Energy algorithm (MEA) is the algorithm in which, sensors are

sorted in ascending order according to their distances from the FC and nodes with

minimum distances are selected for data transmitting until the constraint on T is

satisfied. With combination of these algorithms, MPDA is used for selecting the

sensing nodes and MEA is applied for determining the nodes which transmit their data

to the FC [13].

• Random algorithm (RA): In this algorithm, sensors are randomly selected for spectrum

sensing and transmitting data until the constraint on Pd and T are satisfied, respectively.

The number of selected sensing nodes is less than M.

Figure 2 shows the successful percent of finding the solution versus different dimen-

sions of environment. This metric for every algorithm shows the ability of the algorithms

in finding the answer when the problem constraints (i.e., the constraints on the global

probability of detection and the network throughput) are satisfied. In the other words, in

some scenarios it is possible that the feasible set of the problem becomes empty and in such

cases there is no solution for the problem. This metric shows the ability of the algorithms in

finding a solution in the feasible set of the problem. SMTMEA has the maximum percent

of finding the solution while the other algorithms have lower percentage in finding the

solution in the feasible set. RA has the minimum percentage in finding the solution; it

shows that the random selection of sensors cannot satisfy the detection and throughput

constraints simultaneously. In all algorithms, this metric decreases by increasing the
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dimensions of the environment; the reason is that, the distance of each node from the

primary user is increased; therefore, probability of detection for each node is reduced and

more nodes should sense the spectrum until the probability of detection constraint is

satisfied while it is not possible in some cases due to constraint (18-1). In addition, by

increasing the dimensions of the environment, the distance between each sensor from FC

increases and therefore, the total throughput decreases. In this simulation, total number of

nodes equals to 30.

In Fig. 3, the energy consumption for all algorithms versus different dimensions is

shown when all algorithms find a solution in the feasible set. SMTMEA has the minimum

energy consumption compared to MESMTA, MPDA&MEA and RA algorithms. When the

dimensions of the environment become larger, in all algorithms the energy consumption

increases; because more nodes need to sense the spectrum and more nodes must transmit

their data to the FC for satisfaction of (18-3). In addition, in large environments, distance

between sensors and primary users and distance between sensors and FC increase con-

siderably so that more energy must be consumed to satisfy of the minimum sensitivity of

the receivers.

Figure 4 shows the average throughput for all algorithms versus different dimensions of

the environment. It is clear that MESMTA, SMTMEA and MPDA&MEA satisfy the

threshold constraint while RA cannot maintain the threshold constraint. All algorithms are

compared when the global probability of detection constraint is satisfied.

Figure 5 shows the successful percent of finding the solution versus different number of

the nodes. SMTMEA, MESMTA and MPDA&MEA have the maximum percent in finding

the solution. When number of nodes increases, this metric for all algorithms increases,

because it is possible that more nodes are located near the primary user and FC and therefore

the global probability of detection and the total throughput are improved, respectively. In this

scenario, the nodes are distributed in the square field with the length of 1000 m.

In Fig. 6, we show the energy consumption versus different number of nodes.

SMTMEA algorithm consumes the minimum energy while the constraint on the total
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probability of detection and the network throughput is satisfied. RA has the maximum

energy consumption.

In Fig. 7, the average throughput versus different number of nodes is shown. The

throughputs of our proposed algorithms are approximately the same while RA has the

minimum throughput due to the random selection of the nodes. All algorithms are com-

pared when the global probability of detection constraint is satisfied.
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Figure 8 shows the total average throughput versus different values of throughput

threshold. Our proposed algorithms satisfy the throughput constraint while RA cannot

obtain the minimum required throughput. Number of nodes equals to 30 and the sensors are
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distributed randomly with a uniform distribution in the square field with the length of

1000 m.

6 Conclusions

The attenuation in the signal due to shadowing, fading or other impairments can lead to

inappropriate detection of the primary signal by a single detector. Cooperative spectrum

sensing is proposed as a solution to overcome the shadowing and fading effects. It is not

necessary for all sensors to participate in spectrum sensing, because, increasing the number

of cooperating sensors can decrease the required detector sensitivity and sensing time

significantly. However, it should be considered that as the number of cooperating sensors

increases, the communication overhead will also increase in terms of exchanged messages

and processing overhead.

We proposed two algorithms for energy-efficient cooperative spectrum sensing in

cognitive sensor networks. Using these algorithms, the sensing nodes and data transmitting

sensors were determined so that the constraints on the detection performance and the

minimum required throughput were satisfied. We formulated our problem and using

convex optimization methods and KKT conditions, the nodes which sense the spectrum

and the sensors which only transmit their data were selected. Simulation results showed

that our algorithms are very effective in saving energy and improving the network

throughput.
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Appendix

Proof of (23) formula

Let according to (21) we have

oL

ofj
¼ �l P H0ð Þ 1� Pf

� �
r0;j þ P H1ð Þ 1� Pdð Þr1;j

� �
þ Ctj ¼ 0 8j 2 0; 1; 2; . . .;Nf g

and
oL

ofi
¼ �l P H0ð Þ 1� Pf

� �
r0;i þ P H1ð Þ 1� Pdð Þr1;i

� �
þ Cti ¼ 0 8j 2 0; 1; 2; . . .;Nf g

Therefore,

fj �l P H0ð Þ 1� Pf

� �
r0;j þ P H1ð Þ 1� Pdð Þr1;j

� �
þ Ctj

� �
¼ fi �l P H0ð Þ 1� Pf

� �
r0;i þ P H1ð Þ 1� Pdð Þr1;i

� �
þ Cti

� �
Then, we have

�l P H0ð Þ 1� Pf

� �
r0;j þ P H1ð Þ 1� Pdð Þr1;j

� �
þ Ctj

�l P H0ð Þ 1� Pf

� �
r0;i þ P H1ð Þ 1� Pdð Þr1;i

� �
þ Cti

¼
fj
fi

fj
fi
is related to the inverse ratio of the following cost function

Cost t jð Þ ¼ �l P H0ð Þ 1� Pf

� �
r0;j þ P H1ð Þ 1� Pdð Þr1;j

� �
þ Ctj

It means that each sensor with lower cost function has the higher priority to send its data

to the FC.

The proof for (22) is similar to (23).
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